Proper support cohomology

Conventions and notations. In this Task, all sheaves are assumed to be the sheaves of abelian groups, and all topological spaces locally compact of finite cohomological dimension $\dim_c X < \infty$ (see prb. SHA6 \diamond 8). The tensor product of sheaves *F*, *G* has the sections $F \otimes G(U) \stackrel{\text{def}}{=} L(U) \otimes F(U)$ (the tensor product of abelian groups) over open $U \subset X$. A sheaf *L* on *X* is called *flat* if the functor $F \mapsto L \otimes F$ is exact on the category of sheaves on *X*.

- **SHA81.** Given a sheaf *F* on *X* and an embedding of arbitrary closed subset $\iota : Z \hookrightarrow X$, construct canonical isomorphism $\underset{U\supset Z}{\operatorname{colim}} H^0_c(U, F) \xrightarrow{\sim} H^0_c(Z, \iota^*F)$.
- **SHA8**◇2. Construct the Mayer–Vietoris long exact sequence as in prb. $\Pi\Gamma$ A5◇6 for the cohomologies with compact supports and a pair of arbitrary closed subsets $Z_1, Z_2 \subset X$.
- **SHA83.** Given a sheaf *F* on *X* and an open subset $U \subset X$ with the complementary closed subset $Z = X \setminus U$, construct long exact sequence $\cdots \rightarrow H_c^i(U, F) \rightarrow H_c^0(X, F) \rightarrow H_c^0(Z, F) \rightarrow H_c^{i+1}(U, F) \rightarrow \cdots$.
- **SHA84.** Show that a sheaf *F* is soft iff $H_c^1(U, F) = 0$ for every open $U \subset X$.
- **SHA8** \diamond **5.** Compute the cohomologies with compact supports for the constant sheaves \mathbb{R} , \mathbb{Z} on the space \mathbb{R}^n and the half-space $x_1 \ge 0$ in \mathbb{R}^n .
- **SHA8** \diamond **6.** Construct a canonical isomorphism between the cohomologies with compact support of the constant sheaf \mathbb{R} on a smooth manifold *X* and the cohomologies of De Rham complex of smooth global differential forms with compact support on *X*.
- SHA8 ◇7. For an open set $U \subset X$, write \mathbb{Z}_U for the sheaf on *X* associated with the presheaf whose group of sections over an open *W* equals \mathbb{Z} if $U \cap W \neq \emptyset$ and thero otherwise. Show that: **a**) the sheaf \mathbb{Z}_U is flat and corepresents the functor $\Gamma_U : F \mapsto F(U)$ from sheaves to abelian groups **b**) every sheaf *F* on *X* is a cokernel of some map between direct sums of sheaves of the form \mathbb{Z}_U **c**) every sheaf *F* on *X* is the colimit of naturally depending on *F* diagram of sheaves of the form \mathbb{Z}_U .
- **SHA88.** Prove that a contravariant functor from the category of sheaves to the category of abelian groups is representable iff it sends colimits to limits.
- **SHA89.** Prove that: **a)** the Godement resolution of a flat sheaf consists of flat soft sheaves **b)** every flat sheaf has a flat soft resolution of finite length.
- **SHA8** \diamond **10.** Given a flat soft sheaf *L* on *X*, prove that **a**) $L \otimes F$ is soft for every sheaf *F* **b**) for every continuous map $f : X \to Y$, the functor $Sh(X) \to Sh(Y)$, $F \mapsto f_!(L \otimes F)$ is exact and has the right adjoint, which sends injective sheaves to injective.
- **SHA8** \diamond **11**^{*}. Let *X* be an orientable manifold of dimension *n* with boundary, $\omega_X = i_1 \mathbb{R}$ be the sheaf on *X* obtained from the constant sheaf \mathbb{R} on $X \setminus \partial X$ via extension by zero.For every sheaf *F* on *X* construct canonical isomorphism $H^i_c(X, F)^* \simeq \operatorname{Ext}_{Sh(X)}^{n-i}(F, \omega_X)$.

N₂	date	verified by	signature
1			
2			
3			
4			
5			
6			
7a			
b			
c			
8			
9a			
b			
10a			
b			
11			