Coherent sheaves

Terminology. Let k be an algebraically closed field. An algebraic manifold over k is a topological space X such that every point $x \in X$ has an open neighborhood $U \ni x$ equipped with a homeomorphism $\varphi_U : U \cong X_U$, where X_U is an affine algebraic variety considered with the Zariski topology¹, and every pair of such affine charts U, W is compatible in the sense that the homeomorphism $\varphi_W \circ \varphi_U^{-1}$ between the open sets $\varphi_U(U \cap W) \subset X_U, \varphi_W(U \cap W) \subset X_W$ is given in coordinates by rational functions well defined within these open sets. We write \mathcal{O}_X for the sheaf of local rational functions on X with values in k. A sheaf of \mathcal{O}_X -modules \mathcal{M} on X is called to be *quasicoherent* if there exists an open affine covering $X = \bigcup U_i$ such that $\mathcal{M}(W) = \mathcal{M}(U_i) \bigotimes_{\mathcal{O}_X(U_i)} \mathcal{O}_X(W)$ for every open $W \subset U_i$ and all *i*. We write $\mathcal{O}_{\mathbb{P}_n}(d)$ for the sheaf on \mathbb{P}_n whose sections over an open $U \subset \mathbb{P}_n$ are rational functions φ in the homogeneous coordinates x on \mathbb{P}_n representable, for every point $p \in U$, as $\varphi = f_p / g_p$, where f_p , g_p are homogeneous *polynomials* in x with deg $f_p - \deg g_p = d$ and $g_p(p) \neq 0$.

- **SHA7** $\diamond 1$. Given a commutative ring K and $f_1, f_2, \ldots, f_m \in K$, the Koszul complex $K_{f_1f_2\ldots f_m} \stackrel{\text{def}}{=} \bigotimes_{i=1}^m K_{f_i}$ is the tensor product of complexes K_{f_i} consisting of just two terms situated in degrees 0, 1 and looking as $K \to K, x \mapsto f_i x$. Write $\Lambda = \bigoplus_{i=0}^m \Lambda^i$ for the exterior algebra of the free K-module K^m of rank m with the standard basis $\xi_1, \xi_2, \ldots, \xi_m$. Show that **a**) the Koszul complex $K_{f_1f_2\ldots f_m}$ is isomorphic to the complex $0 \to \Lambda^0 \stackrel{\xi}{\to} \Lambda^1 \stackrel{\xi}{\to} \ldots \stackrel{\xi}{\to} \Lambda^{m-1} \stackrel{\xi}{\to} \Lambda^m \stackrel{\xi}{\to} 0$ whose differential is the right multiplication by the element $\xi = \sum f_i \xi_i \in \Lambda^1$ **b**) if f_i does not divide zero in the quotient ring $K / (f_{i+1}, \ldots, f_m)$ for all i, then the only non-zero cohomology of the Koszul complex is $H^m(K_{f_1f_2\ldots f_m}) \simeq K / (f_1, f_2, \ldots, f_m)$.
- SHA7 $\diamond 2$. Let an affine algebraic variety *X* with the coordinate algebra $A = \Bbbk[X]$ be covered by principal open sets $\mathcal{D}(f_i) = \{p \in X \mid f_i(p) \neq 0\}$ for some $f_1, f_2, \dots, f_m \in A$. Show that **a**) a sequence of *A*module homomorphisms is exact iff its localization in² f_i is exact for every *i* **b**) for every *A*-module *M* and any $n_1, n_2, \dots, n_m \in \mathbb{N}$, the Koszul complex $M_{f_1^{n_1} f_2^{n_2} \dots f_m^{n_m}} = M \bigotimes_A K_{f_1^{n_1} f_2^{n_2} \dots f_m^{n_m}}$ is exact **c**) the Čech complex $0 \to M \to \prod_i M_{(f_i)} \to \prod_{i < j} M_{(f_i f_j)} \to \prod_{i < j < k} M_{(f_i f_j f_k)} \to \cdots$, where $M_{(h)} \stackrel{\text{def}}{=} M \bigotimes_A A[h^{-1}]$ and the differential *ds* of a family $s = (s_i, \ldots, s_i) \in \prod_{i < j < k} M_{(f_i, f_j)} \in M_{(f_i, f_j)}$ and the components

differential *ds* of a family $s = (s_{i_0 i_1 \dots i_p}) \in \prod_{i_0 < \dots < i_p} M_{(f_{i_0} f_{i_1} \dots f_{i_p})}$ has the components

$$(ds)_{i_0i_1\dots i_{p+1}} = \sum_{\nu=1}^p (-1)^\nu s_{i_0\dots \hat{i}_p\dots i_{p+1}} \in M_{(f_{i_0}f_{i_1}\dots f_{i_{p+1}})}$$

is represented as a filtered colimit of exact Koszul complexes, and therefore, is exact **d**) every open affine covering of an algebraic variety is acyclic for every quasicoherent sheaf.

- **SHA7** \diamond **3.** Use a covering of $X = \mathbb{A}^{n+1} \lor 0$ by the charts $U_i = \{(x_0, x_1, \dots, x_n) | x_i \neq 0\}$ to find a basis for the vector space $\bigoplus_p H^p(X, \mathcal{O}_X)$ over \Bbbk .
- **SHA7** \diamond **4.** Verify that every sheaf $\mathcal{O}_{\mathbb{P}_n}(d)$ on $\mathbb{P}_n = \mathbb{P}(V)$ is a locally free $\mathcal{O}_{\mathbb{P}_n}$ -module of rank 1 and construct the *Euler exact sequence* $0 \to \mathcal{O}_{\mathbb{P}_n} \to V \otimes_{\mathbb{R}} \mathcal{O}_{\mathbb{P}_n}(1) \to \mathcal{T}_{\mathbb{P}_n} \to 0$, where *V* is the constant sheaf of vector spaces, $\mathcal{T}_{\mathbb{P}_n}$ is the tangent sheaf (of local vector fields with rational coefficients³).
- **SHA7** \diamond **5.** On the projective space \mathbb{P}_n , compute all cohomologies of the following coherent sheaves: **a**) $\mathcal{O}_{\mathbb{P}_n}(d)$ **b**) $\Lambda^k \mathcal{T}_{\mathbb{P}_n}$ **c**) $\Lambda^k \mathcal{Q}_{\mathbb{P}_n}$, where $\mathcal{Q}_{\mathbb{P}_n} = \mathcal{T}^*_{\mathbb{P}_n} = \mathcal{H}om_{\mathcal{O}_{\mathbb{P}_n}}(\mathcal{T}_{\mathbb{P}_n}, \mathcal{O}_{\mathbb{P}_n})$ is the cotangent sheaf (of local differential 1-forms with rational coefficients).

SHA7 \diamond **6.** Show that: **a**) the ideal sheaf \mathcal{J} of a rational normal cubic in \mathbb{P}_3 fits in the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}_3}(-3)^{\oplus 2} \to \mathcal{O}_{\mathbb{P}_3}(-2)^{\oplus 3} \to \mathcal{J} \to 0$$

b) two such curves are intersecting iff they lie in a common cubic surface.

¹This means that $X_U \subset \mathbb{k}^m$ is described by a system of polynomial equations and the closed subsets of *X* are those described by systems of polynomial equations too. The ring $\mathbb{k}[X_U] \stackrel{\text{def}}{=} \mathbb{k}[x_1, x_2, \dots, x_m]/I$, where the ideal *I* consists of all polynomials that vanish along X_U , is called the *coordinate algebra* of affine algebraic variety X_U .

²That is, the result of applying the exact functor $M \mapsto M \bigotimes_{A} A[f_i^{-1}]$.

³That is, $\mathcal{T}_{\mathbb{P}_n}(U)$ consists of k-linear differentiations $\mathcal{O}_{\mathbb{P}_n}(U) \to \mathcal{O}_{\mathbb{P}_n}(U)$

N₂	date	verified by	signature
1a			
b			
2a			
b			
C			
d			
3			
4			
5a			
b			
С			
6a			
b			