Sections with a compact support.

Conventions and notations. In this Task, every (pre)sheaf is a (pre)sheaf of abelian groups, and all topological spaces are locally compact. A continuous map is called to be *proper* if the complete preimage of every compact is compact. A subset $W \subset X$ is called to be *locally closed* if every point $w \in W$ has an open neighborhood $U \ni w$ in X such that $U \cap W$ is closed in the topology on U induced from X. For a sheaf F on X, the elements of abelian group

 $H^0_c(X, F) \stackrel{\text{def}}{=} \{ s \in F(X) \mid \text{supp}(s) \text{ is compact} \}$

are called the global sections with a compact support.

- **SHA61.** For a continuous map $f : X \to Y$ and a sheaf F on X write $f_!F \subset f_*F$ for the presheaf on Y with $f_!F(U) \stackrel{\text{def}}{=} \{s \in F(f^{-1}U) \mid \text{the map } f|_{\text{supp}(s)} : \text{supp}(s) \to U \text{ is proper}\}$. Show that: **a**) $f_!F$ is a sheaf **b**) if f is the embedding of a closed subset, then $f_! = f_*$ **c**) the functor $f_! : Sh(X) \to Sh(Y), F \mapsto f_!F$ is left exact **d**) $\forall y \in Y$ the stalk $f_!F_y \simeq H^0_c (f^{-1}(y), F|_{f^{-1}(y)})$.
- **SHA6** \diamond **2.** Let $f : W \hookrightarrow X$ be the embedding of a locally closed subset and F a presheaf on W. Show that: **a**) the stalk $f_!F_x$ coincides with F_x for $x \in W$, and vanishes for $x \notin W$ **b**) the functor $f_!$ is exact **c**) $f^*f_! = \text{Id}_{Sh(W)}$ **d**) the functors $f_!$, f^* are quasi-inverse equivalences between the category Sh(W) and the full subcategory in Sh(X) that consists of the sheaves with zero stalk at every point of $X \setminus W$.
- **SHA6** \diamond **3.** Under the conditions of prb. SHA6 \diamond 2, let *G* be a sheaf on *X*. Put $G^W(U) \stackrel{\text{def}}{=} \{s \in F(U) | \operatorname{supp}(s) \subset W\}$ and $h^! G \stackrel{\text{def}}{=} h^* G^W$. Show that: **a**) G^W is a sheaf on *X* with zero stalk at every point of $X \setminus W$ **b**) the functor $f^!$ is left exact and *right* adjoint to the functor $f_!$ **c**) if *W* is open in *X*, then $h^! = h^*$ **d**) if *W* is closed in *X*, then $h^! h_* = \operatorname{Id}_{Sh(W)}$.
- **SHA6** \diamond **4.** Let $i : Z \hookrightarrow X$ and $j : U \hookrightarrow X$ be the embeddings of some complementary closed subset $Z \subset X$ and open $U = X \setminus Z$. Show that every sheaf F on X fits in the exact triple of sheaves $0 \to j_1 j^* F \to F \to i_* i^* F \to 0$ on X.
- **SHA6** \diamond **5.** For a continuous map $f : X \to Y$ and a localle closed embedding $h : W \hookrightarrow Y$, write g for the locally closed embedding $g : f^{-1}(W) \hookrightarrow X$. Construct an isomorphism of functors $f_*h^! \simeq g_!f^*$.
- **SHA6** \diamond **6.** For a continuous map $f : X \to Y$ and an exact triple of sheaves $0 \to F \to G \to H \to 0$ on X with soft F, prove that: **a)** the sheaf $f_!F$ is soft and the sequences **b)** $0 \to f_!F \to f_!G \to f_!H \to 0$, of sheaves, **c)** $0 \to H^0_c(X,F) \to H^0_c(X,G) \to H^0_c(X,H) \to 0$, of abelian groups, are exact.
- **SHA6** \diamond **7.** For a sheaf *F* and *X* and a continuous map $f : X \to Y$, the higher direct image with compact supports $R^q f_! F$ is defined as the *q*th cohomology sheaf of the complex of sheaves on *Y*

$$0 \to f_! \mathcal{C}_F^0 \to f_! \mathcal{C}_F^1 \to f_! \mathcal{C}_F^2 \to \cdots$$

obtained by applying $f_!$ to the flabby Godement's resolution C_F^{\bullet} of the sheaf¹ F on X. Show that: **a**) every exact triple of sheaves on X produces the long exact sequence of higher direct images with compact supports on Y **b**) in the definition of $R^q f_! F$, the Godements's resolution may be replaced by an arbitrary complex of sheaves G^{\bullet} on X such that the only nonzero cohomology sheaf of G^{\bullet} is $H^0(G^{\bullet}) \simeq F$ and $R^q f_! G^p = 0$ for q > 0 and all p **c**) there exists a spectral sequence² with $E_2^{p,q} = H_c^p(Y, R^q f_! F)$ converging to $H_c^{p+q}(X, F)$.

SHA6 8. Write $\dim_c X$ for the minimal n such that $H^n_c(X, F) = 0$ for every sheaf F on X. Show that: **a)** given an exact sequence of sheaves $0 \to F \to S^0 \to S^1 \to \cdots \to S^{n-1} \to S^n \to 0$ such that S^k is soft for $0 \le k \le n-1$, than S^n is soft as well **b)** $\dim_c \mathbb{R}^n = n$ **c)** $\dim_c W \le \dim_c X$ for every locally closed $W \subset X$ **d)** if every point $x \in X$ has an open neighborhood $U \ni x$ with $\dim_c U \le n$, then $\dim_c X \le n$ **e)** $R^q f_! F = 0$ for all $q > \dim_c X$, any continuous map $f : X \to Y$, and every sheaf F on X.

¹In particular, $H_c^q(X, F) = R^q c_! F$, where $c : X \to pt$ is the constant map to a point.

²It is called the *Leray spectral sequence*.

N₂	date	verified by	signature
1a			
b			
c			
d			
2a			
b			
c			
d			
3a			
b			
c			
d			
4			
5			
6a			
b			
c			
7a			
b			
c			
8a			
b			
c			
d			
e			