Adjoint Functors, Exact Functors, and Colimits.

- SHA2 \diamond 1. Presheaves $F : C^{opp} \to D$, $G : D^{opp} \to C$ are called *left* (resp. *right*) *adjoint*, if there exist a natural in $C \in Ob C$, $D \in Ob D$ bijection $Hom_{\mathcal{C}}(G(D), C) \simeq Hom_{\mathcal{D}}(F(C), D)$ (resp. $Hom_{\mathcal{C}}(C, G(D)) \simeq Hom_{\mathcal{D}}(D, F(C))$). Formulate and solve the analog of SHA1 \diamond 8 for such presheaves.
- **SHA2** \diamond **2.** Prove that a functor $F : \mathcal{C} \to \mathcal{D}$ is left adjoint to a functor $G : \mathcal{D} \to \mathcal{C}$ iff there are natural transformations $t : F \circ G \to \operatorname{Id}_{\mathcal{D}}, s : \operatorname{Id}_{\mathcal{C}} \to G \circ F$ such that the compositions of natural transformations¹ $F \xrightarrow{F \circ S} FGF \xrightarrow{t \circ F} F$ and $G \xrightarrow{s \circ G} GFG \xrightarrow{G \circ t} G$ are equal to the identity transformations of the functors F and G.
- SHA2 \diamond 3. Show that a category *C* is coclosed iff it has an initial object, a coproduct for every set of objects, and a coequalizer for every pair of morphisms sharing the same domain and codomain.
- **SHA2** \diamond **4.** Let a subset *S* in an associative (but not necessary commutative) ring *R* with unit be *multiplicative*, i.e., $1 \in S$, $s, t \in S \Rightarrow st \in S$, and satisfy the following two *Ore conditions*:

for all
$$\varrho \in R$$
, $s \in S$ there exists $\lambda \in R$, $t \in S$ such that $\lambda s = t\varrho$ (O₁)

$$\forall \varphi, \psi \in R$$
, if $\exists s \in S$ such that $\phi s = \psi s$, then $\exists t \in S$ such that $t\phi = t\psi$. (O₂)

Consider *S* as a category with $\operatorname{Hom}_{S}(s,t) \stackrel{\text{def}}{=} \{\lambda \in R \mid \lambda s = t\}$, and let a functor $S \to \mathcal{M}od$ -*R* send an object $s \in S$ to the free rank 1 right *R*-module spanned by the basis vector denoted by $[s^{-1}]$, and an arrow $\lambda \in \operatorname{Hom}_{S}(s_{1}, s_{2})$ to the homomorphism acting on this basis vector as $[s_{1}^{-1}] \mapsto [s_{2}^{-1}] \cdot \lambda$. Write $S^{-1}R$ for the colimit of this diagram. Show that it is formed by the classes of formal fractions $s^{-1}\varrho$ modulo the relation $s_{1}^{-1}\varrho_{1} \sim s_{2}^{-1}\varrho_{2}$ meaning an existence of $\lambda_{1}, \lambda_{2} \in R$ such that $\lambda_{1}s_{1} = \lambda_{2}s_{2} \in S$ and $\lambda_{1}\varrho_{1} = \lambda_{2}\varrho_{2}$, and define a structure of associative ring with unit on $S^{-1}R$.

- SHA2 \diamond 5 (exact functors). A functor $F : Ab \to Ab$ (resp. a presheaf $Ab^{\text{opp}} \to Ab$) is called *left exact* if it sends the kernels (resp. the cokernels) to the kernels. Dually, *F* is called *right exact* if it sends the cokernels (resp. the kernels) to the cokernels. *F* is called *exact*, if it is both left and right exact. Prove that: **a**) for every $N \in \text{Ob }Ab$, the functor $X \mapsto X \otimes_{\mathbb{Z}} N$ is right exact, and for some *N*, it is not left exct **b**) for every small category \mathcal{N} , a the colimit functor colim : $\mathcal{F}un(\mathcal{N}, Ab) \to Ab$ is exact².
- **SHA2** \diamond **6.** Show that a sequence of sheaves $0 \rightarrow F \rightarrow G \rightarrow H \rightarrow 0$ on a topological space *X* is exact iff for every point $x \in X$, the sequence of fibers $0 \rightarrow F_x \rightarrow G_x \rightarrow H_x \rightarrow 0$ is exact in $\mathcal{A}b$. Give an example showing that this fails for exact sequences of presheaves.
- **SHA2** \diamond **7**. Show that the tautological embedding $Sh(X) \hookrightarrow pSh(X)$ is left but not right exact.
- **SHA2** \diamond **8.** Show that the functor $\Gamma : \mathcal{T}op(X) \to pSh(X)$, which takes a continuous map $E \to X$ to the sheaf of its local sections, is right adjoint to the functor $\mathcal{E} : pSh(X) \to \mathcal{T}op(X)$, which takes a sheaf of sets F on X to its étale space $\mathcal{E}_F = \coprod_{x \in X} F_x$ equipped with the least topology in which the section $s : U \to \mathcal{E}_F$, $x \mapsto (\text{class } s \text{ in } F_x)$ is continuous for every open $U \subset X$ and every $s \in F(U)$.

¹Here $(F \circ S)_X \stackrel{\text{def}}{=} F(S_X)$, $(t \circ F)_X \stackrel{\text{def}}{=} t_{F(X)}$ etc.

²The (co)kernel of a natural transformation $f : X \to Y$ is formed by the (co)kernels of maps $f_v : X_v \to Y_v, v \in Ob \mathcal{N}$. Show that the arrows $X(\mu \to v)$ and $Y(\mu \to v)$ give well defined maps between (co)kernels, and these maps form the diagrams ker $f : \mathcal{N} \to \mathcal{A}b$ and coker $f : \mathcal{N} \to \mathcal{A}b$.

N₂	date	verified by	signature
1			
2			
3			
4			
5a			
b			
6			
7			
8			