Категории и функторы.

Обозначения. Через Set, Top, Ab, Grp, Cmr, Mod_K , $Vec_k = Mod_k$, Ass_k , A-Mod, Mod-A обозначаются категории множеств, топологических пространств, абелевых групп, всех групп, коммутативных колец¹, модулей над коммутативным кольцом K, векторных пространств и ассоциативных алгебр над полем k, левых и правых модулей над (некоммутативной) ассоциативной k-алгеброй A. Категории функторов $\mathcal{C} \to \mathcal{D}$ и предпучков $\mathcal{C}^{\text{opp}} \to \mathcal{D}$ обозначаются через $\mathcal{F}un(\mathcal{C}, \mathcal{D})$ и $pSh(\mathcal{C}, \mathcal{D}) = \mathcal{F}un(\mathcal{C}^{\text{opp}}, \mathcal{D})$.

- ПГА1 \diamond 1. Обозначим через Δ_{big} категорию всех конечных упорядоченных множеств и неубывающих отображений между ними, а через $\Delta \subset \Delta_{\mathrm{big}}$ её полную подкатегорию, состоящую из множеств $[n] \stackrel{\mathrm{def}}{=} \{0, 1, \ldots, n\}$, $n \geqslant 0$. Покажите, что **a)** категории Δ и Δ_{big} канонически эквивалентны **б)** алгебра стрелок $\mathbb{Z}[\Delta]$ порождается тождественными морфизмами $e_n = \mathrm{Id}_{[n]}$, вложениями $\partial_n^{(i)} \colon [n-1] \hookrightarrow [n]$, где $0 \leqslant i \leqslant n$ и образ не содержит i, и наложениями $s_n^{(i)} \colon [n] \twoheadrightarrow [n-1]$, где $0 \leqslant i \leqslant n-1$ и $(i+1) \mapsto i$. **в***) Найдите образующие идеала соотношений между этими порождающими стрелками.
- ПГА1 \diamond 2. Для каждого $X \in \text{Оb } \mathcal{C}$ функтор $h^X: Y \mapsto \text{Hom}(X,Y)$ и предпучок $h_X: Y \mapsto \text{Hom}(Y,X)$ переводят стрелку $\varphi: Y_1 \to Y_2$ в отображения левого и правого умножения на эту стрелку: $\varphi_*: \text{Hom}(X,Y_1) \to \text{Hom}(X,Y_2), \ \psi \mapsto \varphi \circ \psi$ и $\text{Hom}(Y_2,X) \to \text{Hom}(Y_1,X), \ \psi \mapsto \psi \circ \varphi$. Проверьте, что сопоставления $X \mapsto h^X$ и $X \mapsto h_X$ задают вполне строгие функторы $\mathcal{C}^{\text{opp}} \to \mathcal{F}un(\mathcal{C},\mathcal{S}et)$ и $\mathcal{C} \to p\mathcal{S}h(\mathcal{C},\mathcal{S}et)$.
- **ПГА1\diamond3.** Покажите, что точная последовательность $0 \to A \to B \to C \to 0$ в $\mathcal{A}b$ переводится функтором h^X в точную последовательность $0 \to \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B) \to \operatorname{Hom}(X,C)$, правая стрелка которой может не быть сюрьекцией. Установите двойственный факт об h_X .
- ПГА1 \diamond 4. Опишите произведения и копроизведения в а) Set б) Top в) Mod_K г) Grp д) Cmr.
- ПГА1 \diamond 5. В категории $\mathcal{A}b$ для простого $p \in \mathbb{N}$ положим $A_n = \mathbb{Z}/(p^n)$, и при n < m обозначим через $\psi_{nm} : A_m \twoheadrightarrow A_n$ факторизацию, а через $\varphi_{mn} : A_n \hookrightarrow A_m$ вложение $[1] \mapsto [p^{m-n}]$. Покажите, что **a)** $\lim A_n$ вдоль стрелок ψ_{mn} изоморфен группе целых p-адических чисел $\mathbb{Z}_{(p)}$ 6) со $\lim A_n$ вдоль стрелок φ_{mn} изоморфен подгруппе классов дробей вида q/p^ℓ в \mathbb{Q}/\mathbb{Z} .
- ПГА1 \diamond 6. В категории $\mathcal{A}b$ положим $B_n = \mathbb{Z}/(n)$, и при n|m обозначим через $\psi_{nm} \colon B_m \twoheadrightarrow B_n$ факторизацию, а через $\varphi_{mn} \colon B_n \hookrightarrow B_m$ вложение $[1] \mapsto [m/n]$. Покажите, что **a**) $\lim B_n$ по стрелкам ψ_{nm} изоморфен неархимедову пополнению $\prod_p \mathbb{Z}_{(p)}$ группы \mathbb{Z} **6**) $\operatorname{colim} B_n$ по стрелкам φ_{mn} изоморфен \mathbb{Q}/\mathbb{Z} .
- **ПГА1\diamond7.** Докажите, что функтор $G: \mathcal{D} \to \mathcal{C}$ обладает левым сопряжённым F, если и только если для каждого $X \in \operatorname{Ob} \mathcal{C}$ функтор $h_G^X: Y \mapsto \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$ копредставим, и в этом случае F(X) копредставляет h_G^X . Найдите двойственные необходимые и достаточные условия наличия правого сопряжённого у данного функтора $F: \mathcal{C} \to \mathcal{D}$.
- **ПГА1\diamond8.** Покажите, что все левые сопряжённые функторы перестановочны с копределами, а правые с пределами².
- **ПГА1** \diamond **9.** Для любого расширения $S \subset R$ ассоциативных алгебр с единицей постройте левый и правый сопряжённые функторы к функтору ограничения $\operatorname{res}_S^R : R \cdot \mathcal{M}od \to S \cdot \mathcal{M}od$.
- ПГА1 \diamond 10. Сопоставим топологическому пространству X предпучок $S(X): \Delta^{\mathrm{opp}} \to \mathcal{S}et$, переводящий $[n] \in \mathrm{Ob}\,\Delta$ в множество непрерывных отображений $S_n(X) \stackrel{\mathrm{def}}{=} \mathrm{Hom}_{\mathcal{T}op}(\Delta^n,X)$ из стандартного правильного симплекса 3 $\Delta^n \subset \mathbb{R}^{n+1}$ в X, а неубывающей стрелке $\varphi: [n] \to [m]$ правое умножение $f \mapsto f \circ |\varphi|$ на аффинное отображение $|\varphi|: \Delta^n \to \Delta^m$, действующее на вершины как φ . Покажите, что функтор $S: \mathcal{T}op \to p\mathcal{S}h(\Delta)$ сопряжён справа к функтору геометрической реализации $p\mathcal{S}h(\Delta) \to \mathcal{T}op$.

¹С единицами и гомоморфизмами, переводящими единицу в единицу.

 $^{^2}$ Функтор $F: \mathcal{C} \to \mathcal{D}$ перестановочен c (ко) пределами, если для любого $L \in \mathrm{Ob}\,\mathcal{C}$ и любой диаграммы $\Phi: \mathcal{N} \to \mathcal{C}$ из того, что L является (ко) пределом Φ в \mathcal{C} , вытекает, что F(L) является (ко) пределом диаграммы $F \circ \Phi$ в \mathcal{D}

³Т. е. выпуклой оболочки концов стандартных базисных векторов.

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1a			
б			
В			
2			
3			
4a			
б			
В			
Г			
Д			
5a			
б			
6a			
б			
7			
8			
9			
10			