§1 General Nonsense

1.1 Categories. A category C consists of a class® of objects Ob C, where any ordered pair of
objects X,Y € Ob C is equipped with a set of morphisms from X to Y

Hom(X,Y) = Hom,(X,Y).

It is convenient to think of the morphisms from X to Y as arrows ¢ : X — Y. The sets
Hom(X,Y) are disjoint for distinct pairs X,Y and their union over all X,Y € Ob( is denoted
Mor € = | |, , Hom¢(X, ). For each ordered triple X,Y,Z € Ob C there is a composition map?

Hom(Y,Z) x Hom(X,Y) - Hom(X,Z), (¢, )= @y (=¢y), (1-1)

which is associative: (y e ¢) o) = y o (¢ o ) each time when LHS or RHS is defined. Finally,
each object X € Ob C has the identity endomorphism® 1d,, € Hom(X, X) such that ¢ - Id,, = ¢ and
Idy ey =y forallarrows ¢ : X > Yandy : Z - X.

A subcategory D C C is a category whose objects, arrows, and compositions come from C.
A subcategory D C C is called full, if Homy(X,Y) = Hom,(X,Y) for all X,Y € ObD.

A category is called small, if Ob C is a set. In this case Mor C is a set as well.

ExAMPLE 1.1 (NON-SMALL CATEGORIES)

The following categories often appear in examples and are not small: category Set of all sets
and all mapping between them, category Jop of all topological spaces and continuous mappings,
category Vec), of vector spaces over a field k and k-linear mappings, its full subcategory vec,,
formed by finite dimensional spaces, categories R-Mod and Mod-R of left and right modules over
aring R and R-liner mappings, their full subcategories R-mod and mod-R formed by finitely pre-
sented* modules, category Ab = Z-Mod of abelian groups and category Grp of all groups and
group homomorphisms, category Cmr of commutative rings with unities and ring homomor-
phisms sending unity to unity, etc.

EXAMPLE 1.2 (POSETS)
Each poset® M is a category whose objects are the elements m € M and

one element, if n < m

Homy(n,m) = {

@ otherwise.

The composition of arrows k < ¢ and ¢ < n is the arrow k < n. Most important for us special
example of such a category is a category U(X) of all open subsets in a topological space X and
inclusions as the morphisms:

the inclusion U < W,ifU C W

Hom Uw)=
uonU- W) {@, ifugw.

"We would not like to formalize here this logical notion explicitly (see any ground course of Math
Logic). However we will consider e.g. the category of sets whose objects — sets — do not form a set.

?like the multiplication symbol, the composition symbol « o » is usually skipped

3t is unique because of Id’ = Id’ o 1d” = Id"”

*amodule is called finitely presented, if it is isomorphic to a quotient of a finitely generated free module
through its finitely generated submodule

*that is, partially ordered set
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EXAMPLE 1.3 (SMALL CATEGORIES VS ASSOCIATIVE ALGEBRAS)
Each associative algebra A with unity e € A over a commutative ring K is a category with just
one object e and Hom(e, e) = A, where the composition of arrows equals the product in A. Vice
versa, associated with an arbitrary small category € and a commutative ring K is an associative
algebra K[C] formed by all formal finite linear combinations of morphisms in € with coefficients
in K:

KICl= @ Hom(X.1)®K = {_ x¢:] ¢, € Mor(©), x, €K} ,

X,YyeObC

where we write M ® K for the free K-module with basis' M. The multiplication of arrows in K[C]
is defined by the rule

b {(p o1 if the target of ¢ coincides with the source of ¢

0 otherwise

and is extended linearly onto arbitrary finite linear combinations of arrows. One can think of
K[C] as an algebra of (maybe infinte) square matrices whose cells are numbered by the pairs of
objects of category C, an element from (Y, X)-cell belongs to free module Hom(X,Y) ® K, and
only finitely many such elements are non-zero. In general, algebra K[C] is non-commutative and
without unity. However for each f € K[C] there is an idempotent e, = ejzc such that

e o f = f cep = f
(e.g. > Idy, where X runs through the sources and targets of all arrows that appear in f).
EXAMPLE 1.4 (COMBINATORIAL SIMPLEXES)
Let 4,;, be the category of all finite ordered sets and order preserving maps®. This category is not
small. However it contains a small full subcategory 4 C 4y, formed by the sets of integers

[n]déf{o’ 13---5n}’ nZO’ (1_2)

with their standard orderings. The ordered set (1-2) is called the combinatorial n-simplex. Cate-
gory 4 is called the simplicial category.

ExERCISE 1.1. Show that algebra Z[4] is generated by the arrows

e, = Idpy, (the identity endomorphism) (1-3)
aﬁf) i [n—-1] < [n] (the inclusion whose image does not contain i) (1-4)
sg) 2 [n] » [n—-1] (the surjection sending i and (i + 1) to the same element) (1-5)

and describe the generating relations® between these arrows.

'this module is formed by all finite formal linear combinations of elements of the set M with coefficients
in K

“i.e. ¢ : X » Y such that x; <x, = ¢(x;) < @(xy)

*i.e. generators of the kernel of the canonical surjection from the free associative algebra generated

by symbols e,,, 65?, 65? onto algebra Z[4]
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1.1.1 Mono, epi, and isomorphisms. A morphism ¢ in a category C is called a monomor-
phism* (resp. an epimorphism?), if it admits left (resp. right) cancellation, that is

pa=pf=>a=L (resp. ap=Bp=>a=p).

A morphism ¢ : X — Y is called an isomorphism’, if there is a morphism ¢ : Y — X such that
oy = 1d, and P = Idy. In this case objects X and Y are called isomorphic. We depict injective,
surjective, and invertible arrows as &, », and = respectively.

ExERcIsE 1.2. Find the cardinality of Hom,([n], [m]). How many injective, surjective, and
isomorphic arrows are there in Hom,([n], [m])?

1.1.2 Rewersal of arrows. Associated with a category C is an opposite category C°P* with
the same objects but rewersed arrows, that is

Homgop (X, Y) € Home(Y,X) and ¢ o p°PP = (1Y 0 )PP .

In terms of algebras, algebra K[C°PP] = K[C]° is an opposite algebra of K[C]. Injections in C
become surjections in C°PP and vice versa.

1.2 Functors. A functor* F : € — D between categories C and D is a mapping
ObC - ObD, X+ FX),
and a collection of maps’
Hom,(X,Y) - Homp(F(X). F(Y))., @ & F(¢). (1-6)

such that F(Idy) = Idpx, forall X € Ob C and F(@°) = F(p)eF(1) each time when composition
@ o is defined. In terms of algebras, a functor is a homomorfism of algebras F : K[C] — K[D].
If all the maps (1-6) are surjective, functor F is called full. An image of a full functor is a full
subcategory. If all the maps (1-6) are injective, F is called faithful. A faithful functor produces
an injective homomorphism of algebras F : K[C] — K[D].

The simplest examples of functors are provided by the identity functor Id. : ¢ — C acting
identically on the objects and on the arrows and by the forgetting functors, sending categories of
sets with extra structures and the morphisms respecting these structures® to the category Set, of
sets, by forgetting the structure.

EXAMPLE 1.5 (GEOMETRIC REALIZATION OF COMBINATORIAL SIMPLEXES)
The geometric realization functor 4 — Jop takes n-dimensional combinatorial simplex [n] from
(1-2) to the standard regular n-simplex’

AT = {(xo,xl, LX) ERM| D Tx =1, 1,20 } c R™, (1-7)

or an injection

®or a surjection

*or an invertible morphism

*or a covariant functor

*one map for each ordered pair X,Y € ObC

‘e.g. topological spaces with continuous maps or vector spaces with linear maps
"that is the convex hull of the ends of the standard basic vectors e, e;, ..., e, € R*™*
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and takes each order preserving map ¢ : [n] — [m] to the affine linear map ¢, : A" — A™ that
acts on the basic vectors as e, — e,,,. This is faithful but non-full functor. It sends generators
(1-4), (1-5) of algebra Z[A] to the i-th face inclusion 4™~ & A™ and to the i-th edge contraction®
ATI > A(n—l).

1.2.1 Presheaves. A functor F : C°®" — D is called a contra-variant functor from C to D
or a presheaf of objects of category D on a category C. It reverses the compositions F(¢p o ) =
F() o F(p). In terms of algebras, a contravariat functor produces an anti-homomorphism of
algebras K[C] — K[D].

EXAMPLE 1.6 (PRESHEAVES AND SHEAVES OF SECTIONS)

The notion «presheaf» has appeared initially in a context of the category ¢ = U(X) of open
subsets U C X in a given topological space X. A presheaf F : U(X)°®" — D attaches an object
F(U) € ObD to each open set U C X. This object is called (an object of) sections of F over U.
Depending on D, the sections can form a ring, an algebra, a vector space, a topological space,
etc. Attached to an inclusion of open sets U C W is a map F(W) — F(U) called the restriction
of sections from W onto U C W. The restriction of a section s € F(W) onto a subset U C W is
usually denoted by s|,. Here are some typical examples of such presheaves:

1) Presheaf I'; of the sets of local sections of a continuous mapping p : E — X has I';(U)
equal to a set of maps s : U — E such that® p o s = Id,,. Its restriction maps take sections
to their restrictions onto smaller subsets.

2) Specializing the previous example to projection p : X X Y — X, we get the sheaf ¢°(X,Y)
of locally defined continuous mappingss : U — Y.

3) Further specialization of the above examples leads to so called structure presheaves 0, such
as the presheaf of local smooth functions U — R on a smooth manifold X, or the presheaf
of local holomorphic functions U — C on a complex analytic manifold X, or the presheaf
of local rational functions U — k on an algebraic manifold X over a field k etc. All these
presheaves are presheaves of algebras over the corresponding field R, C, or k.

4) A constant presheaf S has S(U) equal to a fixed set S for all open U C X and all its restriction
maps are the identity morphisms Idg.

A presheaf F of sets on S is called a sheaf, if for any open W, any covering of W by open U; C W,
and any collection of sections s; € F(U;) such that Silunu, = Sjluau, for all i,j there exist a
unique section s € F(W) such that s|;, = s; for all i. If there exist at most one such a section s
but it does not have to exist, then F is called a separable presheaf. All above presheaves (1) - (4)
are separable and only the last of them is not a sheaf, because for disjoint union W = U, u U,
of open U,, U, not any pair of constants s; € S(U;) appears as the restriction of some constant
s € S(W). However, besides the constant presheaf S, associated to an arbitrary set S is

5) a constant sheaf S~ whose sets of sections S~ (U) consist of continuous maps U — S, where
S is considered with the discrete topology.

'i.e. projection onto a face along the edge joining i-th and (i + 1)-th vertexes
%j.e. sending each point x € U to the fiber p~'(x) C E over x
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ExERcisE 1.3. Find all antiderivatives® of real function x — 1/x.

ExERCISE 1.4. Show that the category of sheaves Sh(X) is a full subcategory of the category of
presheaves pSh(X).

EXAMPLE 1.7 (TRIANGULATED TOPOLOGICAL SPACES)
Write A, C A for non-full subcategory with Ob 4, = Ob 4 and injective’ order preserving maps as
the morphisms. Category 4 is called the semisimplicial category.

EXERCISE 1.5. Show that algebra K[A,] is generated by the identical arrows e,, = Id;,,; and the
inclusions 62) from (1-4).

A presheaf of sets X : A" — Set on A, is called a semisimplicial set. Each semisimplicial set is
nothing but a combinatorial description for some triangulated topological space denoted by |X]|
and called a geometric realization of semisimplicial set X. Namely, F attaches a set X,, = X([n]) to
each non-negative integer n. Let us interpret the points x € X,, as disjoint regular n-simplexes
A%. The morphisms ¢ : [n] — [m] in category 4, stay in bijection with n-dimensional faces
of regular m-simplex A™. A map X(¢) : X,, — X,,, which corresponds to such a morphism ¢,
produces a gluing rule: for each x € X,, it picks up some n-simplex 47, where y = X(¢)x € X,,,
that should be glued to the constructed space |X| as the ¢-th face of simplex A7

EXERCISE 1.6. Is there a triangulation of the cycle S* by ) three 0-simplexes and three 1-
simplexes® B) one 0-simplex and one 1-simplex? Is there a triangulation of the 2-sphere S*
by c) four 0-simplexes, six 1-simplexes and four 2-simplexes D) two 0-simplexes, one 1-
simplex and one 2-simplexes? Is there a triangulation of the 2-torus T2 by one 0-simplex,
three 1-simplexes and two 2-simplex?

EXAMPLE 1.8 (SIMPLICIAL SETS)

Presheaves X : AP — Set on the whole of the simplicial category are called simplicial sets. Each
simlicial set X also produces a topological space |X| called a geometric realization of X. It is glued
from disjoint regular simplexes 4%, x € X, by identifying points s € 47. ) and ¢.(s) € 47,
where ¢ : [n] - [m] is a morphism in category 4, ¢* £ X(¢) : X,, — X,, denotes its image under
X,and ¢, : A" — A™ denotes affine linear map whose action on the vertexes of A™ is prescribed
by ¢. Formally speaking, |X| is a quotient space of a topological direct product* ] X,, x 4™ by

n>0
the minimal equivalence relation that contains identifications (x, go*s) ~ (go*x, s) for all arrows
@ : [n] - [m]in Mor(4), all x € X,,,, and all s € 4A™.

If an arrow ¢ = §o : [n] — [m]is decomposed into a surjection ¢ : [n] > [k] followed by an
injection § : [k] & [m], then n-simplex A} marked by z = ¢*y = 6%6"x € ¢*(X,,) C X,, appears
in the space |X| as k-simplex A;‘, obtained from A™ by means of linear projection g, : A™ - A*
and this k-simplex has to be the §-th face of m-simplex A7". In particular, all simplexes z € X,

Yj.e. functions f(x) with f'(x) = 1/x

’that is, strictly increasing

3.e. can one get S* as the geometric realization of a semisimplicial set X whose X,, and X, consist of 3
elements and all other X} are empty?

“where sets X,, are considered with the discrete topology and topologies on simplexes 4™ C R™** are
iduced by the standard topologies on R™**
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lying in the image of any map ¢* coming from an arrow o : [k] — [n] with k > n are degenerated:
they are visible in the space |X| as simplexes of a smaller dimension.

Usage of degenerated simplexes allows to describe combinatorially more complicated cell
complexes than the triangulations. For example, topological description of n-spere S™ as a quotint
space S = A" /0A™ leads to a pseudo-triangulation of S™ by one 0-simplex and one n-cell, which
is the interior part of the regular n-simplex A™. Combinatorially, this is the geometric realization
of simplicial set X that consists of sets X, obtained from the sets Hom,([k], [n]) by gluing all
non-surjective maps to one distiguished element. The map ¢* : X,, — X, corresponding to an
arrow ¢ : [k] — [m] is induced by the left composition with ¢:

Homy([m], [n]) = Hom,([k], [n]), ¢+ ¢C.

ExEercise 1.7. Compute cardinalities® of all sets X, and check that maps ¢* : X,, — X, are
well defined and produce a functor X : 4°%P — Ser.

1.2.2 Hom-functors. Associated with an object X € ObC in an arbitrary category C are
a (covariant) functor h* : ¢ — Set that takes Y € ObC to h*(Y) ¥ Hom(X,Y) and sends an
arrow ¢ : Y, — Y, to the map ¢, : Hom(X,Y;) - Hom(X,Y,) ¥ — ¢ oy, provided by the left
composition with ¢ and a presheaf hy : ¢ — Set that takes Y € Ob C to hy(Y) £ Hom(Y, X) and
sends an arrow ¢ : Y, — Y, to the map ¢* : Hom(Y,,X) - Hom(Y, X) ¢ — 1 o ¢ provided by
the right composition with ¢.

For example, presheaf hy,, : AP — Set produces the standard triangulation of the regular
n-simplex A™: the sets of k-simplexes hin ([k]) = Hom([k], [m]) of this triangulation are precisely
the sets of k-dimensional faces of A™. Presheaf h, : U(X) — Set on a topological space X has
exactly one section over all open W C U and the empty set of sections over all other open W ¢ U.
Presheaf hy : 17ec(]])«pp — Vec takes a vector space V to its dual space hy (V) = Hom(V, k) = V*
and sends a linear mapping ¢ : V — W to its dual mapping ¢* : W* — V*, which takes a linear
formé : W > ktoéogp : V - k

1.3 Natural transformations. Given two functors F, G : € — D, then a natural’ transformation
is a collection of arrows fy : F(X) — G(X), numbered by objects X € ObC, such that for each
morphism ¢ : X — Y in C a diagram

Fx) =% p(y)

fo Lfy (1-8)
G(X) s G(Y)

is commutative in D. A natural transformation f : F — G is called an isomorphism of functors, if
all the morphisms fy : F(X) — G(X) are isomorphisms. In this case functors F and G are called
isomorphic.

On the language of algebras, a homomorphism F : K[C] — K[D] provides K[D] with a
structure of a module over K[C], in which an element a € K[C] acts on an element b € K[D] as
a-b € F(a)-b. Two functors F, G produce two different K[C]-module structures on K[D] and

'note that X, # @ for all k € Z
*or functorial
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natural transformation f : K[D] — K[D] is nothing but a K[C]-linear homomorphism between
these modules: for each ¢ € K[C] multiplications by F(¢) and by G(¢) in K[D] satisfy the relation
feF(@)=G(p)-f.

1.3.1 Categories of functors. If a category C is small, then the functors ¢ — D to an ar-
bitrary category D form a category Fun(C, D), whose objects are the functors and morphismfs
are the natural transformations. Contravariant functors C°* — D also form a category called
a category of presheaves' and denoted by pSh(C,D). Omitted letter D in this notation means on
default that D = Set, i.e. pSh(C) € Fun(CP, Set).

EXERCISE 1.8. Verify that prescription X — h, produces a covariant functor ¢ — pSh(C) and
prescription X — h* produces a contravariant functor C°* — Fun(C, Set).

1.3.2 JxBuBaeHTHOCTU KaTeropui. Categories C and D are called equivalent, if there
exists a pair of functors F : ¢ - Dand G : D — C such that compositions GF and FG are
isomorphic to the identity functors Id. and Id;, respectively. This does not mean that FG = 1d,,
or GF =1d.: objects GF(X) and X may be different as well as objects FG(Y) and Y. But there are
functorial in X € ObC and Y € ObD isomorphisms

GF(X)>» X and FGY)=>»Y. (1-9)
In these case functors F and G are called quasi-inverse equivalences between categories C and D.

EXAMPLE 1.9 (CHOICE OF BASES)

Write vec), for the category of finite dimensional vector spaces over a field k and € C vecy, for
its small full subcategory formed by coordinate spaces k", n > 0, where we put k° = {0}. Let us
fix some basis in each vector space V € Ob vec or, equivalently, an isomorphism?

fy 1 Vs Km0 (1-10)

and for V = k™ put fyn = Idy». Define a functor F : vec — C by sending a space V to k™"
and an arrow ¢ : V — W to composition F(¢) = fy, ° ¢ o f,,*, which can be viewed as the
matrix of ¢ in the chosen bases of V and W. Let us show that F is an equivalence of categories
quasi-inverse to the tautological full inclusion G : € & vec. By the construction of F there is
an explicit equality of functors® FG = Id.. Reverse composition GF : vec — vec takes values
in the small subcategory € C vec whose cardinality is non-compatible with cardinality vec at
all. However, the isomorphisms (1-10) give a natural transformation Id,,, — GF, because all the
diagrams (1-8)
©=1d,,. ()

1d,, (V) =V W=1d,,,(W)
fvj lfw
. GF(Q)=fyo@of,* .
GF(V) =kd1mV P)=fwep=fy kdlmW= GF(W)

are commutative by the construction of F. Thus, the identity functor Id,,. is naturally isomorphic
to GF.

‘of objects of the category D on the category C
’that sends the fixed basis to the standard basis in k™
’non just a natural isomorphism
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EXERCISE 1.9. Show that category of finite ordered sets 4,;, is equivalent to its small simplicial
subcategory 4 C Ay,

LEmma 1.1

Functor G : € — D is an equivalence of categories iff it is full, faithful, and essentially surjective
(the latter means that for each Y € ObD there is some X = X(Y) € ObC such that G(X) is
isomorphic to Y).

Proor. For each Y € ObD pick up some X = X(¥) € ObC and an isomorphism f, : Y = G(X).
When Y = G(X(Y)) put f;x) = Idg) Define a functor F : D — € by sending Y € ObD to
F(Y)=X(Y)andarrow¢ : Y, - Y, toanarrowy : X(Y,) — X(Y,) suchthat G (i) = fy2 o(pof;11
(since G : Hom(X,,X,) = Hom(G(X,),G(X,)) is an isomorphism, such arrow 1 exists and is
unique). By construction, FG = Id. and for each morphism ¢ : Y, — Y, we have commutative
diagram

)
1y (Y,) =, Y, = Idp(Y,)
fylt lrh
GF(Y,) =X, — LD x = GF(v,).

Thus, morphisms f, : Y = G(X) = GF(Y) give a natural isomorphism between Id,, and GF. [

EXERCISE 1.10. Show that dualizing functor hy : vecy, — vecy, V — V*, is quasi-inverse to
itself and produces autoantiequivalence of the category of finite dimensional vector spaces.

1.4 Representable functors. A presheaf F : C°PP — Set is called representable, if it is naturally
isomorphic to presheaf hy for some X € ObC. In this case we say that object X a represents
presheaf F. Dually, a covariant functor F : € — Set is called corepresentable, if it is naturally
isomorphic to covariant functor h* for some X € ObC. In this case we say that object X a
corepresents functor F.

LEMMA 1.2 (CONTRAVARIANT YONEDA LEMMA)
For any presheaf of sets F : C® — Set on an arbitrary category C there is functorial in F €
pSh(C) and in A € C bijection F(4) > Hom g (hy, F). It takes an element a € F(A) to a natural
transformation

fyx : Hom(X,4) - F(X), (1-11)

that sends an arrow ¢ : X — A to the image of element a under map F(¢) : F(4) - F(X). The
inverse bijection takes a natural transformation (1-11) to the image of the identity Id, € h,(4)
under the map f, : h,(4) — F(A).

Proor. For any natural transformation (1-11), for any object X € ObC, and for any arrow
¢ : X > A commutative diagram (1-8)

ha(e)
h,(A) = Hom(A, A) ———  Hom(X, 4) = h,(X)

fAL F(p) fo "

F(4) FX),
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forces the equality fy(¢) = F(9)(f4(1d,)), because the upper arrow in (1-12) sends Id, to ¢.
Thus the whole of transformation f : h, — F is uniquely recovered as soon the element a =
fadd,) € F(A) is given. Choosing some a € F(A) we obtain transformation (1-11) that sends
¢ € Hom(X,A) to fyx(p) = F(p)(a) € F(X). It is natural, because for any arrow ¢ : ¥ — X
and any ¢ € h,(X) we have f, (h,W)@) = fy(op) = F(pp)a = FA))F(p)a = F) (fx(@)), ie.
fy e hy(Y) = F() o f are the same maps h,(X) — F(Y). O

EXERCISE 1.11 (COVARIANT YONEDA LEMMA). For any covariant functor F : € — Set construct
functorial in F and in A € Ob C bijection F(4) = Homg,,c sen(h?, F).

CoROLLARY 1.1

Covariant functor X ~ hy and contravariant functor X ~ h* are full and faithful. In other
words, there are functorial in A,B € Ob C isomorphisms Hom,g,(h4, hg) = Hom¢(4, B) and
Homg,,¢,(h*, h®) = Hom,(B, A).

Proor. Apply Yoneda lemmas to F = hy and F = h®. g

COROLLARY 1.2
If a functor F : € — Set is (co)representable, then its (co)representing object is unique up to
natural isomorphism.

PROOF. If F ~ h* ~ h® (or F ~ h, ~ hy), then the natural isomorphism between functors h, and
hy (resp. between h* and h®) produces by cor. 1.1 an isomorphism between 4 and B in C. g

1.4.1 Definitions via «universal properties». The Yoneda lemmas provide us with two dual
ways for transferring set-theoretical constructions from category Set to an arbitrary category
C. Namely, to define some set-theoretical operation on objects X; € ObC, consider a presheaf
CP? — Set that takes an object Y € ObC to the set obtained from the sets Hom(Y, X;) by the
operation in question. If this presheaf is representable, we declare its representing object to be
the result of our operation applied to the objects X;. The dual way uses covariant in Y functors
Hom(X;,Y) and corerepresentig object. Although both definitions are implicit, defined objects (if
exist) come with some universal properties and are unique up to unique isomorphism respecting
these properties.

ExXAMPLE 1.10 (DIRECT PRODUCT A X B)

A product A X B of objects A,B € ObC in an arbitrary category C is defined as representing
object for presheaf of sets Y — Hom(Y, A) x Hom(Y, B). If A X B exists, then for all Y in C there
is functorial in Y isomorphism £, : Hom(Y,A X B) = Hom(Y,A) x Hom(Y,B). ForY = A X B

it produces a pair of arrows A AXB B — the image of the identity B,,(Id,.5) €
Hom(4 X B,A) x Hom(A X B, B). This pair is universal in the following sense: for any pair of

Ty g

arrows A<l vy Y.op there exists a unique arrow ¢ X : Y — AXB such that ¢ = m, (@ X))
and ¢ =z ° (@ X ).

L )
EXERCISE 1.12. Show that ) for each diagram A<—"—C—=>B that possess the same universal
property there exists a unique isomorphism y : C = A x B such that n, oy = 7/, and
my oy = m, B) for any pair of arrows a @ A; — A,, B : B, — B, there is a unique arrow

axp A XBy = A, xB,suchthataem, =(@axpB)eaand oy = (aXf)ep.
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ExXERCISE 1.13. Show that the product in Jop exists and coincides with the set theoretical
product AX B = {(a,b) | a € A, b € B} equipped with the weakest topology in which both
maps T ,, Ty are continuous. Being equipped with componentwise operations, the set A X B
turns to direct product in the categories of groups, rings and modules over a ring.

EXAMPLE 1.11 (DIRECT COPRODUCT A ® B)

Dually, a coproduct A ® B in an arbitrary category C is defined as corepresenting object for
covariant functor ¢ - Set, Y —» Hom(4,Y) X Hom(B,Y). It is uniquely characterized by the

lp

universal diagram A “_A®B B such that for any pair of arrows A—2y<V B there
exists a unique arrow ¢ ® Y : A® B — Y suchthat o = (¢ @ Y) oty and P = (¢ Q@ Y) o 15.

EXERCISE 1.14. Let universal diagram A “ . A ®B<—2_B exist. Show that A) it is unique
up to unique isomorphism commuting with 1, and (5 B) each pair of arrows a : 4; — A,,

B : B, = B, produces a unique arrow a®p : A;®B,; - A,®B, suchthati,ca = (a®p)-a.

In Set and Top the coproduct AQ B = ALIB is the disjoint union. In Grp the coproduct AQ B = AxB
is the free product'. In category of modules over a ring? A® B = A X B = A @ B is the direct

sum of modules. In the category of commutative rings with unity A ® B is the tensor product of
rings>.

‘i.e. the quotient of free group generated by (4 \ e) L (B \ e) through the minimal normal subgroup of
relations that allow to replace any pair of consequent elements of the same group by their product in that
group; for example, Z * Z ~ F, is free (non-commutative) group on two generators

*in particular, in Ab

*It coincides with the tensor product of underlying abelian groups in the category of Z-modules. The
multiplication is defined as (a; ® by) - (a, ® b,) € (a, - a,) ® (b, - b,)



Comments to some exercises

Exrc. 1.3. Typical answer «In |x| + C, where C is an arbitrary constant» is incorrect. Actually, C is
a section of the constant sheaf R™ over R~ {0}.

Exrc. 1.11. Each natural transformation f, picks up an element in F(4) — the image of the identity
Id, € h*(A) under the map f, : h#(A) — F(A). Vice versa, an element a € F(A) produces
a transformation fy : Hom(4,X) — F(X) that sends an arrow ¢ : A — X to the image of a
under the map F(¢) : F(A) — F(X). To verify that it is natural and takes Id, € h4(A) to a via
fa: h#(A) = F(A), use commutative diagram

hA(4) = Hom(A. 4) — " Hom(A.X)= h(xX) (1-13)
fAl lfx
F(A) ald F(X),

whose upper arrow sends Id, to ¢ and forces f(¢) = F(¢p) (fA(IdA)).
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