
§1 General Nonsense

1.1 Categories. A category 𝒞 consists of a class¹ of objects Ob 𝒞, where any ordered pair of
objects 𝑋,𝑌 ∈ Ob 𝒞 is equipped with a set of morphisms from 𝑋 to 𝑌

Hom(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) .

It is convenient to think of the morphisms from 𝑋 to 𝑌 as arrows 𝜑 ∶ 𝑋 → 𝑌. e sets
Hom(𝑋,𝑌) are disjoint for distinct pairs 𝑋,𝑌 and their union over all 𝑋,𝑌 ∈ Ob 𝒞 is denoted
Mor 𝒞 = ⨆, Hom𝒞(𝑋,𝑌). For each ordered triple 𝑋,𝑌, 𝑍 ∈ Ob 𝒞 there is a composition map²

Hom(𝑌, 𝑍) × Hom(𝑋, 𝑌) → Hom(𝑋, 𝑍) , (𝜑,𝜓) ↦ 𝜑 ∘ 𝜓 ( = 𝜑𝜓 ) , (1-1)

which is associative: (𝜒 ∘ 𝜑) ∘ 𝜓 = 𝜒 ∘ (𝜑 ∘ 𝜓) each time when LHS or RHS is defined. Finally,
each object 𝑋 ∈ Ob 𝒞 has the identity endomorphism³ Id ∈ Hom(𝑋,𝑋) such that 𝜑 ∘ Id = 𝜑 and
Id ∘ 𝜓 = 𝜓 for all arrows 𝜑 ∶ 𝑋 → 𝑌 and 𝜓 ∶ 𝑍 → 𝑋.

A subcategory 𝒟 ⊂ 𝒞 is a category whose objects, arrows, and compositions come from 𝒞.
A subcategory 𝒟 ⊂ 𝒞 is called full, if Hom𝒟(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) for all 𝑋,𝑌 ∈ Ob𝒟.

A category is called small, if Ob 𝒞 is a set. In this case Mor 𝒞 is a set as well.

E 1.1 ( )
e following categories oen appear in examples and are not small: category 𝒮𝑒𝑡 of all sets
and all mapping between them, category 𝒯𝑜𝑝 of all topological spaces and continuous mappings,
category 𝒱𝑒𝑐𝕜 of vector spaces over a field 𝕜 and 𝕜-linear mappings, its full subcategory 𝑣𝑒𝑐𝕜
formed by finite dimensional spaces, categories 𝑅-ℳ𝑜𝑑 andℳ𝑜𝑑-𝑅 of le and right modules over
a ring 𝑅 and 𝑅-liner mappings, their full subcategories 𝑅-𝑚𝑜𝑑 and𝑚𝑜𝑑-𝑅 formed by finitely pre-
sented⁴ modules, category 𝒜𝑏 = ℤ-ℳ𝑜𝑑 of abelian groups and category 𝒢𝑟𝑝 of all groups and
group homomorphisms, category 𝒞𝑚𝑟 of commutative rings with unities and ring homomor-
phisms sending unity to unity, etc.

E 1.2 ()
Each poset⁵ 𝑀 is a category whose objects are the elements 𝑚 ∈ 𝑀 and

Homெ(𝑛,𝑚) =


one element, if 𝑛 ⩽ 𝑚
∅ otherwise.

e composition of arrows 𝑘 ⩽ ℓ and ℓ ⩽ 𝑛 is the arrow 𝑘 ⩽ 𝑛. Most important for us special
example of such a category is a category 𝒰(𝑋) of all open subsets in a topological space 𝑋 and
inclusions as the morphisms:

Hom𝒰()(𝑈,𝑊) =


the inclusion 𝑈 ↪ 𝑊, if 𝑈 ⊆ 𝑊
∅ , if 𝑈 ⊈ 𝑊.

¹We would not like to formalize here this logical notion explicitly (see any ground course of Math
Logic). However we will consider e.g. the category of sets whose objects — sets — do not form a set.

²like the multiplication symbol, the composition symbol « ∘ » is usually skipped
³it is unique because of Idໟ = Idໟ ∘ Idໟໟ = Idໟໟ

⁴a module is called finitely presented, if it is isomorphic to a quotient of a finitely generated free module
through its finitely generated submodule

⁵that is, partially ordered set
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E 1.3 (    )
Each associative algebra 𝐴 with unity 𝑒 ∈ 𝐴 over a commutative ring 𝐾 is a category with just
one object 𝑒 and Hom(𝑒, 𝑒) = 𝐴, where the composition of arrows equals the product in 𝐴. Vice
versa, associated with an arbitrary small category 𝒞 and a commutative ring 𝐾 is an associative
algebra 𝐾[𝒞] formed by all formal finite linear combinations of morphisms in 𝒞 with coefficients
in 𝐾:

𝐾[𝒞] = ⊕
,∈Ob 𝒞

Hom(𝑋,𝑌) ⊗ 𝐾 = ง 𝑥𝜑 ||𝜑 ∈ Mor(𝒞) , 𝑥 ∈ 𝐾จ ,

where we write𝑀⊗𝐾 for the free 𝐾-module with basis¹𝑀. e multiplication of arrows in 𝐾[𝒞]
is defined by the rule

𝜑𝜓 ≝

𝜑 ∘ 𝜓 if the target of 𝜓 coincides with the source of 𝜑
0 otherwise

and is extended linearly onto arbitrary finite linear combinations of arrows. One can think of
𝐾[𝒞] as an algebra of (maybe infinte) square matrices whose cells are numbered by the pairs of
objects of category 𝒞, an element from (𝑌,𝑋)-cell belongs to free module Hom(𝑋,𝑌) ⊗ 𝐾, and
only finitely many such elements are non-zero. In general, algebra 𝐾[𝒞] is non-commutative and
without unity. However for each 𝑓 ∈ 𝐾[𝒞] there is an idempotent 𝑒 = 𝑒ଶ such that

𝑒 ∘ 𝑓 = 𝑓 ∘ 𝑒 = 𝑓

(e.g. ∑ Id, where 𝑋 runs through the sources and targets of all arrows that appear in 𝑓).

E 1.4 ( )
Let 𝛥big be the category of all finite ordered sets and order preserving maps². is category is not
small. However it contains a small full subcategory 𝛥 ⊂ 𝛥big formed by the sets of integers

[𝑛] ≝ {0, 1, … , 𝑛} , 𝑛 ⩾ 0 , (1-2)

with their standard orderings. e ordered set (1-2) is called the combinatorial 𝑛-simplex. Cate-
gory 𝛥 is called the simplicial category.

E 1.1. Show that algebra ℤ[𝛥] is generated by the arrows

𝑒 = Id[] (the identity endomorphism) (1-3)
𝜕()
 ∶ [𝑛 − 1] ↪ [𝑛] (the inclusion whose image does not contain 𝑖) (1-4)
𝑠()
 ∶ [𝑛] ↠ [𝑛 − 1] (the surjection sending 𝑖 and (𝑖 + 1) to the same element) (1-5)

and describe the generating relations³ between these arrows.

¹this module is formed by all finite formal linear combinations of elements of the set𝑀with coefficients
in 𝐾

²i.e. 𝜑 ∶ 𝑋 → 𝑌 such that 𝑥ଵ ⩽ 𝑥ଶ ⇒ 𝜑(𝑥ଵ) ⩽ 𝜑(𝑥ଶ)
³i.e. generators of the kernel of the canonical surjection from the free associative algebra generated

by symbols 𝑒, 𝜕
()
 , 𝜕()

 onto algebra ℤ[𝛥]
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1.1.1 Mono, epi, and isomorphisms. A morphism 𝜑 in a category 𝒞 is called a monomor-
phism¹ (resp. an epimorphism²), if it admits le (resp. right) cancellation, that is

𝜑𝛼 = 𝜑𝛽 ⇒ 𝛼 = 𝛽 (resp. 𝛼𝜑 = 𝛽𝜑 ⇒ 𝛼 = 𝛽 ) .

A morphism 𝜑 ∶ 𝑋 → 𝑌 is called an isomorphism³, if there is a morphism 𝜓 ∶ 𝑌 → 𝑋 such that
𝜑𝜓 = Id and 𝜓𝜑 = Id. In this case objects 𝑋 and 𝑌 are called isomorphic. We depict injective,
surjective, and invertible arrows as ↪ , ↠ , and ⥲ respectively.

E 1.2. Find the cardinality of Hom௱([𝑛], [𝑚]). How many injective, surjective, and
isomorphic arrows are there in Hom௱([𝑛], [𝑚])?
1.1.2 Rewersal of arrows. Associated with a category 𝒞 is an opposite category 𝒞opp with

the same objects but rewersed arrows, that is

Hom𝒞opp(𝑋,𝑌) ≝ Hom𝒞(𝑌,𝑋) and 𝜑opp ∘ 𝜓opp = (𝜓 ∘ 𝜑)opp .

In terms of algebras, algebra 𝐾[𝒞opp] = 𝐾[𝒞]opp is an opposite algebra of 𝐾[𝒞]. Injections in 𝒞
become surjections in 𝒞opp and vice versa.

1.2 Functors. A functor⁴ 𝐹 ∶ 𝒞 → 𝒟 between categories 𝒞 and 𝒟 is a mapping

Ob𝒞 → Ob𝒟 , 𝑋 ↦ 𝐹(𝑋) ,

and a collection of maps⁵

Hom𝒞(𝑋,𝑌) → Hom𝒟(𝐹(𝑋),𝐹(𝑌)) , 𝜑 ↦ 𝐹(𝜑) , (1-6)

such that 𝐹(Id) = Idி() for all 𝑋 ∈ Ob 𝒞 and 𝐹(𝜑 ∘𝜓) = 𝐹(𝜑) ∘𝐹(𝜓) each time when composition
𝜑 ∘ 𝜓 is defined. In terms of algebras, a functor is a homomorfism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].
If all the maps (1-6) are surjective, functor 𝐹 is called full. An image of a full functor is a full
subcategory. If all the maps (1-6) are injective, 𝐹 is called faithful. A faithful functor produces
an injective homomorphism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].

e simplest examples of functors are provided by the identity functor Id𝒞 ∶ 𝒞 → 𝒞 acting
identically on the objects and on the arrows and by the forgeing functors, sending categories of
sets with extra structures and the morphisms respecting these structures⁶ to the category 𝒮𝑒𝑡, of
sets, by forgeing the structure.

E 1.5 (    )
e geometric realization functor 𝛥 → 𝒯𝑜𝑝 takes 𝑛-dimensional combinatorial simplex [𝑛] from
(1-2) to the standard regular 𝑛-simplex⁷

𝛥 = ง(𝑥, 𝑥ଵ, … , 𝑥) ∈ ℝ+ଵ ||  𝑥ఔ = 1 , 𝑥ఔ ⩾ 0 จ ⊂ ℝ+ଵ , (1-7)

¹or an injection
²or a surjection
³or an invertible morphism
⁴or a covariant functor
⁵one map for each ordered pair 𝑋, 𝑌 ∈ Ob 𝒞
⁶e.g. topological spaces with continuous maps or vector spaces with linear maps
⁷that is the convex hull of the ends of the standard basic vectors 𝑒, 𝑒ଵ, … , 𝑒 ∈ ℝ+ଵ
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and takes each order preserving map 𝜑 ∶ [𝑛] → [𝑚] to the affine linear map 𝜑∗ ∶ 𝛥 → 𝛥 that
acts on the basic vectors as 𝑒ఔ ↦ 𝑒ఝ(ఔ). is is faithful but non-full functor. It sends generators
(1-4), (1-5) of algebra ℤ[𝛥] to the 𝑖-th face inclusion 𝛥(−ଵ) ↪ 𝛥 and to the 𝑖-th edge contraction¹
𝛥 ↠ 𝛥(−ଵ).

1.2.1 Presheaves. A functor 𝐹 ∶ 𝒞opp → 𝒟 is called a contra-variant functor from 𝒞 to 𝒟
or a presheaf of objects of category 𝒟 on a category 𝒞. It reverses the compositions 𝐹(𝜑 ∘ 𝜓) =
𝐹(𝜓) ∘ 𝐹(𝜑). In terms of algebras, a contravariat functor produces an anti-homomorphism of
algebras 𝐾[𝒞] → 𝐾[𝒟].

E 1.6 (    )
e notion «presheaf» has appeared initially in a context of the category 𝒞 = 𝒰(𝑋) of open
subsets 𝑈 ⊂ 𝑋 in a given topological space 𝑋. A presheaf 𝐹 ∶ 𝒰(𝑋)opp → 𝒟 aaches an object
𝐹(𝑈) ∈ Ob𝒟 to each open set 𝑈 ⊂ 𝑋. is object is called (an object o) sections of 𝐹 over 𝑈.
Depending on 𝒟, the sections can form a ring, an algebra, a vector space, a topological space,
etc. Aached to an inclusion of open sets 𝑈 ⊂ 𝑊 is a map 𝐹(𝑊) → 𝐹(𝑈) called the restriction
of sections from 𝑊 onto 𝑈 ⊂ 𝑊. e restriction of a section 𝑠 ∈ 𝐹(𝑊) onto a subset 𝑈 ⊂ 𝑊 is
usually denoted by 𝑠|ೆ. Here are some typical examples of such presheaves:

1) Presheaf 𝛤ா of the sets of local sections of a continuous mapping 𝑝 ∶ 𝐸 → 𝑋 has 𝛤ா(𝑈)
equal to a set of maps 𝑠 ∶ 𝑈 → 𝐸 such that² 𝑝 ∘ 𝑠 = Idೆ. Its restriction maps take sections
to their restrictions onto smaller subsets.

2) Specializing the previous example to projection 𝑝 ∶ 𝑋 × 𝑌 → 𝑋, we get the sheaf 𝒞(𝑋,𝑌)
of locally defined continuous mappings 𝑠 ∶ 𝑈 → 𝑌.

3) Further specialization of the above examples leads to so called structure presheaves 𝒪 such
as the presheaf of local smooth functions 𝑈 → ℝ on a smooth manifold 𝑋, or the presheaf
of local holomorphic functions 𝑈 → ℂ on a complex analytic manifold 𝑋, or the presheaf
of local rational functions 𝑈 → 𝕜 on an algebraic manifold 𝑋 over a field 𝕜 etc. All these
presheaves are presheaves of algebras over the corresponding field ℝ, ℂ, or 𝕜.

4) A constant presheaf 𝑆 has 𝑆(𝑈) equal to a fixed set 𝑆 for all open𝑈 ⊂ 𝑋 and all its restriction
maps are the identity morphisms Idௌ.

A presheaf 𝐹 of sets on 𝑆 is called a sheaf , if for any open𝑊, any covering of𝑊 by open 𝑈 ⊂ 𝑊,
and any collection of sections 𝑠 ∈ 𝐹(𝑈) such that 𝑠|∩ೕ = 𝑠|∩ೕ for all 𝑖, 𝑗 there exist a
unique section 𝑠 ∈ 𝐹(𝑊) such that 𝑠| = 𝑠 for all 𝑖. If there exist at most one such a section 𝑠
but it does not have to exist, then 𝐹 is called a separable presheaf. All above presheaves (1) – (4)
are separable and only the last of them is not a sheaf, because for disjoint union 𝑊 = 𝑈ଵ ⊔ 𝑈ଶ
of open 𝑈ଵ, 𝑈ଶ not any pair of constants 𝑠 ∈ 𝑆(𝑈) appears as the restriction of some constant
𝑠 ∈ 𝑆(𝑊). However, besides the constant presheaf 𝑆, associated to an arbitrary set 𝑆 is

5) a constant sheaf 𝑆∼ whose sets of sections 𝑆∼(𝑈) consist of continuous maps 𝑈 → 𝑆, where
𝑆 is considered with the discrete topology.

¹i.e. projection onto a face along the edge joining 𝑖-th and (𝑖 + 1)-th vertexes
²i.e. sending each point 𝑥 ∈ 𝑈 to the fiber 𝑝−ଵ(𝑥) ⊂ 𝐸 over 𝑥
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E 1.3. Find all antiderivatives¹ of real function 𝑥 ↦ 1∕𝑥.

E 1.4. Show that the category of sheaves 𝒮ℎ(𝑋) is a full subcategory of the category of
presheaves 𝑝𝒮ℎ(𝑋).

E 1.7 (  )
Write 𝛥s ⊂ 𝛥 for non-full subcategory with Ob𝛥s = Ob𝛥 and injective² order preserving maps as
the morphisms. Category 𝛥s is called the semisimplicial category.

E 1.5. Show that algebra 𝐾[𝛥s] is generated by the identical arrows 𝑒 = Id[] and the
inclusions 𝜕()

 from (1-4).
A presheaf of sets 𝑋 ∶ 𝛥opp

s → 𝒮𝑒𝑡 on 𝛥s is called a semisimplicial set. Each semisimplicial set is
nothing but a combinatorial description for some triangulated topological space denoted by |𝑋|
and called a geometric realization of semisimplicial set 𝑋. Namely, 𝐹 aaches a set 𝑋 = 𝑋([𝑛]) to
each non-negative integer 𝑛. Let us interpret the points 𝑥 ∈ 𝑋 as disjoint regular 𝑛-simplexes
𝛥௫ . e morphisms 𝜑 ∶ [𝑛] → [𝑚] in category 𝛥s stay in bijection with 𝑛-dimensional faces
of regular 𝑚-simplex 𝛥. A map 𝑋(𝜑) ∶ 𝑋 → 𝑋, which corresponds to such a morphism 𝜑,
produces a gluing rule: for each 𝑥 ∈ 𝑋 it picks up some 𝑛-simplex 𝛥௬ , where 𝑦 = 𝑋(𝜑)𝑥 ∈ 𝑋,
that should be glued to the constructed space |𝑋| as the 𝜑-th face of simplex 𝛥௫ .

E 1.6. Is there a triangulation of the cycle 𝑆ଵ by ) three 0-simplexes and three 1-
simplexes³ ) one 0-simplex and one 1-simplex? Is there a triangulation of the 2-sphere 𝑆ଶ
by ) four 0-simplexes, six 1-simplexes and four 2-simplexes ) two 0-simplexes, one 1-
simplex and one 2-simplexes? Is there a triangulation of the 2-torus 𝑇ଶ by one 0-simplex,
three 1-simplexes and two 2-simplex?

E 1.8 ( )
Presheaves 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡 on the whole of the simplicial category are called simplicial sets. Each
simlicial set 𝑋 also produces a topological space |𝑋| called a geometric realization of 𝑋. It is glued
from disjoint regular simplexes 𝛥௫ , 𝑥 ∈ 𝑋, by identifying points 𝑠 ∈ 𝛥ఝ∗(௫) and 𝜑∗(𝑠) ∈ 𝛥௫ ,
where𝜑 ∶ [𝑛] → [𝑚] is a morphism in category 𝛥, 𝜑∗ ≝ 𝑋(𝜑) ∶ 𝑋 → 𝑋 denotes its image under
𝑋, and 𝜑∗ ∶ 𝛥 → 𝛥 denotes affine linear map whose action on the vertexes of 𝛥 is prescribed
by 𝜑. Formally speaking, |𝑋| is a quotient space of a topological direct product⁴ ∏

⩾
𝑋 × 𝛥 by

the minimal equivalence relation that contains identifications ම𝑥,𝜑∗𝑠ඹ ≃ ම𝜑∗𝑥, 𝑠ඹ for all arrows
𝜑 ∶ [𝑛] → [𝑚] in Mor(𝛥), all 𝑥 ∈ 𝑋, and all 𝑠 ∈ 𝛥.

If an arrow 𝜑 = 𝛿𝜎 ∶ [𝑛] → [𝑚] is decomposed into a surjection 𝜎 ∶ [𝑛] ↠ [𝑘] followed by an
injection 𝛿 ∶ [𝑘] ↪ [𝑚], then 𝑛-simplex 𝛥௭ marked by 𝑧 = 𝜎∗𝑦 = 𝜎∗𝛿∗𝑥 ∈ 𝜑∗(𝑋) ⊂ 𝑋 appears
in the space |𝑋| as 𝑘-simplex 𝛥௬ obtained from 𝛥 by means of linear projection 𝜎∗ ∶ 𝛥 ↠ 𝛥
and this 𝑘-simplex has to be the 𝛿-th face of 𝑚-simplex 𝛥௫ . In particular, all simplexes 𝑧 ∈ 𝑋

¹i.e. functions 𝑓(𝑥) with 𝑓ໟ(𝑥) = 1∕𝑥
²that is, strictly increasing
³i.e. can one get 𝑆ଵ as the geometric realization of a semisimplicial set 𝑋 whose 𝑋 and 𝑋ଵ consist of 3

elements and all other 𝑋 are empty?
⁴where sets 𝑋 are considered with the discrete topology and topologies on simplexes 𝛥 ⊂ ℝ+ଵ are

iduced by the standard topologies on ℝ+ଵ
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lying in the image of anymap 𝜎∗ coming from an arrow 𝜎 ∶ [𝑘] → [𝑛] with 𝑘 > 𝑛 are degenerated:
they are visible in the space |𝑋| as simplexes of a smaller dimension.

Usage of degenerated simplexes allows to describe combinatorially more complicated cell
complexes than the triangulations. For example, topological description of 𝑛-spere 𝑆 as a quotint
space 𝑆 = 𝛥∕𝜕𝛥 leads to a pseudo-triangulation of 𝑆 by one 0-simplex and one 𝑛-cell, which
is the interior part of the regular 𝑛-simplex 𝛥. Combinatorially, this is the geometric realization
of simplicial set 𝑋 that consists of sets 𝑋 obtained from the sets Hom௱([𝑘], [𝑛]) by gluing all
non-surjective maps to one distiguished element. e map 𝜑∗ ∶ 𝑋 → 𝑋 corresponding to an
arrow 𝜑 ∶ [𝑘] → [𝑚] is induced by the le composition with 𝜑:

Hom௱([𝑚], [𝑛]) → Hom௱([𝑘], [𝑛]) , 𝜁 ↦ 𝜑𝜁 .

E 1.7. Compute cardinalities¹ of all sets 𝑋 and check that maps 𝜑∗ ∶ 𝑋 → 𝑋 are
well defined and produce a functor 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡.

1.2.2 Hom-functors. Associated with an object 𝑋 ∈ Ob 𝒞 in an arbitrary category 𝒞 are
a (covariant) functor ℎ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ(𝑌) ≝ Hom(𝑋,𝑌) and sends an
arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to the map 𝜑∗ ∶ Hom(𝑋,𝑌ଵ) → Hom(𝑋,𝑌ଶ) 𝜓 ↦ 𝜑 ∘ 𝜓 , provided by the le
composition with 𝜑 and a presheaf ℎ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ(𝑌) ≝ Hom(𝑌,𝑋) and
sends an arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to the map 𝜑∗ ∶ Hom(𝑌ଶ,𝑋) → Hom(𝑌ଵ,𝑋) 𝜓 ↦ 𝜓 ∘ 𝜑 provided by
the right composition with 𝜑.

For example, presheaf ℎ[] ∶ 𝛥opp
௦ → 𝒮𝑒𝑡 produces the standard triangulation of the regular

𝑛-simplex 𝛥: the sets of 𝑘-simplexes ℎ[]([𝑘]) = Hom([𝑘], [𝑚]) of this triangulation are precisely
the sets of 𝑘-dimensional faces of 𝛥. Presheaf ℎೆ ∶ 𝒰(𝑋) → 𝒮𝑒𝑡 on a topological space 𝑋 has
exactly one section over all open𝑊 ⊂ 𝑈 and the empty set of sections over all other open𝑊 ⊄ 𝑈.
Presheaf ℎ𝕜 ∶ 𝒱𝑒𝑐opp

𝕜 → 𝒱𝑒𝑐𝕜 takes a vector space 𝑉 to its dual space ℎ𝕜(𝑉) = Hom(𝑉,𝕜) = 𝑉∗

and sends a linear mapping 𝜑 ∶ 𝑉 → 𝑊 to its dual mapping 𝜑∗ ∶ 𝑊∗ → 𝑉∗, which takes a linear
form 𝜉 ∶ 𝑊 → 𝕜 to 𝜉 ∘ 𝜑 ∶ 𝑉 → 𝕜.

1.3 Natural transformations. Given two functors 𝐹,𝐺 ∶ 𝒞 → 𝒟, then a natural² transformation
is a collection of arrows 𝑓 ∶ 𝐹(𝑋) → 𝐺(𝑋), numbered by objects 𝑋 ∈ Ob𝒞, such that for each
morphism 𝜑 ∶ 𝑋 → 𝑌 in 𝒞 a diagram

𝐹(𝑋) ி(ఝ) //


��

𝐹(𝑌)
ೊ
��

𝐺(𝑋) ீ(ఝ)
// 𝐺(𝑌)

(1-8)

is commutative in 𝒟. A natural transformation 𝑓 ∶ 𝐹 → 𝐺 is called an isomorphism of functors, if
all the morphisms 𝑓 ∶ 𝐹(𝑋) → 𝐺(𝑋) are isomorphisms. In this case functors 𝐹 and 𝐺 are called
isomorphic.

On the language of algebras, a homomorphism 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟] provides 𝐾[𝒟] with a
structure of a module over 𝐾[𝒞], in which an element 𝑎 ∈ 𝐾[𝒞] acts on an element 𝑏 ∈ 𝐾[𝒟] as
𝑎 ⋅ 𝑏 ≝ 𝐹(𝑎) ⋅ 𝑏. Two functors 𝐹, 𝐺 produce two different 𝐾[𝒞]-module structures on 𝐾[𝒟] and

¹note that 𝑋 ≠ ∅ for all 𝑘 ∈ ℤ⩾
²or functorial
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natural transformation 𝑓 ∶ 𝐾[𝒟] → 𝐾[𝒟] is nothing but a 𝐾[𝒞]-linear homomorphism between
these modules: for each 𝜑 ∈ 𝐾[𝒞] multiplications by 𝐹(𝜑) and by 𝐺(𝜑) in𝐾[𝒟] satisfy the relation
𝑓 ∘ 𝐹(𝜑) = 𝐺(𝜑) ∘ 𝑓.

1.3.1 Categories of functors. If a category 𝒞 is small, then the functors 𝒞 → 𝒟 to an ar-
bitrary category 𝒟 form a category ℱ𝑢𝑛(𝒞,𝒟), whose objects are the functors and morphismfs
are the natural transformations. Contravariant functors 𝒞opp → 𝒟 also form a category called
a category of presheaves¹ and denoted by 𝑝𝒮ℎ(𝒞,𝒟). Omied leer 𝒟 in this notation means on
default that 𝒟 = 𝒮𝑒𝑡, i.e. 𝑝𝒮ℎ(𝒞) ≝ ℱ𝑢𝑛(𝒞opp, 𝒮𝑒𝑡) .

E 1.8. Verify that prescription 𝑋 ↦ ℎ produces a covariant functor 𝒞 → 𝑝𝒮ℎ(𝒞) and
prescription 𝑋 ↦ ℎ produces a contravariant functor 𝒞opp → ℱ𝑢𝑛(𝒞, 𝒮𝑒𝑡).

1.3.2 Эквивалентности категорий. Categories 𝒞 and 𝒟 are called equivalent, if there
exists a pair of functors 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → 𝒞 such that compositions 𝐺𝐹 and 𝐹𝐺 are
isomorphic to the identity functors Id𝒞 and Id𝒟 respectively. is does not mean that 𝐹𝐺 = Id𝒟
or 𝐺𝐹 = Id𝒞: objects 𝐺𝐹(𝑋) and 𝑋 may be different as well as objects 𝐹𝐺(𝑌) and 𝑌. But there are
functorial in 𝑋 ∈ Ob 𝒞 and 𝑌 ∈ Ob𝒟 isomorphisms

𝐺𝐹(𝑋) ⥲ 𝑋 and 𝐹𝐺(𝑌) ⥲ 𝑌 . (1-9)

In these case functors 𝐹 and 𝐺 are called quasi-inverse equivalences between categories 𝒞 and 𝒟.

E 1.9 (  )
Write 𝑣𝑒𝑐𝕜 for the category of finite dimensional vector spaces over a field 𝕜 and 𝒞 ⊂ 𝑣𝑒𝑐𝕜 for
its small full subcategory formed by coordinate spaces 𝕜, 𝑛 ⩾ 0, where we put 𝕜 = {0}. Let us
fix some basis in each vector space 𝑉 ∈ Ob 𝑣𝑒𝑐𝕜 or, equivalently, an isomorphism²

𝑓 ∶ 𝑉 ⥲ 𝕜dim() , (1-10)

and for 𝑉 = 𝕜 put 𝑓𝕜 = Id𝕜 . Define a functor 𝐹 ∶ 𝑣𝑒𝑐 → 𝒞 by sending a space 𝑉 to 𝕜dim

and an arrow 𝜑 ∶ 𝑉 → 𝑊 to composition 𝐹(𝜑) = 𝑓ௐ ∘ 𝜑 ∘ 𝑓−ଵ
 , which can be viewed as the

matrix of 𝜑 in the chosen bases of 𝑉 and 𝑊. Let us show that 𝐹 is an equivalence of categories
quasi-inverse to the tautological full inclusion 𝐺 ∶ 𝒞 ↪ 𝑣𝑒𝑐. By the construction of 𝐹 there is
an explicit equality of functors³ 𝐹𝐺 = Id𝒞 . Reverse composition 𝐺𝐹 ∶ 𝑣𝑒𝑐 → 𝑣𝑒𝑐 takes values
in the small subcategory 𝒞 ⊂ 𝑣𝑒𝑐 whose cardinality is non-compatible with cardinality 𝑣𝑒𝑐 at
all. However, the isomorphisms (1-10) give a natural transformation Id𝑣𝑒𝑐 → 𝐺𝐹, because all the
diagrams (1-8)

Id𝑣𝑒𝑐(𝑉) =𝑉 ఝ=Id𝑣𝑒𝑐 (ఝ) //

ೇ
��

𝑊 = Id𝑣𝑒𝑐(𝑊)
ೈ
��

𝐺𝐹(𝑉) =𝕜dim ீி(ఝ)=ೈ∘ఝ∘−భ
ೇ // 𝕜dimௐ = 𝐺𝐹(𝑊)

are commutative by the construction of 𝐹. us, the identity functor Id𝑣𝑒𝑐 is naturally isomorphic
to 𝐺𝐹.

¹of objects of the category 𝒟 on the category 𝒞
²that sends the fixed basis to the standard basis in 𝕜
³non just a natural isomorphism
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E 1.9. Show that category of finite ordered sets 𝛥big is equivalent to its small simplicial
subcategory 𝛥 ⊂ 𝛥big.

L 1.1
Functor 𝐺 ∶ 𝒞 → 𝒟 is an equivalence of categories iff it is full, faithful, and essentially surjective
(the laer means that for each 𝑌 ∈ Ob𝒟 there is some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 such that 𝐺(𝑋) is
isomorphic to 𝑌).

P. For each 𝑌 ∈ Ob𝒟 pick up some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 and an isomorphism 𝑓 ∶ 𝑌 ⥲ 𝐺(𝑋).
When 𝑌 = 𝐺(𝑋(𝑌)) put 𝑓ீ() = Idீ(). Define a functor 𝐹 ∶ 𝒟 → 𝒞 by sending 𝑌 ∈ Ob𝒟 to
𝐹(𝑌) = 𝑋(𝑌) and arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to an arrow𝜓 ∶ 𝑋(𝑌ଵ) → 𝑋(𝑌ଶ) such that 𝐺 (𝜓) = 𝑓మ ∘𝜑∘𝑓−ଵ

భ
(since 𝐺 ∶ Hom(𝑋ଵ,𝑋ଶ) ⥲ Hom(𝐺(𝑋ଵ),𝐺(𝑋ଶ)) is an isomorphism, such arrow 𝜓 exists and is
unique). By construction, 𝐹𝐺 = Id𝒞 and for each morphism 𝜑 ∶ 𝑌ଵ → 𝑌ଶ we have commutative
diagram

Id𝒟(𝑌ଵ) = 𝑌ଵ
ఝ //

ೊభ
��

𝑌ଶ = Id𝒟(𝑌ଶ)
ೊమ
��

𝐺𝐹(𝑌ଵ) =𝑋ଵ
ீி(ఝ)=ீ(ట) // 𝑋ଶ = 𝐺𝐹(𝑌ଶ) .

us, morphisms 𝑓 ∶ 𝑌 ⥲ 𝐺(𝑋) = 𝐺𝐹(𝑌) give a natural isomorphism between Id𝒟 and 𝐺𝐹. �

E 1.10. Show that dualizing functor ℎ𝕜 ∶ 𝑣𝑒𝑐𝕜 → 𝑣𝑒𝑐𝕜 , 𝑉 ↦ 𝑉∗, is quasi-inverse to
itself and produces autoantiequivalence of the category of finite dimensional vector spaces.

1.4 Representable functors. A presheaf 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 is called representable, if it is naturally
isomorphic to presheaf ℎ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a represents
presheaf 𝐹. Dually, a covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is called corepresentable, if it is naturally
isomorphic to covariant functor ℎ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a
corepresents functor 𝐹.

L 1.2 ( Y )
For any presheaf of sets 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 on an arbitrary category 𝒞 there is functorial in 𝐹 ∈
𝑝𝒮ℎ(𝒞) and in 𝐴 ∈ 𝒞 bijection 𝐹(𝐴) ⥲ Hom𝑝𝒮ℎ(𝒞)(ℎ,𝐹). It takes an element 𝑎 ∈ 𝐹(𝐴) to a natural
transformation

𝑓 ∶ Hom(𝑋,𝐴) → 𝐹(𝑋) , (1-11)

that sends an arrow 𝜑 ∶ 𝑋 → 𝐴 to the image of element 𝑎 under map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). e
inverse bijection takes a natural transformation (1-11) to the image of the identity Id ∈ ℎ(𝐴)
under the map 𝑓 ∶ ℎ(𝐴) → 𝐹(𝐴).

P. For any natural transformation (1-11), for any object 𝑋 ∈ Ob 𝒞, and for any arrow
𝜑 ∶ 𝑋 → 𝐴 commutative diagram (1-8)

ℎ(𝐴) = Hom(𝐴,𝐴) ಲ(ఝ) //

ಲ
��

Hom(𝑋,𝐴) = ℎ(𝑋)

��

𝐹(𝐴) ி(ఝ) // 𝐹(𝑋) ,

(1-12)
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forces the equality 𝑓(𝜑) = 𝐹(𝜑)ම𝑓(Id)ඹ, because the upper arrow in (1-12) sends Id to 𝜑.
us the whole of transformation 𝑓 ∶ ℎ → 𝐹 is uniquely recovered as soon the element 𝑎 =
𝑓(Id) ∈ 𝐹(𝐴) is given. Choosing some 𝑎 ∈ 𝐹(𝐴) we obtain transformation (1-11) that sends
𝜑 ∈ Hom(𝑋,𝐴) to 𝑓(𝜑) = 𝐹(𝜑)(𝑎) ∈ 𝐹(𝑋). It is natural, because for any arrow 𝜓 ∶ 𝑌 → 𝑋
and any 𝜑 ∈ ℎ(𝑋) we have 𝑓 මℎ(𝜓)𝜑ඹ = 𝑓(𝜑𝜓) = 𝐹(𝜑𝜓)𝑎 = 𝐹(𝜓)𝐹(𝜑)𝑎 = 𝐹(𝜓) ම𝑓(𝜑)ඹ, i.e.
𝑓 ∘ ℎ(𝜓) = 𝐹(𝜓) ∘ 𝑓 are the same maps ℎ(𝑋) → 𝐹(𝑌). �

E 1.11 ( Y ). For any covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 construct
functorial in 𝐹 and in 𝐴 ∈ Ob 𝒞 bijection 𝐹(𝐴) ⥲ Homℱ𝑢𝑛(𝒞,𝒮𝑒𝑡)(ℎ,𝐹).

C 1.1
Covariant functor 𝑋 ↦ ℎ and contravariant functor 𝑋 ↦ ℎ are full and faithful. In other
words, there are functorial in 𝐴,𝐵 ∈ Ob 𝒞 isomorphisms Hom𝑝𝒮ℎ(𝒞)(ℎ, ℎ) = Hom𝒞(𝐴,𝐵) and
Homℱ𝑢𝑛(𝒞)(ℎ, ℎ) = Hom𝒞(𝐵,𝐴).

P. Apply Yoneda lemmas to 𝐹 = ℎ and 𝐹 = ℎ. �

C 1.2
If a functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is (co)representable, then its (co)representing object is unique up to
natural isomorphism.

P. If 𝐹 ≃ ℎ ≃ ℎ (or 𝐹 ≃ ℎ ≃ ℎ), then the natural isomorphism between functors ℎ and
ℎ (resp. between ℎ and ℎ) produces by cor. 1.1 an isomorphism between 𝐴 and 𝐵 in 𝒞. �

1.4.1 Definitions via «universal properties».eYoneda lemmas provide us with two dual
ways for transferring set-theoretical constructions from category 𝒮𝑒𝑡 to an arbitrary category
𝒞. Namely, to define some set-theoretical operation on objects 𝑋 ∈ Ob 𝒞, consider a presheaf
𝒞opp → 𝒮𝑒𝑡 that takes an object 𝑌 ∈ Ob 𝒞 to the set obtained from the sets Hom(𝑌,𝑋) by the
operation in question. If this presheaf is representable, we declare its representing object to be
the result of our operation applied to the objects 𝑋 . e dual way uses covariant in 𝑌 functors
Hom(𝑋,𝑌) and corerepresentig object. Although both definitions are implicit, defined objects (if
exist) come with some universal properties and are unique up to unique isomorphism respecting
these properties.

E 1.10 (  𝐴 × 𝐵)
A product 𝐴 × 𝐵 of objects 𝐴,𝐵 ∈ Ob 𝒞 in an arbitrary category 𝒞 is defined as representing
object for presheaf of sets 𝑌 ↦ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). If 𝐴 × 𝐵 exists, then for all 𝑌 in 𝒞 there
is functorial in 𝑌 isomorphism 𝛽 ∶ Hom(𝑌,𝐴 × 𝐵) ⥲ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). For 𝑌 = 𝐴 × 𝐵
it produces a pair of arrows 𝐴 𝐴 × 𝐵గಲoo గಳ //𝐵 — the image of the identity 𝛽×(Id×) ∈
Hom(𝐴 × 𝐵,𝐴) × Hom(𝐴 × 𝐵,𝐵). is pair is universal in the following sense: for any pair of
arrows 𝐴 𝑌ఝoo ట //𝐵 there exists a unique arrow 𝜑×𝜓 ∶ 𝑌 → 𝐴×𝐵 such that 𝜑 = 𝜋 ∘ (𝜑×𝜓)
and 𝜓 = 𝜋 ∘ (𝜑 × 𝜓).

E 1.12. Show that ) for each diagram 𝐴 𝐶
గໟ
ಲoo

గໟ
ಳ //𝐵 that possess the same universal

property there exists a unique isomorphism 𝛾 ∶ 𝐶 ⥲ 𝐴 × 𝐵 such that 𝜋 ∘ 𝛾 = 𝜋ໟ
 and

𝜋 ∘ 𝛾 = 𝜋ໟ
 ) for any pair of arrows 𝛼 ∶ 𝐴ଵ → 𝐴ଶ, 𝛽 ∶ 𝐵ଵ → 𝐵ଶ there is a unique arrow

𝛼 × 𝛽 ∶ 𝐴ଵ × 𝐵ଵ → 𝐴ଶ × 𝐵ଶ such that 𝛼 ∘ 𝜋 = (𝛼 × 𝛽) ∘ 𝛼 and 𝛽 ∘ 𝜋 = (𝛼 × 𝛽) ∘ 𝛽.
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E 1.13. Show that the product in 𝒯𝑜𝑝 exists and coincides with the set theoretical
product 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} equipped with the weakest topology in which both
maps 𝜋, 𝜋 are continuous. Being equipped with componentwise operations, the set 𝐴×𝐵
turns to direct product in the categories of groups, rings and modules over a ring.

E 1.11 (  𝐴 ⊗ 𝐵)
Dually, a coproduct 𝐴 ⊗ 𝐵 in an arbitrary category 𝒞 is defined as corepresenting object for
covariant functor 𝒞 → 𝒮𝑒𝑡 , 𝑌 ↦ Hom(𝐴,𝑌) × Hom(𝐵,𝑌) . It is uniquely characterized by the
universal diagram 𝐴 ఐಲ //𝐴 ⊗ 𝐵 𝐵ఐಳoo such that for any pair of arrows 𝐴 ఝ //𝑌 𝐵టoo there
exists a unique arrow 𝜑 ⊗ 𝜓 ∶ 𝐴 ⊗ 𝐵 → 𝑌 such that 𝜑 = (𝜑 ⊗ 𝜓) ∘ 𝜄 and 𝜓 = (𝜑 ⊗ 𝜓) ∘ 𝜄.

E 1.14. Let universal diagram 𝐴 ఐಲ //𝐴 ⊗ 𝐵 𝐵ఐಳoo exist. Show that ) it is unique
up to unique isomorphism commuting with 𝜄 and 𝜄 ) each pair of arrows 𝛼 ∶ 𝐴ଵ → 𝐴ଶ,
𝛽 ∶ 𝐵ଵ → 𝐵ଶ produces a unique arrow 𝛼⊗𝛽 ∶ 𝐴ଵ⊗𝐵ଵ → 𝐴ଶ⊗𝐵ଶ such that 𝜄 ∘𝛼 = (𝛼⊗𝛽)∘𝛼.

In 𝒮𝑒𝑡 and𝒯𝑜𝑝 the coproduct 𝐴⊗𝐵 = 𝐴⊔𝐵 is the disjoint union. In 𝒢𝑟𝑝 the coproduct 𝐴⊗𝐵 = 𝐴∗𝐵
is the free product¹. In category of modules over a ring² 𝐴 ⊗ 𝐵 = 𝐴 × 𝐵 = 𝐴 ⊕ 𝐵 is the direct
sum of modules. In the category of commutative rings with unity 𝐴⊗ 𝐵 is the tensor product of
rings³.

¹i.e. the quotient of free group generated by (𝐴 ⧵ 𝑒) ⊔ (𝐵 ⧵ 𝑒) through the minimal normal subgroup of
relations that allow to replace any pair of consequent elements of the same group by their product in that
group; for example, ℤ ∗ ℤ ≃ 𝔽ଶ is free (non-commutative) group on two generators

²in particular, in 𝒜𝑏
³It coincides with the tensor product of underlying abelian groups in the category of ℤ-modules. e

multiplication is defined as (𝑎ଵ ⊗ 𝑏ଵ) ⋅ (𝑎ଶ ⊗ 𝑏ଶ) ≝ (𝑎ଵ ⋅ 𝑎ଶ) ⊗ (𝑏ଵ ⋅ 𝑏ଶ)



Comments to some exercises

E. 1.3. Typical answer «ln |𝑥| + 𝐶, where 𝐶 is an arbitrary constant» is incorrect. Actually, 𝐶 is
a section of the constant sheaf ℝ∼ over ℝ ∖ {0}.

E. 1.11. Each natural transformation 𝑓∗ picks up an element in 𝐹(𝐴) — the image of the identity
Id ∈ ℎ(𝐴) under the map 𝑓 ∶ ℎ(𝐴) → 𝐹(𝐴). Vice versa, an element 𝑎 ∈ 𝐹(𝐴) produces
a transformation 𝑓 ∶ Hom(𝐴,𝑋) → 𝐹(𝑋) that sends an arrow 𝜑 ∶ 𝐴 → 𝑋 to the image of 𝑎
under the map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). To verify that it is natural and takes Id ∈ ℎ(𝐴) to 𝑎 via
𝑓 ∶ ℎ(𝐴) → 𝐹(𝐴), use commutative diagram

ℎ(𝐴) = Hom(𝐴,𝐴) ಲ(ఝ) //

ಲ
��

Hom(𝐴,𝑋) = ℎ(𝑋)

��

𝐹(𝐴) ி(ఝ) // 𝐹(𝑋) ,

(1-13)

whose upper arrow sends Id to 𝜑 and forces 𝑓(𝜑) = 𝐹(𝜑)ම𝑓(Id)ඹ.
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