
§1 General Nonsense

1.1 Categories. A category 𝒞 consists of a class¹ of objects Ob 𝒞, where any ordered pair of
objects 𝑋,𝑌 ∈ Ob 𝒞 is equipped with a set of morphisms from 𝑋 to 𝑌

Hom(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) .

It is convenient to think of the morphisms from 𝑋 to 𝑌 as arrows 𝜑 ∶ 𝑋 → 𝑌. e sets
Hom(𝑋,𝑌) are disjoint for distinct pairs 𝑋,𝑌 and their union over all 𝑋,𝑌 ∈ Ob 𝒞 is denoted
Mor 𝒞 = ⨆௑,௒ Hom𝒞(𝑋,𝑌). For each ordered triple 𝑋,𝑌, 𝑍 ∈ Ob 𝒞 there is a composition map²

Hom(𝑌, 𝑍) × Hom(𝑋, 𝑌) → Hom(𝑋, 𝑍) , (𝜑,𝜓) ↦ 𝜑 ∘ 𝜓 ( = 𝜑𝜓 ) , (1-1)

which is associative: (𝜒 ∘ 𝜑) ∘ 𝜓 = 𝜒 ∘ (𝜑 ∘ 𝜓) each time when LHS or RHS is defined. Finally,
each object 𝑋 ∈ Ob 𝒞 has the identity endomorphism³ Id௑ ∈ Hom(𝑋,𝑋) such that 𝜑 ∘ Id௑ = 𝜑 and
Id௑ ∘ 𝜓 = 𝜓 for all arrows 𝜑 ∶ 𝑋 → 𝑌 and 𝜓 ∶ 𝑍 → 𝑋.

A subcategory 𝒟 ⊂ 𝒞 is a category whose objects, arrows, and compositions come from 𝒞.
A subcategory 𝒟 ⊂ 𝒞 is called full, if Hom𝒟(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) for all 𝑋,𝑌 ∈ Ob𝒟.

A category is called small, if Ob 𝒞 is a set. In this case Mor 𝒞 is a set as well.

E 1.1 ( )
e following categories oen appear in examples and are not small: category 𝒮𝑒𝑡 of all sets
and all mapping between them, category 𝒯𝑜𝑝 of all topological spaces and continuous mappings,
category 𝒱𝑒𝑐𝕜 of vector spaces over a field 𝕜 and 𝕜-linear mappings, its full subcategory 𝑣𝑒𝑐𝕜
formed by finite dimensional spaces, categories 𝑅-ℳ𝑜𝑑 andℳ𝑜𝑑-𝑅 of le and right modules over
a ring 𝑅 and 𝑅-liner mappings, their full subcategories 𝑅-𝑚𝑜𝑑 and𝑚𝑜𝑑-𝑅 formed by finitely pre-
sented⁴ modules, category 𝒜𝑏 = ℤ-ℳ𝑜𝑑 of abelian groups and category 𝒢𝑟𝑝 of all groups and
group homomorphisms, category 𝒞𝑚𝑟 of commutative rings with unities and ring homomor-
phisms sending unity to unity, etc.

E 1.2 ()
Each poset⁵ 𝑀 is a category whose objects are the elements 𝑚 ∈ 𝑀 and

Homெ(𝑛,𝑚) =
๰

one element, if 𝑛 ⩽ 𝑚
∅ otherwise.

e composition of arrows 𝑘 ⩽ ℓ and ℓ ⩽ 𝑛 is the arrow 𝑘 ⩽ 𝑛. Most important for us special
example of such a category is a category 𝒰(𝑋) of all open subsets in a topological space 𝑋 and
inclusions as the morphisms:

Hom𝒰(௑)(𝑈,𝑊) =
๰

the inclusion 𝑈 ↪ 𝑊, if 𝑈 ⊆ 𝑊
∅ , if 𝑈 ⊈ 𝑊.

¹We would not like to formalize here this logical notion explicitly (see any ground course of Math
Logic). However we will consider e.g. the category of sets whose objects — sets — do not form a set.

²like the multiplication symbol, the composition symbol « ∘ » is usually skipped
³it is unique because of Idໟ = Idໟ ∘ Idໟໟ = Idໟໟ

⁴a module is called finitely presented, if it is isomorphic to a quotient of a finitely generated free module
through its finitely generated submodule

⁵that is, partially ordered set
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E 1.3 (    )
Each associative algebra 𝐴 with unity 𝑒 ∈ 𝐴 over a commutative ring 𝐾 is a category with just
one object 𝑒 and Hom(𝑒, 𝑒) = 𝐴, where the composition of arrows equals the product in 𝐴. Vice
versa, associated with an arbitrary small category 𝒞 and a commutative ring 𝐾 is an associative
algebra 𝐾[𝒞] formed by all formal finite linear combinations of morphisms in 𝒞 with coefficients
in 𝐾:

𝐾[𝒞] = ⊕
௑,௒∈Ob 𝒞

Hom(𝑋,𝑌) ⊗ 𝐾 = ง௝ 𝑥௜𝜑௜ ||𝜑௜ ∈ Mor(𝒞) , 𝑥௜ ∈ 𝐾จ ,

where we write𝑀⊗𝐾 for the free 𝐾-module with basis¹𝑀. e multiplication of arrows in 𝐾[𝒞]
is defined by the rule

𝜑𝜓 ≝
๰
𝜑 ∘ 𝜓 if the target of 𝜓 coincides with the source of 𝜑
0 otherwise

and is extended linearly onto arbitrary finite linear combinations of arrows. One can think of
𝐾[𝒞] as an algebra of (maybe infinte) square matrices whose cells are numbered by the pairs of
objects of category 𝒞, an element from (𝑌,𝑋)-cell belongs to free module Hom(𝑋,𝑌) ⊗ 𝐾, and
only finitely many such elements are non-zero. In general, algebra 𝐾[𝒞] is non-commutative and
without unity. However for each 𝑓 ∈ 𝐾[𝒞] there is an idempotent 𝑒௙ = 𝑒ଶ௙ such that

𝑒௙ ∘ 𝑓 = 𝑓 ∘ 𝑒௙ = 𝑓

(e.g. ∑௑ Id௑, where 𝑋 runs through the sources and targets of all arrows that appear in 𝑓).

E 1.4 ( )
Let 𝛥big be the category of all finite ordered sets and order preserving maps². is category is not
small. However it contains a small full subcategory 𝛥 ⊂ 𝛥big formed by the sets of integers

[𝑛] ≝ {0, 1, … , 𝑛} , 𝑛 ⩾ 0 , (1-2)

with their standard orderings. e ordered set (1-2) is called the combinatorial 𝑛-simplex. Cate-
gory 𝛥 is called the simplicial category.

E 1.1. Show that algebra ℤ[𝛥] is generated by the arrows

𝑒௡ = Id[௡] (the identity endomorphism) (1-3)
𝜕(௜)
௡ ∶ [𝑛 − 1] ↪ [𝑛] (the inclusion whose image does not contain 𝑖) (1-4)
𝑠(௜)
௡ ∶ [𝑛] ↠ [𝑛 − 1] (the surjection sending 𝑖 and (𝑖 + 1) to the same element) (1-5)

and describe the generating relations³ between these arrows.

¹this module is formed by all finite formal linear combinations of elements of the set𝑀with coefficients
in 𝐾

²i.e. 𝜑 ∶ 𝑋 → 𝑌 such that 𝑥ଵ ⩽ 𝑥ଶ ⇒ 𝜑(𝑥ଵ) ⩽ 𝜑(𝑥ଶ)
³i.e. generators of the kernel of the canonical surjection from the free associative algebra generated

by symbols 𝑒௡, 𝜕
(௜)
௡ , 𝜕(௜)

௡ onto algebra ℤ[𝛥]
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1.1.1 Mono, epi, and isomorphisms. A morphism 𝜑 in a category 𝒞 is called a monomor-
phism¹ (resp. an epimorphism²), if it admits le (resp. right) cancellation, that is

𝜑𝛼 = 𝜑𝛽 ⇒ 𝛼 = 𝛽 (resp. 𝛼𝜑 = 𝛽𝜑 ⇒ 𝛼 = 𝛽 ) .

A morphism 𝜑 ∶ 𝑋 → 𝑌 is called an isomorphism³, if there is a morphism 𝜓 ∶ 𝑌 → 𝑋 such that
𝜑𝜓 = Id௒ and 𝜓𝜑 = Id௑. In this case objects 𝑋 and 𝑌 are called isomorphic. We depict injective,
surjective, and invertible arrows as ↪ , ↠ , and ⥲ respectively.

E 1.2. Find the cardinality of Hom௱([𝑛], [𝑚]). How many injective, surjective, and
isomorphic arrows are there in Hom௱([𝑛], [𝑚])?
1.1.2 Rewersal of arrows. Associated with a category 𝒞 is an opposite category 𝒞opp with

the same objects but rewersed arrows, that is

Hom𝒞opp(𝑋,𝑌) ≝ Hom𝒞(𝑌,𝑋) and 𝜑opp ∘ 𝜓opp = (𝜓 ∘ 𝜑)opp .

In terms of algebras, algebra 𝐾[𝒞opp] = 𝐾[𝒞]opp is an opposite algebra of 𝐾[𝒞]. Injections in 𝒞
become surjections in 𝒞opp and vice versa.

1.2 Functors. A functor⁴ 𝐹 ∶ 𝒞 → 𝒟 between categories 𝒞 and 𝒟 is a mapping

Ob𝒞 → Ob𝒟 , 𝑋 ↦ 𝐹(𝑋) ,

and a collection of maps⁵

Hom𝒞(𝑋,𝑌) → Hom𝒟(𝐹(𝑋),𝐹(𝑌)) , 𝜑 ↦ 𝐹(𝜑) , (1-6)

such that 𝐹(Id௑) = Idி(௑) for all 𝑋 ∈ Ob 𝒞 and 𝐹(𝜑 ∘𝜓) = 𝐹(𝜑) ∘𝐹(𝜓) each time when composition
𝜑 ∘ 𝜓 is defined. In terms of algebras, a functor is a homomorfism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].
If all the maps (1-6) are surjective, functor 𝐹 is called full. An image of a full functor is a full
subcategory. If all the maps (1-6) are injective, 𝐹 is called faithful. A faithful functor produces
an injective homomorphism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].

e simplest examples of functors are provided by the identity functor Id𝒞 ∶ 𝒞 → 𝒞 acting
identically on the objects and on the arrows and by the forgeing functors, sending categories of
sets with extra structures and the morphisms respecting these structures⁶ to the category 𝒮𝑒𝑡, of
sets, by forgeing the structure.

E 1.5 (    )
e geometric realization functor 𝛥 → 𝒯𝑜𝑝 takes 𝑛-dimensional combinatorial simplex [𝑛] from
(1-2) to the standard regular 𝑛-simplex⁷

𝛥௡ = ง(𝑥଴, 𝑥ଵ, … , 𝑥௡) ∈ ℝ௡+ଵ || ௝ 𝑥ఔ = 1 , 𝑥ఔ ⩾ 0 จ ⊂ ℝ௡+ଵ , (1-7)

¹or an injection
²or a surjection
³or an invertible morphism
⁴or a covariant functor
⁵one map for each ordered pair 𝑋, 𝑌 ∈ Ob 𝒞
⁶e.g. topological spaces with continuous maps or vector spaces with linear maps
⁷that is the convex hull of the ends of the standard basic vectors 𝑒଴, 𝑒ଵ, … , 𝑒௡ ∈ ℝ௡+ଵ
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and takes each order preserving map 𝜑 ∶ [𝑛] → [𝑚] to the affine linear map 𝜑∗ ∶ 𝛥௡ → 𝛥௠ that
acts on the basic vectors as 𝑒ఔ ↦ 𝑒ఝ(ఔ). is is faithful but non-full functor. It sends generators
(1-4), (1-5) of algebra ℤ[𝛥] to the 𝑖-th face inclusion 𝛥(௡−ଵ) ↪ 𝛥௡ and to the 𝑖-th edge contraction¹
𝛥௡ ↠ 𝛥(௡−ଵ).

1.2.1 Presheaves. A functor 𝐹 ∶ 𝒞opp → 𝒟 is called a contra-variant functor from 𝒞 to 𝒟
or a presheaf of objects of category 𝒟 on a category 𝒞. It reverses the compositions 𝐹(𝜑 ∘ 𝜓) =
𝐹(𝜓) ∘ 𝐹(𝜑). In terms of algebras, a contravariat functor produces an anti-homomorphism of
algebras 𝐾[𝒞] → 𝐾[𝒟].

E 1.6 (    )
e notion «presheaf» has appeared initially in a context of the category 𝒞 = 𝒰(𝑋) of open
subsets 𝑈 ⊂ 𝑋 in a given topological space 𝑋. A presheaf 𝐹 ∶ 𝒰(𝑋)opp → 𝒟 aaches an object
𝐹(𝑈) ∈ Ob𝒟 to each open set 𝑈 ⊂ 𝑋. is object is called (an object o) sections of 𝐹 over 𝑈.
Depending on 𝒟, the sections can form a ring, an algebra, a vector space, a topological space,
etc. Aached to an inclusion of open sets 𝑈 ⊂ 𝑊 is a map 𝐹(𝑊) → 𝐹(𝑈) called the restriction
of sections from 𝑊 onto 𝑈 ⊂ 𝑊. e restriction of a section 𝑠 ∈ 𝐹(𝑊) onto a subset 𝑈 ⊂ 𝑊 is
usually denoted by 𝑠|ೆ. Here are some typical examples of such presheaves:

1) Presheaf 𝛤ா of the sets of local sections of a continuous mapping 𝑝 ∶ 𝐸 → 𝑋 has 𝛤ா(𝑈)
equal to a set of maps 𝑠 ∶ 𝑈 → 𝐸 such that² 𝑝 ∘ 𝑠 = Idೆ. Its restriction maps take sections
to their restrictions onto smaller subsets.

2) Specializing the previous example to projection 𝑝 ∶ 𝑋 × 𝑌 → 𝑋, we get the sheaf 𝒞଴(𝑋,𝑌)
of locally defined continuous mappings 𝑠 ∶ 𝑈 → 𝑌.

3) Further specialization of the above examples leads to so called structure presheaves 𝒪೉ such
as the presheaf of local smooth functions 𝑈 → ℝ on a smooth manifold 𝑋, or the presheaf
of local holomorphic functions 𝑈 → ℂ on a complex analytic manifold 𝑋, or the presheaf
of local rational functions 𝑈 → 𝕜 on an algebraic manifold 𝑋 over a field 𝕜 etc. All these
presheaves are presheaves of algebras over the corresponding field ℝ, ℂ, or 𝕜.

4) A constant presheaf 𝑆 has 𝑆(𝑈) equal to a fixed set 𝑆 for all open𝑈 ⊂ 𝑋 and all its restriction
maps are the identity morphisms Idௌ.

A presheaf 𝐹 of sets on 𝑆 is called a sheaf , if for any open𝑊, any covering of𝑊 by open 𝑈௜ ⊂ 𝑊,
and any collection of sections 𝑠௜ ∈ 𝐹(𝑈௜) such that 𝑠௜|௎೔∩௎ೕ = 𝑠௝|௎೔∩௎ೕ for all 𝑖, 𝑗 there exist a
unique section 𝑠 ∈ 𝐹(𝑊) such that 𝑠|௎೔ = 𝑠௜ for all 𝑖. If there exist at most one such a section 𝑠
but it does not have to exist, then 𝐹 is called a separable presheaf. All above presheaves (1) – (4)
are separable and only the last of them is not a sheaf, because for disjoint union 𝑊 = 𝑈ଵ ⊔ 𝑈ଶ
of open 𝑈ଵ, 𝑈ଶ not any pair of constants 𝑠௜ ∈ 𝑆(𝑈௜) appears as the restriction of some constant
𝑠 ∈ 𝑆(𝑊). However, besides the constant presheaf 𝑆, associated to an arbitrary set 𝑆 is

5) a constant sheaf 𝑆∼ whose sets of sections 𝑆∼(𝑈) consist of continuous maps 𝑈 → 𝑆, where
𝑆 is considered with the discrete topology.

¹i.e. projection onto a face along the edge joining 𝑖-th and (𝑖 + 1)-th vertexes
²i.e. sending each point 𝑥 ∈ 𝑈 to the fiber 𝑝−ଵ(𝑥) ⊂ 𝐸 over 𝑥
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E 1.3. Find all antiderivatives¹ of real function 𝑥 ↦ 1∕𝑥.

E 1.4. Show that the category of sheaves 𝒮ℎ(𝑋) is a full subcategory of the category of
presheaves 𝑝𝒮ℎ(𝑋).

E 1.7 (  )
Write 𝛥s ⊂ 𝛥 for non-full subcategory with Ob𝛥s = Ob𝛥 and injective² order preserving maps as
the morphisms. Category 𝛥s is called the semisimplicial category.

E 1.5. Show that algebra 𝐾[𝛥s] is generated by the identical arrows 𝑒௡ = Id[௡] and the
inclusions 𝜕(௜)

௡ from (1-4).
A presheaf of sets 𝑋 ∶ 𝛥opp

s → 𝒮𝑒𝑡 on 𝛥s is called a semisimplicial set. Each semisimplicial set is
nothing but a combinatorial description for some triangulated topological space denoted by |𝑋|
and called a geometric realization of semisimplicial set 𝑋. Namely, 𝐹 aaches a set 𝑋௡ = 𝑋([𝑛]) to
each non-negative integer 𝑛. Let us interpret the points 𝑥 ∈ 𝑋௡ as disjoint regular 𝑛-simplexes
𝛥௡௫ . e morphisms 𝜑 ∶ [𝑛] → [𝑚] in category 𝛥s stay in bijection with 𝑛-dimensional faces
of regular 𝑚-simplex 𝛥௠. A map 𝑋(𝜑) ∶ 𝑋௠ → 𝑋௡, which corresponds to such a morphism 𝜑,
produces a gluing rule: for each 𝑥 ∈ 𝑋௠ it picks up some 𝑛-simplex 𝛥௡௬ , where 𝑦 = 𝑋(𝜑)𝑥 ∈ 𝑋௡,
that should be glued to the constructed space |𝑋| as the 𝜑-th face of simplex 𝛥௠௫ .

E 1.6. Is there a triangulation of the cycle 𝑆ଵ by ) three 0-simplexes and three 1-
simplexes³ ) one 0-simplex and one 1-simplex? Is there a triangulation of the 2-sphere 𝑆ଶ
by ) four 0-simplexes, six 1-simplexes and four 2-simplexes ) two 0-simplexes, one 1-
simplex and one 2-simplexes? Is there a triangulation of the 2-torus 𝑇ଶ by one 0-simplex,
three 1-simplexes and two 2-simplex?

E 1.8 ( )
Presheaves 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡 on the whole of the simplicial category are called simplicial sets. Each
simlicial set 𝑋 also produces a topological space |𝑋| called a geometric realization of 𝑋. It is glued
from disjoint regular simplexes 𝛥௡௫ , 𝑥 ∈ 𝑋௡, by identifying points 𝑠 ∈ 𝛥௡ఝ∗(௫) and 𝜑∗(𝑠) ∈ 𝛥௠௫ ,
where𝜑 ∶ [𝑛] → [𝑚] is a morphism in category 𝛥, 𝜑∗ ≝ 𝑋(𝜑) ∶ 𝑋௠ → 𝑋௡ denotes its image under
𝑋, and 𝜑∗ ∶ 𝛥௡ → 𝛥௠ denotes affine linear map whose action on the vertexes of 𝛥௡ is prescribed
by 𝜑. Formally speaking, |𝑋| is a quotient space of a topological direct product⁴ ∏

௡⩾଴
𝑋௡ × 𝛥௡ by

the minimal equivalence relation that contains identifications ම𝑥,𝜑∗𝑠ඹ ≃ ම𝜑∗𝑥, 𝑠ඹ for all arrows
𝜑 ∶ [𝑛] → [𝑚] in Mor(𝛥), all 𝑥 ∈ 𝑋௠, and all 𝑠 ∈ 𝛥௡.

If an arrow 𝜑 = 𝛿𝜎 ∶ [𝑛] → [𝑚] is decomposed into a surjection 𝜎 ∶ [𝑛] ↠ [𝑘] followed by an
injection 𝛿 ∶ [𝑘] ↪ [𝑚], then 𝑛-simplex 𝛥௡௭ marked by 𝑧 = 𝜎∗𝑦 = 𝜎∗𝛿∗𝑥 ∈ 𝜑∗(𝑋௠) ⊂ 𝑋௡ appears
in the space |𝑋| as 𝑘-simplex 𝛥௞௬ obtained from 𝛥௡ by means of linear projection 𝜎∗ ∶ 𝛥௡ ↠ 𝛥௞
and this 𝑘-simplex has to be the 𝛿-th face of 𝑚-simplex 𝛥௠௫ . In particular, all simplexes 𝑧 ∈ 𝑋௡

¹i.e. functions 𝑓(𝑥) with 𝑓ໟ(𝑥) = 1∕𝑥
²that is, strictly increasing
³i.e. can one get 𝑆ଵ as the geometric realization of a semisimplicial set 𝑋 whose 𝑋଴ and 𝑋ଵ consist of 3

elements and all other 𝑋௞ are empty?
⁴where sets 𝑋௡ are considered with the discrete topology and topologies on simplexes 𝛥௡ ⊂ ℝ௡+ଵ are

iduced by the standard topologies on ℝ௡+ଵ
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lying in the image of anymap 𝜎∗ coming from an arrow 𝜎 ∶ [𝑘] → [𝑛] with 𝑘 > 𝑛 are degenerated:
they are visible in the space |𝑋| as simplexes of a smaller dimension.

Usage of degenerated simplexes allows to describe combinatorially more complicated cell
complexes than the triangulations. For example, topological description of 𝑛-spere 𝑆௡ as a quotint
space 𝑆௡ = 𝛥௡∕𝜕𝛥௡ leads to a pseudo-triangulation of 𝑆௡ by one 0-simplex and one 𝑛-cell, which
is the interior part of the regular 𝑛-simplex 𝛥௡. Combinatorially, this is the geometric realization
of simplicial set 𝑋 that consists of sets 𝑋௞ obtained from the sets Hom௱([𝑘], [𝑛]) by gluing all
non-surjective maps to one distiguished element. e map 𝜑∗ ∶ 𝑋௠ → 𝑋௞ corresponding to an
arrow 𝜑 ∶ [𝑘] → [𝑚] is induced by the le composition with 𝜑:

Hom௱([𝑚], [𝑛]) → Hom௱([𝑘], [𝑛]) , 𝜁 ↦ 𝜑𝜁 .

E 1.7. Compute cardinalities¹ of all sets 𝑋௞ and check that maps 𝜑∗ ∶ 𝑋௠ → 𝑋௞ are
well defined and produce a functor 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡.

1.2.2 Hom-functors. Associated with an object 𝑋 ∈ Ob 𝒞 in an arbitrary category 𝒞 are
a (covariant) functor ℎ௑ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ௑(𝑌) ≝ Hom(𝑋,𝑌) and sends an
arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to the map 𝜑∗ ∶ Hom(𝑋,𝑌ଵ) → Hom(𝑋,𝑌ଶ) 𝜓 ↦ 𝜑 ∘ 𝜓 , provided by the le
composition with 𝜑 and a presheaf ℎ௑ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ௑(𝑌) ≝ Hom(𝑌,𝑋) and
sends an arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to the map 𝜑∗ ∶ Hom(𝑌ଶ,𝑋) → Hom(𝑌ଵ,𝑋) 𝜓 ↦ 𝜓 ∘ 𝜑 provided by
the right composition with 𝜑.

For example, presheaf ℎ[௡] ∶ 𝛥opp
௦ → 𝒮𝑒𝑡 produces the standard triangulation of the regular

𝑛-simplex 𝛥௡: the sets of 𝑘-simplexes ℎ[௡]([𝑘]) = Hom([𝑘], [𝑚]) of this triangulation are precisely
the sets of 𝑘-dimensional faces of 𝛥௡. Presheaf ℎೆ ∶ 𝒰(𝑋) → 𝒮𝑒𝑡 on a topological space 𝑋 has
exactly one section over all open𝑊 ⊂ 𝑈 and the empty set of sections over all other open𝑊 ⊄ 𝑈.
Presheaf ℎ𝕜 ∶ 𝒱𝑒𝑐opp

𝕜 → 𝒱𝑒𝑐𝕜 takes a vector space 𝑉 to its dual space ℎ𝕜(𝑉) = Hom(𝑉,𝕜) = 𝑉∗

and sends a linear mapping 𝜑 ∶ 𝑉 → 𝑊 to its dual mapping 𝜑∗ ∶ 𝑊∗ → 𝑉∗, which takes a linear
form 𝜉 ∶ 𝑊 → 𝕜 to 𝜉 ∘ 𝜑 ∶ 𝑉 → 𝕜.

1.3 Natural transformations. Given two functors 𝐹,𝐺 ∶ 𝒞 → 𝒟, then a natural² transformation
is a collection of arrows 𝑓௑ ∶ 𝐹(𝑋) → 𝐺(𝑋), numbered by objects 𝑋 ∈ Ob𝒞, such that for each
morphism 𝜑 ∶ 𝑋 → 𝑌 in 𝒞 a diagram

𝐹(𝑋) ி(ఝ) //

௙೉
��

𝐹(𝑌)
௙ೊ
��

𝐺(𝑋) ீ(ఝ)
// 𝐺(𝑌)

(1-8)

is commutative in 𝒟. A natural transformation 𝑓 ∶ 𝐹 → 𝐺 is called an isomorphism of functors, if
all the morphisms 𝑓௑ ∶ 𝐹(𝑋) → 𝐺(𝑋) are isomorphisms. In this case functors 𝐹 and 𝐺 are called
isomorphic.

On the language of algebras, a homomorphism 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟] provides 𝐾[𝒟] with a
structure of a module over 𝐾[𝒞], in which an element 𝑎 ∈ 𝐾[𝒞] acts on an element 𝑏 ∈ 𝐾[𝒟] as
𝑎 ⋅ 𝑏 ≝ 𝐹(𝑎) ⋅ 𝑏. Two functors 𝐹, 𝐺 produce two different 𝐾[𝒞]-module structures on 𝐾[𝒟] and

¹note that 𝑋௞ ≠ ∅ for all 𝑘 ∈ ℤ⩾଴
²or functorial
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natural transformation 𝑓 ∶ 𝐾[𝒟] → 𝐾[𝒟] is nothing but a 𝐾[𝒞]-linear homomorphism between
these modules: for each 𝜑 ∈ 𝐾[𝒞] multiplications by 𝐹(𝜑) and by 𝐺(𝜑) in𝐾[𝒟] satisfy the relation
𝑓 ∘ 𝐹(𝜑) = 𝐺(𝜑) ∘ 𝑓.

1.3.1 Categories of functors. If a category 𝒞 is small, then the functors 𝒞 → 𝒟 to an ar-
bitrary category 𝒟 form a category ℱ𝑢𝑛(𝒞,𝒟), whose objects are the functors and morphismfs
are the natural transformations. Contravariant functors 𝒞opp → 𝒟 also form a category called
a category of presheaves¹ and denoted by 𝑝𝒮ℎ(𝒞,𝒟). Omied leer 𝒟 in this notation means on
default that 𝒟 = 𝒮𝑒𝑡, i.e. 𝑝𝒮ℎ(𝒞) ≝ ℱ𝑢𝑛(𝒞opp, 𝒮𝑒𝑡) .

E 1.8. Verify that prescription 𝑋 ↦ ℎ௑ produces a covariant functor 𝒞 → 𝑝𝒮ℎ(𝒞) and
prescription 𝑋 ↦ ℎ௑ produces a contravariant functor 𝒞opp → ℱ𝑢𝑛(𝒞, 𝒮𝑒𝑡).

1.3.2 Эквивалентности категорий. Categories 𝒞 and 𝒟 are called equivalent, if there
exists a pair of functors 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → 𝒞 such that compositions 𝐺𝐹 and 𝐹𝐺 are
isomorphic to the identity functors Id𝒞 and Id𝒟 respectively. is does not mean that 𝐹𝐺 = Id𝒟
or 𝐺𝐹 = Id𝒞: objects 𝐺𝐹(𝑋) and 𝑋 may be different as well as objects 𝐹𝐺(𝑌) and 𝑌. But there are
functorial in 𝑋 ∈ Ob 𝒞 and 𝑌 ∈ Ob𝒟 isomorphisms

𝐺𝐹(𝑋) ⥲ 𝑋 and 𝐹𝐺(𝑌) ⥲ 𝑌 . (1-9)

In these case functors 𝐹 and 𝐺 are called quasi-inverse equivalences between categories 𝒞 and 𝒟.

E 1.9 (  )
Write 𝑣𝑒𝑐𝕜 for the category of finite dimensional vector spaces over a field 𝕜 and 𝒞 ⊂ 𝑣𝑒𝑐𝕜 for
its small full subcategory formed by coordinate spaces 𝕜௡, 𝑛 ⩾ 0, where we put 𝕜଴ = {0}. Let us
fix some basis in each vector space 𝑉 ∈ Ob 𝑣𝑒𝑐𝕜 or, equivalently, an isomorphism²

𝑓௏ ∶ 𝑉 ⥲ 𝕜dim(௏) , (1-10)

and for 𝑉 = 𝕜௡ put 𝑓𝕜೙ = Id𝕜೙ . Define a functor 𝐹 ∶ 𝑣𝑒𝑐 → 𝒞 by sending a space 𝑉 to 𝕜dim௏

and an arrow 𝜑 ∶ 𝑉 → 𝑊 to composition 𝐹(𝜑) = 𝑓ௐ ∘ 𝜑 ∘ 𝑓−ଵ
௏ , which can be viewed as the

matrix of 𝜑 in the chosen bases of 𝑉 and 𝑊. Let us show that 𝐹 is an equivalence of categories
quasi-inverse to the tautological full inclusion 𝐺 ∶ 𝒞 ↪ 𝑣𝑒𝑐. By the construction of 𝐹 there is
an explicit equality of functors³ 𝐹𝐺 = Id𝒞 . Reverse composition 𝐺𝐹 ∶ 𝑣𝑒𝑐 → 𝑣𝑒𝑐 takes values
in the small subcategory 𝒞 ⊂ 𝑣𝑒𝑐 whose cardinality is non-compatible with cardinality 𝑣𝑒𝑐 at
all. However, the isomorphisms (1-10) give a natural transformation Id𝑣𝑒𝑐 → 𝐺𝐹, because all the
diagrams (1-8)

Id𝑣𝑒𝑐(𝑉) =𝑉 ఝ=Id𝑣𝑒𝑐 (ఝ) //

௙ೇ
��

𝑊 = Id𝑣𝑒𝑐(𝑊)
௙ೈ
��

𝐺𝐹(𝑉) =𝕜dim௏ ீி(ఝ)=௙ೈ∘ఝ∘௙−భ
ೇ // 𝕜dimௐ = 𝐺𝐹(𝑊)

are commutative by the construction of 𝐹. us, the identity functor Id𝑣𝑒𝑐 is naturally isomorphic
to 𝐺𝐹.

¹of objects of the category 𝒟 on the category 𝒞
²that sends the fixed basis to the standard basis in 𝕜௡
³non just a natural isomorphism
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E 1.9. Show that category of finite ordered sets 𝛥big is equivalent to its small simplicial
subcategory 𝛥 ⊂ 𝛥big.

L 1.1
Functor 𝐺 ∶ 𝒞 → 𝒟 is an equivalence of categories iff it is full, faithful, and essentially surjective
(the laer means that for each 𝑌 ∈ Ob𝒟 there is some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 such that 𝐺(𝑋) is
isomorphic to 𝑌).

P. For each 𝑌 ∈ Ob𝒟 pick up some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 and an isomorphism 𝑓௒ ∶ 𝑌 ⥲ 𝐺(𝑋).
When 𝑌 = 𝐺(𝑋(𝑌)) put 𝑓ீ(௑) = Idீ(௑). Define a functor 𝐹 ∶ 𝒟 → 𝒞 by sending 𝑌 ∈ Ob𝒟 to
𝐹(𝑌) = 𝑋(𝑌) and arrow 𝜑 ∶ 𝑌ଵ → 𝑌ଶ to an arrow𝜓 ∶ 𝑋(𝑌ଵ) → 𝑋(𝑌ଶ) such that 𝐺 (𝜓) = 𝑓௒మ ∘𝜑∘𝑓−ଵ

௒భ
(since 𝐺 ∶ Hom(𝑋ଵ,𝑋ଶ) ⥲ Hom(𝐺(𝑋ଵ),𝐺(𝑋ଶ)) is an isomorphism, such arrow 𝜓 exists and is
unique). By construction, 𝐹𝐺 = Id𝒞 and for each morphism 𝜑 ∶ 𝑌ଵ → 𝑌ଶ we have commutative
diagram

Id𝒟(𝑌ଵ) = 𝑌ଵ
ఝ //

௙ೊభ
��

𝑌ଶ = Id𝒟(𝑌ଶ)
௙ೊమ
��

𝐺𝐹(𝑌ଵ) =𝑋ଵ
ீி(ఝ)=ீ(ట) // 𝑋ଶ = 𝐺𝐹(𝑌ଶ) .

us, morphisms 𝑓௒ ∶ 𝑌 ⥲ 𝐺(𝑋) = 𝐺𝐹(𝑌) give a natural isomorphism between Id𝒟 and 𝐺𝐹. �

E 1.10. Show that dualizing functor ℎ𝕜 ∶ 𝑣𝑒𝑐𝕜 → 𝑣𝑒𝑐𝕜 , 𝑉 ↦ 𝑉∗, is quasi-inverse to
itself and produces autoantiequivalence of the category of finite dimensional vector spaces.

1.4 Representable functors. A presheaf 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 is called representable, if it is naturally
isomorphic to presheaf ℎ௑ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a represents
presheaf 𝐹. Dually, a covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is called corepresentable, if it is naturally
isomorphic to covariant functor ℎ௑ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a
corepresents functor 𝐹.

L 1.2 ( Y )
For any presheaf of sets 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 on an arbitrary category 𝒞 there is functorial in 𝐹 ∈
𝑝𝒮ℎ(𝒞) and in 𝐴 ∈ 𝒞 bijection 𝐹(𝐴) ⥲ Hom𝑝𝒮ℎ(𝒞)(ℎ஺,𝐹). It takes an element 𝑎 ∈ 𝐹(𝐴) to a natural
transformation

𝑓௑ ∶ Hom(𝑋,𝐴) → 𝐹(𝑋) , (1-11)

that sends an arrow 𝜑 ∶ 𝑋 → 𝐴 to the image of element 𝑎 under map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). e
inverse bijection takes a natural transformation (1-11) to the image of the identity Id஺ ∈ ℎ஺(𝐴)
under the map 𝑓஺ ∶ ℎ஺(𝐴) → 𝐹(𝐴).

P. For any natural transformation (1-11), for any object 𝑋 ∈ Ob 𝒞, and for any arrow
𝜑 ∶ 𝑋 → 𝐴 commutative diagram (1-8)

ℎ஺(𝐴) = Hom(𝐴,𝐴) ௛ಲ(ఝ) //

௙ಲ
��

Hom(𝑋,𝐴) = ℎ஺(𝑋)
௙೉
��

𝐹(𝐴) ி(ఝ) // 𝐹(𝑋) ,

(1-12)
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forces the equality 𝑓௑(𝜑) = 𝐹(𝜑)ම𝑓஺(Id஺)ඹ, because the upper arrow in (1-12) sends Id஺ to 𝜑.
us the whole of transformation 𝑓 ∶ ℎ஺ → 𝐹 is uniquely recovered as soon the element 𝑎 =
𝑓஺(Id஺) ∈ 𝐹(𝐴) is given. Choosing some 𝑎 ∈ 𝐹(𝐴) we obtain transformation (1-11) that sends
𝜑 ∈ Hom(𝑋,𝐴) to 𝑓௑(𝜑) = 𝐹(𝜑)(𝑎) ∈ 𝐹(𝑋). It is natural, because for any arrow 𝜓 ∶ 𝑌 → 𝑋
and any 𝜑 ∈ ℎ஺(𝑋) we have 𝑓௒ මℎ஺(𝜓)𝜑ඹ = 𝑓௒(𝜑𝜓) = 𝐹(𝜑𝜓)𝑎 = 𝐹(𝜓)𝐹(𝜑)𝑎 = 𝐹(𝜓) ම𝑓௑(𝜑)ඹ, i.e.
𝑓௒ ∘ ℎ஺(𝜓) = 𝐹(𝜓) ∘ 𝑓௑ are the same maps ℎ஺(𝑋) → 𝐹(𝑌). �

E 1.11 ( Y ). For any covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 construct
functorial in 𝐹 and in 𝐴 ∈ Ob 𝒞 bijection 𝐹(𝐴) ⥲ Homℱ𝑢𝑛(𝒞,𝒮𝑒𝑡)(ℎ஺,𝐹).

C 1.1
Covariant functor 𝑋 ↦ ℎ௑ and contravariant functor 𝑋 ↦ ℎ௑ are full and faithful. In other
words, there are functorial in 𝐴,𝐵 ∈ Ob 𝒞 isomorphisms Hom𝑝𝒮ℎ(𝒞)(ℎ஺, ℎ஻) = Hom𝒞(𝐴,𝐵) and
Homℱ𝑢𝑛(𝒞)(ℎ஺, ℎ஻) = Hom𝒞(𝐵,𝐴).

P. Apply Yoneda lemmas to 𝐹 = ℎ஻ and 𝐹 = ℎ஻. �

C 1.2
If a functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is (co)representable, then its (co)representing object is unique up to
natural isomorphism.

P. If 𝐹 ≃ ℎ஺ ≃ ℎ஻ (or 𝐹 ≃ ℎ஺ ≃ ℎ஻), then the natural isomorphism between functors ℎ஺ and
ℎ஻ (resp. between ℎ஺ and ℎ஻) produces by cor. 1.1 an isomorphism between 𝐴 and 𝐵 in 𝒞. �

1.4.1 Definitions via «universal properties».eYoneda lemmas provide us with two dual
ways for transferring set-theoretical constructions from category 𝒮𝑒𝑡 to an arbitrary category
𝒞. Namely, to define some set-theoretical operation on objects 𝑋௜ ∈ Ob 𝒞, consider a presheaf
𝒞opp → 𝒮𝑒𝑡 that takes an object 𝑌 ∈ Ob 𝒞 to the set obtained from the sets Hom(𝑌,𝑋௜) by the
operation in question. If this presheaf is representable, we declare its representing object to be
the result of our operation applied to the objects 𝑋௜ . e dual way uses covariant in 𝑌 functors
Hom(𝑋௜,𝑌) and corerepresentig object. Although both definitions are implicit, defined objects (if
exist) come with some universal properties and are unique up to unique isomorphism respecting
these properties.

E 1.10 (  𝐴 × 𝐵)
A product 𝐴 × 𝐵 of objects 𝐴,𝐵 ∈ Ob 𝒞 in an arbitrary category 𝒞 is defined as representing
object for presheaf of sets 𝑌 ↦ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). If 𝐴 × 𝐵 exists, then for all 𝑌 in 𝒞 there
is functorial in 𝑌 isomorphism 𝛽௒ ∶ Hom(𝑌,𝐴 × 𝐵) ⥲ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). For 𝑌 = 𝐴 × 𝐵
it produces a pair of arrows 𝐴 𝐴 × 𝐵గಲoo గಳ //𝐵 — the image of the identity 𝛽஺×஻(Id஺×஻) ∈
Hom(𝐴 × 𝐵,𝐴) × Hom(𝐴 × 𝐵,𝐵). is pair is universal in the following sense: for any pair of
arrows 𝐴 𝑌ఝoo ట //𝐵 there exists a unique arrow 𝜑×𝜓 ∶ 𝑌 → 𝐴×𝐵 such that 𝜑 = 𝜋஺ ∘ (𝜑×𝜓)
and 𝜓 = 𝜋஻ ∘ (𝜑 × 𝜓).

E 1.12. Show that ) for each diagram 𝐴 𝐶
గໟ
ಲoo

గໟ
ಳ //𝐵 that possess the same universal

property there exists a unique isomorphism 𝛾 ∶ 𝐶 ⥲ 𝐴 × 𝐵 such that 𝜋஺ ∘ 𝛾 = 𝜋ໟ
஺ and

𝜋஻ ∘ 𝛾 = 𝜋ໟ
஻ ) for any pair of arrows 𝛼 ∶ 𝐴ଵ → 𝐴ଶ, 𝛽 ∶ 𝐵ଵ → 𝐵ଶ there is a unique arrow

𝛼 × 𝛽 ∶ 𝐴ଵ × 𝐵ଵ → 𝐴ଶ × 𝐵ଶ such that 𝛼 ∘ 𝜋஺ = (𝛼 × 𝛽) ∘ 𝛼 and 𝛽 ∘ 𝜋஻ = (𝛼 × 𝛽) ∘ 𝛽.
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E 1.13. Show that the product in 𝒯𝑜𝑝 exists and coincides with the set theoretical
product 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} equipped with the weakest topology in which both
maps 𝜋஺, 𝜋஻ are continuous. Being equipped with componentwise operations, the set 𝐴×𝐵
turns to direct product in the categories of groups, rings and modules over a ring.

E 1.11 (  𝐴 ⊗ 𝐵)
Dually, a coproduct 𝐴 ⊗ 𝐵 in an arbitrary category 𝒞 is defined as corepresenting object for
covariant functor 𝒞 → 𝒮𝑒𝑡 , 𝑌 ↦ Hom(𝐴,𝑌) × Hom(𝐵,𝑌) . It is uniquely characterized by the
universal diagram 𝐴 ఐಲ //𝐴 ⊗ 𝐵 𝐵ఐಳoo such that for any pair of arrows 𝐴 ఝ //𝑌 𝐵టoo there
exists a unique arrow 𝜑 ⊗ 𝜓 ∶ 𝐴 ⊗ 𝐵 → 𝑌 such that 𝜑 = (𝜑 ⊗ 𝜓) ∘ 𝜄஺ and 𝜓 = (𝜑 ⊗ 𝜓) ∘ 𝜄஻.

E 1.14. Let universal diagram 𝐴 ఐಲ //𝐴 ⊗ 𝐵 𝐵ఐಳoo exist. Show that ) it is unique
up to unique isomorphism commuting with 𝜄஺ and 𝜄஻ ) each pair of arrows 𝛼 ∶ 𝐴ଵ → 𝐴ଶ,
𝛽 ∶ 𝐵ଵ → 𝐵ଶ produces a unique arrow 𝛼⊗𝛽 ∶ 𝐴ଵ⊗𝐵ଵ → 𝐴ଶ⊗𝐵ଶ such that 𝜄஺ ∘𝛼 = (𝛼⊗𝛽)∘𝛼.

In 𝒮𝑒𝑡 and𝒯𝑜𝑝 the coproduct 𝐴⊗𝐵 = 𝐴⊔𝐵 is the disjoint union. In 𝒢𝑟𝑝 the coproduct 𝐴⊗𝐵 = 𝐴∗𝐵
is the free product¹. In category of modules over a ring² 𝐴 ⊗ 𝐵 = 𝐴 × 𝐵 = 𝐴 ⊕ 𝐵 is the direct
sum of modules. In the category of commutative rings with unity 𝐴⊗ 𝐵 is the tensor product of
rings³.

¹i.e. the quotient of free group generated by (𝐴 ⧵ 𝑒) ⊔ (𝐵 ⧵ 𝑒) through the minimal normal subgroup of
relations that allow to replace any pair of consequent elements of the same group by their product in that
group; for example, ℤ ∗ ℤ ≃ 𝔽ଶ is free (non-commutative) group on two generators

²in particular, in 𝒜𝑏
³It coincides with the tensor product of underlying abelian groups in the category of ℤ-modules. e

multiplication is defined as (𝑎ଵ ⊗ 𝑏ଵ) ⋅ (𝑎ଶ ⊗ 𝑏ଶ) ≝ (𝑎ଵ ⋅ 𝑎ଶ) ⊗ (𝑏ଵ ⋅ 𝑏ଶ)



Comments to some exercises

E. 1.3. Typical answer «ln |𝑥| + 𝐶, where 𝐶 is an arbitrary constant» is incorrect. Actually, 𝐶 is
a section of the constant sheaf ℝ∼ over ℝ ∖ {0}.

E. 1.11. Each natural transformation 𝑓∗ picks up an element in 𝐹(𝐴) — the image of the identity
Id஺ ∈ ℎ஺(𝐴) under the map 𝑓஺ ∶ ℎ஺(𝐴) → 𝐹(𝐴). Vice versa, an element 𝑎 ∈ 𝐹(𝐴) produces
a transformation 𝑓௑ ∶ Hom(𝐴,𝑋) → 𝐹(𝑋) that sends an arrow 𝜑 ∶ 𝐴 → 𝑋 to the image of 𝑎
under the map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). To verify that it is natural and takes Id஺ ∈ ℎ஺(𝐴) to 𝑎 via
𝑓஺ ∶ ℎ஺(𝐴) → 𝐹(𝐴), use commutative diagram

ℎ஺(𝐴) = Hom(𝐴,𝐴) ௛ಲ(ఝ) //

௙ಲ
��

Hom(𝐴,𝑋) = ℎ஺(𝑋)
௙೉
��

𝐹(𝐴) ி(ఝ) // 𝐹(𝑋) ,

(1-13)

whose upper arrow sends Id஺ to 𝜑 and forces 𝑓௑(𝜑) = 𝐹(𝜑)ම𝑓஺(Id஺)ඹ.

13
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