Catrgories and functors

Notations. We write Set, Top, Ab, Grp, Cmr, Mod_K , $Vec_{\Bbbk} = Mod_{\Bbbk}$, Ass_{\Bbbk} , A-Mod, Mod-A for the categories of sets, topological spaces, abelian groups, all groups, commutative rings¹, modules over commutative ring K, vector spaces and associative algebras over a field \Bbbk , left and right modules over algebra A respectively. Categories of functors $C \to D$ and presheaves² $C^{opp} \to D$ are denoted by Fun(C, D) and pSh(C, D).

- SHA1 \diamond 1. Let Δ_{big} be the category of all finite ordered sets with order preserving maps as the morphisms and $\Delta \subset \Delta_{\text{big}}$ be its full small subcategory formed by sets $[n] \stackrel{\text{def}}{=} \{0, 1, ..., n\}$, $n \ge 0$, ordered usually. Show that a) Δ and Δ_{big} are equivalent 6) algebra $\mathbb{Z}[\Delta]$ is generated by the identity arrows $e_n = \text{Id}_{[n]}$, the inclusions $\partial_n^{(i)} : [n-1] \hookrightarrow [n]$, $0 \le i \le n$, $i \notin \partial_n^{(i)}([n-1])$, and surjections $s_n^{(i)} : [n] \twoheadrightarrow [n-1]$, $0 \le i \le n-1$, $(i+1) \mapsto i$. B^{*}) Find generators for the ideal of relations between these generating arrows.
- SHA1>2. For a given $X \in Ob \mathcal{C}$ let a functor $h^X : Y \mapsto Hom(X, Y)$ and a presheaf $h_X : Y \mapsto Hom(Y, X)$ take an arrow $\varphi : Y_1 \to Y_2$ respectively to the left and right multiplications by this arrow:

 $\varphi_*: \operatorname{Hom}(X,Y_1) \to \operatorname{Hom}(X,Y_2), \ \psi \mapsto \varphi \circ \psi \quad \text{and} \quad \operatorname{Hom}(Y_2,X) \to \operatorname{Hom}(Y_1,X), \ \psi \mapsto \psi \circ \varphi.$

Show that prescriptions $X \mapsto h^X$ and $X \mapsto h_X$ define a pre-sheaf $h^* : \mathcal{C}^{opp} \to \mathcal{F}un(\mathcal{C}, \mathcal{S}et)$ and a functor $h_* : \mathcal{C} \to p\mathcal{S}h(\mathcal{C}, \mathcal{S}et)$ respectively.

- SHA1 \diamond 3. Show that functor $h^X : Ab \to Ab$ takes an exact sequence $0 \to A \to B \to C \to 0$ to an exact sequence $0 \to \text{Hom}(X, A) \to \text{Hom}(X, B) \to \text{Hom}(X, C)$ whose rightmost arrow may be non-surjective. Formulate and prove dual property of functor $h_X : Ab \to Ab$.
- SHA1 \diamond 4. Describe products and coproducts in a) Set 6) Top B) $\mathcal{M}od_{K}$ r) Grp \mathfrak{g}) Cmr.
- SHA1 \diamond 5. Fix prime $p \in \mathbb{N}$. For each $n \in \mathbb{N}$ let $A_n = \mathbb{Z} / (p^n)$. For m > n write $\psi_{nm} : A_m \twoheadrightarrow A_n$ for the factorization mapping and $\varphi_{mn} : A_n \hookrightarrow A_m$ for the embedding $[1] \mapsto [p^{m-n}]$. In category $\mathcal{A}b$ describe a) $\lim A_n$ along ψ_{mn} 6) colim A_n along φ_{mn} .
- SHA1 \diamond 6. Let $B_n = \mathbb{Z} / (n)$. For n | m write $\psi_{nm} : B_m \twoheadrightarrow B_n$ and $\varphi_{mn} : B_n \hookrightarrow B_m$ for the factorization mapping and the embedding [1] $\mapsto [m/n]$ respectively. In category $\mathcal{A}b$ describe a) $\lim_{\leftarrow} B_n$ along ψ_{nm} 6) colim B_n along φ_{mn} .
- SHA1 \diamond 7. Prove that a functor $G : \mathcal{D} \to \mathcal{C}$ admits a left adjoint functor F iff for each $X \in \text{Ob }\mathcal{C}$ a functor $h_G^X : Y \mapsto \text{Hom}_{\mathcal{C}}(X, G(Y))$ is corepresentable, and in this case F(X) corepresents h_G^X . Formulate and prove the dual criteria for the existence of right adjoint functor G to a given functor $F : \mathcal{C} \to \mathcal{D}$.
- SHA1 8. Show that any left adjoint functor commutes with colimits and any right adjoint functor commutes with limits³.
- SHA1 \diamond 9. For an arbitrary extension $S \subset R$ of associative algebras with units construct left and right adjoint functors to the restriction functor res^{*R*}_{*S*} : R-Mod \rightarrow S-Mod.
- SHA1 \diamond 10. Given a topological space \mathcal{X} , write $S(\mathcal{X}) : \Delta^{\text{opp}} \to \mathcal{S}et$ for the simplicial set that takes $[n] \in \text{Ob} \Delta$ to $S_n(\mathcal{X}) \stackrel{\text{def}}{=} \text{Hom}_{\mathcal{J}op}(\Delta^n, \mathcal{X})$, where $\Delta^n \subset \mathbb{R}^{n+1}$ is the standard regular *n*-dimensional simplex, and takes an order preserving arrow $\varphi : [n] \to [m]$ to the right multiplication mapping $f \mapsto f \circ |\varphi|$, where $|\varphi| : \Delta^n \to \Delta^m$ stays for the affine mapping acting on the vertices as φ . Show that the functor $S : \mathcal{J}op \to p\mathcal{S}h(\Delta)$ is right adjoint to the geometric realization functor $p\mathcal{S}h(\Delta) \to \mathcal{J}op$.

¹with unity and homomorphisms sendinding unity to unity

²i.e. contravariant functors

³functor $F : \mathcal{C} \to \mathcal{D}$ commutes with (co) limits, if for each $L \in Ob \mathcal{C}$ and any diagram $\Phi : \mathcal{N} \to \mathcal{C}$ the condition «L is the (co) limit of Φ in \mathcal{C} » implies the condition «F(L) is the (co) limit of $F \circ \Phi$ in \mathcal{D}

(напишите свои имя, отчество и фамилию)

N⁰	дата сдачи	имя и фамилия принявшего	подпись принявшего
1a			
б			
В			
2			
3			
4a			
б			
В			
Г			
д			
5a			
б			
6a			
б			
7			
8			
9			
10			