Представления конечных групп

- **ТП5** \diamond **1.** Покажите, что на каждом вещественном (соотв. комплексном) конечномерном представлении конечной группы G можно ввести G-инвариантное евклидово (соотв. эрмитово) скалярное произведение. Выведите отсюда полную приводимость таких представлений.
- **ТП5\diamond2*.** Опишите все конечные подгруппы в $SO_3(\mathbb{R})$ с точностью до сопряжения.
- **ТП5\diamond3.** Покажите, что $R(G_1 \times G_2) = R(G_1) \otimes_{\mathbb{Z}} R(G_2)$, где $R(G) \subset \mathbb{C}^G$ обозначает кольцо комплексных представлений конечной группы G.
- **ТП5\diamond4.** Пусть пересечение класса сопряжённости $C \subset G$ с подгруппой $H \subset G$ является объединением $D_1 \sqcup ... \sqcup D_s$ классов H-сопряжённости. Для заданного характера χ подгруппы H выразите значение индуцированного им характера группы G на классе C через значения $\chi(D_i)$, порядки $|D_i|$ и индекс [G:H].
- **ТП5\diamond5.** Опишите комплексное представление группы S_4 , индуцированное **a)** двумерным неприводимым представлением подгруппы $S_3 = \operatorname{Stab}(4)$ **б)** 1-мерным представлением 4-цикла умножением на $\sqrt[4]{1}$ **в)** 1-мерным представлением 3-цикла умножением на $\sqrt[3]{1}$.
- **ТП5 6** (аффинная группа прямой). Рассмотрим группу A всех биективных преобразований $x\mapsto ax+b$ аффинной прямой \mathbb{A}^1 над полем $\mathbb{F}_p=\mathbb{Z}/(p)$. а) Покажите, что $A=\mathbb{F}_p\rtimes\mathbb{F}_p^*$, где $\mathbb{F}_p\subset A$ подгруппа сдвигов, а $\mathbb{F}_p^*\subset A$ подгруппа растяжений относительно начала координат, и перечислите классы сопряжённости в A. **6**) Вычислите характер представления группы A в пространстве функций $\mathbb{A}^1\to\mathbb{C}$ с нулевой суммой значений. Убедитесь, что оно неприводимо и индуцировано одномерным представлением подгруппы сдвигов с характером $\mathbb{F}_p\to \mathrm{U}_1,\ t\mapsto e^{2\pi i t/p}$. в) Покажите, что все остальные неприводимые представления группы A одномерны и вычислите их характеры.
- **ТП5 7*** (группа Гейзенберга). Для простого p>2 и n-мерного векторного пространства L над полем \mathbb{F}_p группа Гейзенберга H_p^n состоит из троек $(x,u,u^*)\in \mathbb{F}_p\times L\times L^*$ с операцией $(x_1,u_1,u_1^*)\circ (x_2,u_2,u_2^*)\stackrel{\mathrm{def}}{=} (x_1+x_2+(u_2^*(u_1)-u_1^*(u_2))/2, u_1+u_2, u_1^*+u_2^*).$ Обозначим через $H'\simeq \mathbb{F}_p\times L\subset H_p^n$ абелеву подгруппу всех троек вида (x,u,0). а) Проверьте, что H_p^n действительно группа и перечислите её классы сопряжённости. 6) Убедитесь, что H_p^n изоморфна группе верхних унитреугольных 3×3 матриц над \mathbb{F}_p . в) Покажите, что для каждого $a\in \mathbb{F}_p^*$ комплексное представление W_a группы H_p^n , индуцированное одномерным представлением подгруппы H' с характером $\psi_a(x,u,0)=e^{2\pi i ax/p}$, неприводимо, и все такие представления различны. Вычислите размерность и характер представления W_a . г) Покажите, что все остальные неприводимые представления группы H_n^n одномерны.
- **ТП5** \diamond 8* (группа Гейзенберга 2). При p=2 обозначим через H группу с 4n+4 образующими $\pm 1, \pm u_1, \ldots, \pm u_{2n+1}$ и соотношениями $u_i^2=-1, \ u_iu_j=-u_ju_i$ и «минус на минус даёт плюс». а) Убедитесь, что H состоит из 2^{2n+2} элементов $\pm u_I=\pm u_{i_1}\ldots u_{i_k}$, где $I=(i_1,\ldots,i_k)$ пробегает всевозможные возрастающие поднаборы в $(1,\ldots,(n+1))$, включая \varnothing , для которого $u_\varnothing=1$, и отвечающие индексам I чётной длины элементы $\pm u_I$ образуют в H подгруппу H_2^n . 6) Покажите, что группа H_2^1 изоморфна группе кватернионных единиц Q_8 . Опишите в) центр г) классы сопряжённости д) неприводимые представления группы H_2^n .
- **ТП59***. Покажите, что в разложениях тензорных степеней любого эффективного представления конечной группы встречаются все неприводимые представления этой группы.
- **ТП5•10***. Покажите, что каждый неодномерный неприводимый характер конечной группы зануляется хотя бы на одном классе сопряжённости.

 $^{^{1}}$ Т. е. целочисленная линейная оболочка комплексных неприводимых характеров.

²Она называется группой Гейзенберга для p = 2.

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1			
2			
3			
4			
5a			
б			
В			
6a			
б			
В			
7a			
б			
В			
Г		<u> </u>	
8а б			
В			
Г			
д			
9			
10			