§6. Основные понятия теории представлений.

6.1. Представления множества операторов. Для произвольного множества R условимся обозначать через $R \otimes \Bbbk$ векторное пространство с базисом R над полем \Bbbk , состоящее из всевозможных конечных формальных линейных комбинаций элементов из R с коэффициентами в \Bbbk , а через $A_R \stackrel{\text{def}}{=} T(R \otimes \Bbbk)$ — тензорную алгебру этого векторного пространства, т. е. свободную ассоциативную \Bbbk -алгебру, порождённую множеством R.

Например, если множество $R = \{t\}$ состоит из одного элемента t, то векторное пространство $t \otimes \mathbb{k} = \mathbb{k} t$ одномерно с базисом t, а ассоциативная алгебра $A_t = T(\mathbb{k} t)$, т. е. тензорная алгебра одномерного векторного пространства, изоморфна алгебре $\mathbb{k}[t]$ многочленов от одной переменной: изоморфизм сопоставляет базисному тензору $t \otimes \ldots \otimes t \in (\mathbb{k} t)^{\otimes n}$ моном t^n .

Когда понятно, о каком представлении ϱ идёт речь, мы обозначаем результат применения оператора $\tilde{\varrho}(f)$, где $f \in A_R$, к вектору $w \in W$ просто через fw. Для подпространства $U \subset W$ и набора операторов $F \subset A_R$ мы полагаем $FU \stackrel{\text{def}}{=} \{ fu \mid f \in F, \ u \in U \}$.

6.1.1. Разложимость, приводимость и полупростота. Векторное подпространство U в R-модуле W называется R-подмодулем или R-инвариантным подпространством, если $RU \subset U$.

Упражнение 6.1 (фактор модули). Убедитесь, что для всякого R-подмодуля $U \subseteq W$ на фактор пространстве V = W/U имеется структура R-модуля, на котором элементы $f \in R$ действуют по правилу $f[w] \stackrel{\text{def}}{=} [fw]$, где [w] = w + U означает класс вектора $w \in W$ по модулю U.

Отличные от W подмодули $U \subseteq W$ называются собственными.

Ненулевой R-модуль W называется npocmыm, если у него нет ненулевых собственных подмодулей. Задающее такой модуль представление $\varrho: R \to \operatorname{End}(W)$ называется npocmыm.

Ненулевой R-модуль W и соответствующее ему представление называются pазложимыми, если W является прямой суммой своих ненулевых собственных R-подмодулей. Всякий конечномерный R-модуль является прямой суммой неразложимых, однако бывают неразложимые непростые модули. Если R-модуль W является прямой суммой простых R-подмодулей, то он называется n0лупростым, а соответствующее представление $\varrho: R \to \operatorname{End}(W)$ — n0лне n0лупрост и неразложим, и что прямая сумма любого множества полупростых модулей полупроста.

Упражнение 6.2. Убедитесь, что для заданных подпространств $U_1, U_2 \subset W$ условия $RU_1 \subset U_2$ и $A_RU_1 \subset U_2$ равносильны, и выведите отсюда, что простота, полупростота и разложимость

пространства W относительно произвольного множества операторов $S \subset \operatorname{End}(W)$ и относительно ассоциативной оболочки $\operatorname{Ass}(S)$ этих операторов означают одно и то же.

Пример 6.1 (пространство с одним оператором)

Если множество R состоит из одного элемента t, то $A_R \simeq \Bbbk[t]$ является кольцом многочленов от этого элемента. Представление $\varrho:R\to \operatorname{End} W$ заключается в выборе на пространстве W линейного оператора $f=\varrho(t)\colon W\to W$ и наделяет пространство W структурой модуля над кольцом многочленов, которая задаётся гомоморфизмом

$$\tilde{\varrho} = \operatorname{ev}_f : \mathbb{k}[t] \to \operatorname{End}(W), \ t \mapsto f,$$
(6-1)

переводящим многочлен $F \in \mathbb{k}[t]$ в результат подстановки в него оператора f вместо переменной t. Если пространство W конечномерно, гомоморфизм (6-1) имеет ненулевое ядро — главный идеал (μ_f) , порождённый приведённым многочленом наименьшей степени, аннулирующим оператор f. Ассоциативная оболочка оператора f, т. е. образ гомоморфизма (6-1), представляет собою множество всех многочленов от оператора f и изоморфна фактор алгебре $\mathbb{k}[t]/(\mu_f)$. По теореме о строении конечно порождённых модулей над кольцом главных идеалов конечномерный $\mathbb{k}[t]$ -модуль W, будучи модулем кручения, изоморфен прямой сумме фактор модулей

$$\frac{\mathbb{k}[t]}{(p_1^{m_1})} \oplus \ldots \oplus \frac{\mathbb{k}[t]}{(p_s^{m_s})},\tag{6-2}$$

где все многочлены $p_i \in \Bbbk[t]$ неприводимы и приведены, а действие оператора состоит в умножении на t, и два таких модуля изоморфны если и только если они отличаются друг от друга перестановкой прямых слагаемых. В частности, всякое неразложимое пространство с оператором изоморфно пространству $\Bbbk[t]/(p^m)$ с оператором умножения на t, и два таких пространства с разными p или m не изоморфны друг другу.

Упражнение 6.3. Убедитесь, что $\Bbbk[t]$ -модуль $\Bbbk[t]/(p^m)$ неприводим если и только если m=1. Тем самым, всякое неприводимое пространство с оператором изоморфно $\Bbbk[t]/(p)$, где $p\in \Bbbk[t]$ приведён и неприводим, а оператор действует умножением на t, а всякое полупростое — прямой сумме нескольких таких пространств.

Упражнение 6.4. Докажите, что оператор f над произвольным полем k диагонализуем если и только если он аннулируется многочленом, полностью разлагающимся в k[t] в произведение попарно различных линейных множителей³.

Пример 6.2 (коммутирующие операторы)

Если линейные операторы $f,g:V\to V$ на векторном пространстве V над произвольным полем \Bbbk коммутируют друг с другом, то ядро и образ любого многочлена $\varphi(f)$ от оператора f переводятся оператором g в себя, поскольку из $\varphi(f)u=0$ вытекает, что $\varphi(f)gu=g\varphi(f)u=0$, а из $u=\varphi(f)w$ вытекает, что $gu=g\varphi(f)w=\varphi(f)gw$. В частности, все собственные подпространства $V_\lambda=\ker(f-\lambda\mathrm{Id})$ оператора f инвариантны относительно любого перестановочного с f оператора g. Отсюда получается простое, но полезное

 $^{^{1}}$ Напомню, что он называется минимальным многочленом оператора f.

²См. лекцию http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2223/lec_06.pdf.

 $^{^{3}}$ В частности, если оператор диагонализуем на всём пространстве, то он диагонализуем и на любом своём инвариантном подпространстве

Предложение 6.1

В конечномерном векторном пространстве V над алгебраически замкнутым полем \Bbbk любое множество коммутирующих друг с другом операторов обладает общим для всех операторов собственным вектором. Над произвольным полем \Bbbk любое множество коммутирующих друг с другом диагонализуемых операторов на V можно одновременно диагонализовать в одном общем для всех операторов базисе.

Доказательство. Индукция по $\dim V$. Если все операторы скалярны (что так при $\dim V=1$), то доказывать нечего — подойдут, соответственно, любой ненулевой вектор и любой базис. Если среди операторов есть хоть один нескалярный оператор F, то над замкнутым полем у него есть собственное подпространство строго меньшей размерности, чем V, а в диагонализуемом случае V является прямой суммой таких собственных подпространств. Каждое собственное подпространство оператора F инвариантно для всех операторов, причём если операторы диагонализуемы на всём пространстве, то их ограничения на собственные подпространства оператора F останутся диагонализуемы по упр. 6.4. Применяя к собственным подпространствам оператора F предположение индукции, получаем требуемое.

Лемма 6.1

Пусть R-модуль 1 W линейно порождается над \mathbbm{k} некоторым множеством $\mathcal S$ своих неприводимых R-подмодулей. Тогда для любого собственного R-подмодуля $U\subsetneq W$ найдётся такой R-подмодуль $V\subset W$, что $^2W=U\oplus V$, причём в качестве V можно взять прямую сумму подходящих подмодулей из множества $\mathcal S$. Для нулевого подмодуля U=0 это утверждение означает, что весь модуль W является прямой суммой подходящих подмодулей из множества $\mathcal S$. В частности, такой модуль W автоматически полупрост.

Доказательство. Так как $U \neq W$ и W линейно порождается подмодулями $S \in \mathcal{S}$, в множестве \mathcal{S} найдётся подмодуль $S \not\subset U$. Сумма U+S является прямой, поскольку пересечение $S \cap U \subsetneq S$, будучи собственным подмодулем неприводимого модуля S, равно нулю. Обозначим через \mathcal{S}' множество всех полупростых подмодулей $M \subset W$, разложимых в прямую сумму модулей из \mathcal{S} и таких, что сумма U+M прямая. По предыдущему, множество \mathcal{S}' непусто. Введём на нём частичный порядок, полагая $M_1 < M_2$, когда $M_2 = M_1 \oplus M$ для некоторого $M \in \mathcal{S}'$.

Упражнение 6.5. Убедитесь, что S' является полным чумом³.

По лемме Цорна 4 в множестве S' имеется максимальный элемент V. Покажем, что $U \oplus V = W$. Если $U \oplus V \neq W$, то повторяя проведённое в начале доказательства рассуждение для подмодуля $U \oplus V$ в роли подмодуля U, мы найдём в S такой подмодуль $S \subset W$, что сумма $(U \oplus V) + S$ прямая. Это означает, что $V \oplus S \in S'$ строго больше, чем V. Всё сказанное работает и для U = 0.

Теорема 6.1

Модуль W полупрост если и только если каждый ненулевой подмодуль в W содержит простой ненулевой подмодуль и для каждого ненулевого собственного R-подмодуля $U \subset W$ найдётся такой R-подмодуль $V \subset W$, что $W = U \oplus V$.

 $^{^{1}}$ Не обязательно конечномерный как векторное пространство над \Bbbk .

 $^{^{2}}$ Всякий подмодуль V с таким свойством называется дополнительным к U.

 $^{^3}$ Т. е. каждое линейно упорядоченное подмножество в \mathcal{S}' имеет верхнюю грань, см. раздел 1.7 на стр. 15 лекции http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2021/lec_01.pdf.

⁴См. раздел 1.9 на стр. 17 той же лекции.

Доказательство. Если модуль W полупрост, т. е. является прямой суммой простых подмодулей, подмодуль $V \subset W$, дополнительный к произвольно заданному подмодулю $U \subset W$, существует по лем. 6.1, применённой к множеству $\mathcal S$ всех простых подмодулей в W.

Упражнение 6.6. Убедитесь, что проекция $\pi: W = U \oplus V \twoheadrightarrow U, u + v \mapsto u$, перестановочна с действием операторов из R, т. е. $\pi(fw) = f\pi(w)$ для всех $f \in R$ и $w \in W$.

Так как W линейно порождается простыми подмодулями, проекция π переводит хотя бы один из них в ненулевое векторное подпространство в U.

Упражнение 6.7. Убедитесь, что это подпространство является простым R-подмодулем в U.

Это доказывает прямую импликацию «только если». Чтобы доказать обратную импликацию, обозначим через $\mathcal S$ множество всех полупростых ненулевых подмодулей $S\subseteq W$. Это множество непусто, поскольку содержит ненулевой простой подмодуль, имеющийся в W по условию. Зададим на $\mathcal S$ частичный порядок, полагая $S_1 < S_2$ когда $S_2 = S_1 \oplus S$ для некоторого $S \in \mathcal S$.

Упражнение 6.8. Убедитесь, что чум ${\cal S}$ полон.

По лемме Цорна, в S есть максимальный элемент M. Если он не совпадает с W, то найдётся такой ненулевой подмодуль $V \subset W$, что $W = M \oplus V$. Поскольку в V есть ненулевой простой подмодуль $S \subset V$, сумма $M \oplus S \in S$ будет строго больше, чем M. Тем самым, M = W.

Следствие 6.1 (критерии полупростоты)

Пусть каждый ненулевой R-подмодуль в R-модуле W содержит в себе конечномерный ненулевой R-подмодуль. Тогда следующие свойства модуля W эквивалентны:

- 1) W полупрост
- 2) W линейно порождается над \mathbbm{k} простыми R-подмодулями
- 3) для любого ненулевого собственного R-подмодуля $U \subset W$ существует такой R-подмодуль $V \subset W$, что $W = U \oplus V$.

Доказательство. Если R-подмодуль конечномерен как векторное пространство над \Bbbk , то каждый его R-подмодуль минимальной положительной размерности автоматически прост. Поэтому каждый ненулевой подмодуль в W обладает простым ненулевым подмодулем, и условия (1) и (3) эквивалентны по теор. 6.1. Импликация (1) \Rightarrow (2) очевидна. Импликация (2) \Rightarrow (3) была установлена в лем. 6.1.

6.1.2. Гомоморфизмы представлений. Линейное отображение $\varphi: W_1 \to W_2$ между R-модулями, отвечающими линейным представлениям $\varrho_1: R \to \operatorname{End}(W_1)$ и $\varrho_2: R \to \operatorname{End}(W_2)$, называется гомоморфизмом R-модулей 2 , если оно перестановочно с действием всех операторов из R, т. е. для всех $f \in R$ коммутативна диаграмма

$$\begin{array}{c|c} W_1 & \xrightarrow{\varphi} W_2 \\ \varrho_1(f) & & & & \downarrow \varrho_2(f) \\ W_1 & \xrightarrow{\varphi} W_2 \ . \end{array}$$

¹Который не предполагается конечномерным.

 $^{^{2}}$ А также сплетающим оператором, гомоморфизмом представлений или R-линейным отображением.

Примером R-линейного отображения является проекция разложимого R-модуля $U \oplus V$ на подмодуль U вдоль подмодуля V из упр. 6.6 на стр. 65. Множество всех R-линейных гомоморфизмов обозначается через $\operatorname{Hom}_R(W_1,W_2) \stackrel{\mathrm{def}}{=} \{ \varphi : W_1 \to W_2 \mid \forall w \in W_1, \forall f \in R \ \varphi(fw) = f \varphi(w) \}.$

Упражнение 6.9. Убедитесь, что а) $\operatorname{Hom}_R(W_1,W_2) = \operatorname{Hom}_{A_R}(W_1,W_2)$ является векторным подпространством в $\operatorname{Hom}(W_1,W_2)$ б) композиция R-линейных отображений R-линейна в) ядро и образ гомоморфизма R-модулей являются R-подмодулями Γ) образ и полный прообраз любого R-модуля относительно гомоморфизма R-модулей являются R-модулями.

ЛЕММА 6.2 (ЛЕММА ШУРА)

Всякий ненулевой гомоморфизм неприводимых R-модулей является изоморфизмом. Если основное поле \mathbbm{k} алгебраически замкнуто, то все R-линейные эндоморфизмы неприводимого R-модуля скалярны, т. е. имеют вид λ Id, где $\lambda \in \mathbbm{k}$.

Доказательство. Пусть представления $\varrho_1: R \to \operatorname{End}(W_1), \varrho_2: R \to \operatorname{End}(W_2)$ неприводимы, а линейное отображение $\varphi: W_1 \to W_2$ перестановочно со всеми операторами из R. Поскольку $\ker \varphi \subset W_1$ и іт $\varphi \subset W_2$ являются подмодулями простых модулей, либо $\ker \varphi = W_1$ и $\varphi = 0$, либо $\ker \varphi = 0$. Во втором случае, если $\varphi \neq 0$, то подмодуль іт $\varphi \subset W_2$ отличен от нуля, и значит, совпадает с W_2 , т. е. φ одновременно инъективно и сюрьективно.

Рассмотрим теперь R-линейный эндоморфизм $\varphi: W \to W$. Для каждого $\lambda \in \mathbb{R}$ эндоморфизм $\lambda \operatorname{Id} - \varphi$ тоже R-линеен. Если поле \mathbb{R} алгебраически замкнуто, существует такое $\lambda_0 \in \mathbb{R}$, что R-подмодуль $\ker(\lambda_0 \operatorname{Id} - \varphi) \neq 0$. Если W прост, то $\ker(\lambda_0 \operatorname{Id} - \varphi) = W$ и $\varphi = \lambda_0 \operatorname{Id}$.

Следствие 6.2

Если основное поле алгебраически замкнуто, а R-модули U и W неприводимы, то

$$\dim \operatorname{Hom}_R(U,W) = \begin{cases} 0 & \text{если } U \text{ и } W \text{ не изоморфны} \\ 1 & \text{если } U \text{ и } W \text{ изоморфны}. \end{cases}$$

Доказательство. Любые два ненулевых изоморфизма $\varphi, \psi: U \to W$ пропорциональны, поскольку $\psi^{-1}\varphi = \lambda \cdot \operatorname{Id}_U$ для некоторого $\lambda \in \mathbb{k}^*$.

Следствие 6.3

Фактор модуль любого полупростого R-модуля W тоже полупрост.

Доказательство. По лемме Шура образ любого простого R-подмодуля $S \subset W$ при любой R-линейной сюрьекции $\pi: W \twoheadrightarrow U$ либо нулевой, либо изоморфен S и, стало быть, прост. Поскольку W линейно порождается простыми подмодулями $S \subset W$, модуль U линейно порождается ненулевыми подмодулями $\pi(S)$.

Предложение 6.2

В условиях сл. 6.1 на стр. 65 полупростота R-модуля W равносильна тому, что для любого подмодуля $U\subset W$ существует такой R-линейный эндоморфизм $\pi_U\in \operatorname{End}_R(W)$, что $\pi_U^2=\pi_U$ и im $\pi_U=U$.

Доказательство. Если $W=U\oplus V$ для некоторого R-подмодуля $V\subset W$, то проектор

$$\pi_U:\, U\oplus V\to U\oplus V\,,\quad (u,v)\mapsto (u,0)\,,$$

обладает требуемыми свойствами. Наоборот, если эндоморфизм π_U имеет $\pi_U^2 = \pi_U$, то он тождественно действует на своём образе: $\pi_U\pi_Uw = \pi_Uw$. Поэтому $\ker \pi_U \cap \operatorname{im} \pi_U = 0$. Так как каждый вектор $w \in W$ имеет разложение $w = \pi_Uw + (w - \pi_Uw)$, в котором $\pi_Uw \in \operatorname{im} \pi_U$, а $w - \pi_Uw \in \ker \pi_U$, мы заключаем, что $W = \operatorname{im} \pi_U \oplus \ker \pi_U$. В силу R-линейности π_U его ядро $\ker \pi_U$ является R-подмодулем в W.

Следствие 6.4

Каждый подмодуль полупростого R-модуля тоже полупрост.

Доказательство. Пусть R-модуль L является ненулевым собственным подмодулем полупростого R-модуля W. Каждый R-подмодуль $U \subset L$, будучи подмодулем и в W, является образом R-линейного проектора $W \twoheadrightarrow U$. Ограничение этого проектора на подмодуль L является R-линейным проектором $L \twoheadrightarrow U$.

6.2. Представления ассоциативной алгебры. Пусть A — ассоциативная алгебра над произвольным полем k, а V — любое векторное пространство над k. Гомоморфизм k-алгебр

$$\varrho: A \to \operatorname{End} V$$

называется линейным представлением алгебры A в векторном пространстве V. Пространство V называется в этой ситуации A-модулем. Представления ассоциативных алгебр являются специальными примерами представлений множеств операторов, и к ним в полной мере приложима вся терминология из \mathbf{n}° 6.1.1 на стр. 62. Для двух A-модулей U, W мы полагаем

$$\operatorname{Hom}_{A}(U,V) \stackrel{\text{def}}{=} \{ \varphi : U \to W \mid \forall f \in A, \forall u \in U \ \varphi(fu) = f\varphi(u) \}$$

и называем такие отображения $\varphi: U \to W$ A-линейными. Когда U = W все A-линейные эндоморфизмы A-модуля W образуют ассоциативную \Bbbk -подалгебру $\operatorname{End}_A(W) \subset \operatorname{End}_\Bbbk(W)$ в \Bbbk -алгебре всех \Bbbk -линейных эндоморфизмов векторного пространства W. Подалгебру $\operatorname{End}_A(W)$ обычно называют μ -инрализатором A в $\operatorname{End}_\Bbbk(W)$.

Пусть $W=V_1\oplus\ldots\oplus V_n$ является прямой суммой своих A-подмодулей V_ν . Обозначим через $\iota_\nu:V_\nu\hookrightarrow W$ вложение каждого из них в W, а через $\pi_\mu:W\twoheadrightarrow V_\mu$ — проекцию прямой суммы $V_1\oplus\ldots\oplus V_n$ на μ -е слагаемое.

Упражнение 6.10. Убедитесь, что $\sum_{\nu} \iota_{\nu} \pi_{\nu} = \mathrm{Id}_{W}, \pi_{\nu} \iota_{\nu} = \mathrm{Id}_{V_{\nu}}$ для всех $\nu, \pi_{\nu} \iota_{\mu} = 0$ и $\iota_{\mu} \pi_{\nu} = 0$ для всех $\mu \neq \nu$.

Для каждого $\varphi \in \operatorname{End}(W)$ положим $\varphi_{\mu\nu} \stackrel{\text{def}}{=} \pi_{\mu} \circ \varphi \circ \iota_{\nu}$ и организуем эндоморфизмы $\varphi_{\mu\nu} : V_{\nu} \to V_{\mu}$ в квадратную матрицу $(\varphi_{\mu\nu})$. Исходный эндоморфизм φ восстанавливается из этой матрицы как

$$\varphi = \operatorname{Id}_W \circ \varphi \circ \operatorname{Id}_W = \left(\sum\nolimits_{\mu} \iota_{\mu} \pi_{\mu} \right) \circ \varphi \circ \left(\sum\nolimits_{\nu} \iota_{\nu} \pi_{\nu} \right) = \sum\nolimits_{\mu,\nu} \iota_{\mu} \varphi_{\mu\nu} \pi_{\nu} \,.$$

При этом $\varphi \in \operatorname{End}_A(W)$ если и только если все $\varphi_{\mu\nu} \in \operatorname{Hom}_A(V_{\nu},V_{\mu})$. Таким образом, имеет место изоморфизм векторных пространств

$$\operatorname{End}_{A}(W) \simeq \bigoplus_{\mu,\nu} \operatorname{Hom}_{A}(V_{\nu}, V_{\mu}), \quad \varphi \mapsto (\varphi_{\mu\nu}).$$
 (6-3)

Упражнение 6.11. Убедитесь, что изоморфизм (6-3) переводит композицию эндоморфизмов в произведение матриц.

В ситуации, когда все слагаемые $V_{\nu}=V$ являются копиями одного и того же A-модуля V, изоморфизм (6-3) превращается в изоморфизм \Bbbk -алгебр

$$\operatorname{End}_{A}(V^{\oplus n}) \simeq \operatorname{Mat}_{n}(\operatorname{End}_{A}(V))$$
 (6-4)

Теорема 6.2 (теорема о двойном централизаторе)

Пусть конечномерное векторное пространство V полупросто над ассоциативной подалгеброй $A \subset \operatorname{End}(V)$, и $B = \operatorname{End}_A(V)$. Тогда $\operatorname{End}_B(V) = A$.

Доказательство. Включение $A \subset \operatorname{End}_B(V)$ очевидно из определений. Чтобы установить обратное включение, зафиксируем в V базис e_1, \dots, e_n и покажем, что для каждого B-линейного оператора $\varphi \in \operatorname{End}_B(V)$ найдётся такой оператор $a \in A$, что $\varphi e_i = ae_i$ при всех i — это обеспечит равенство $\varphi = a$. Рассмотрим n-кратную прямую сумму $W = V^{\oplus n}$ и введём на ней структуру модуля над алгебрами A, B и $\operatorname{End}_B(V)$, полагая $f(v_1, \dots, v_n) = (fv_1, \dots, fv_n)$ для каждого оператора f из A, из B или из $\operatorname{End}_B(V)$. Обозначим вектор $(e_1, \dots, e_n) \in W$ через e. Достаточно убедиться, что $\varphi e \in Ae$. Поскольку W полупрост как A-модуль, его A-подмодуль $Ae \subset W$ является образом некоторого A-линейного проектора $\pi : W \twoheadrightarrow Ae$, тождественно действующего на Ae. Если π коммутирует с φ , то $\varphi(e) = \varphi(\pi e) = \pi(\varphi e) \in Ae$, что и требуется. Покажем, что π действительно коммутирует с φ . Для этого запишем эндоморфизм $\pi : V^{\oplus n} \to V^{\oplus n}$ матрицей (π_{ij}) с элементами $\pi_{ij} \in \operatorname{End}(V)$, как это объяснялось выше. Так как π перестановочен с действием A на W, каждая компонента π_{ij} перестановочна с действием A на V, π . π . лежит в π π 0 диагональная матрица, по диагонали которой стоят одинаковые элементы $\varphi \in \operatorname{End}_B(V)$, коммутирует с π .

Следствие 6.5 (теорема Бернсайда)

Если основное поле \Bbbk алгебраически замкнуто, а конечномерное векторное пространство V неприводимо как модуль над множеством операторов $R \subset \operatorname{End}(V)$, то ассоциативная оболочка $\operatorname{Ass}(R) \subset \operatorname{End}_{\Bbbk}(V)$ этих операторов совпадает со всей алгеброй эндоморфизмов $\operatorname{End}_{\Bbbk}(V)$. В частности, все конечномерные неприводимые представления $A \to \operatorname{End}(V)$ любой ассоциативной алгебры A эпиморфны.

Доказательство. По лемме Шура
1
 End $_{\mathsf{Ass}(R)}(V)=\Bbbk$, откуда $\mathsf{End}_{\Bbbk}(V)=\mathsf{Ass}(R)$.

Упражнение 6.12. Докажите, что обратная импликация: если Ass(R) = End(V), то R-модуль V неприводим, имеет место над любым полем \mathbb{k} .

6.3. Изотипные компоненты. Зафиксируем ассоциативную алгебру A. Для произвольных A-модулей U,W на тензорном произведении $\mathrm{Hom}_A(U,W)\otimes U$ имеется естественная структура A-модуля, на котором элементы $a\in A$ действуют по правилу $a(\varphi\otimes u)\stackrel{\mathrm{def}}{=} \varphi\otimes (au)$. При этом каноническая свёртка

$$c_{WU}$$
: $\operatorname{Hom}_{A}(U, W) \otimes U \to W$, $\varphi \otimes u \mapsto \varphi(u)$, (6-5)

является А-линейным гомоморфизмом.

Упражнение 6.13. Убедитесь в этом.

¹См. лем. 6.2 на стр. 66.

Для простого A-модуля U образ канонической свёртки (6-5) обозначается $W_U=\operatorname{im} c_{WU}\subset W$ и называется U-изотипной компонентой модуля W. Он равен сумме всех имеющихся в W неприводимых подмодулей, изоморфных модулю U. Действительно, всякий ненулевой гомоморфизм $\psi: U \to W$ инъективен, и любой вектор вида $\sum \psi_i(u_i) \in W$ с $u_i \in U$ и $\psi_i \in \operatorname{Hom}_A(U,W)$ лежит в сумме подмодулей $\psi_i(U) \subset W$, каждый из которых изоморфен U, и наоборот, если векторы $v_i = \psi_i(u_i)$ лежат в образах A-линейных вложений $\psi_i: U \hookrightarrow W$, то $\sum v_i = c(\sum \psi_i \otimes u_i)$.

Предложение 6.3

Всякий гомоморфизм A-модулей $\varphi:V\to W$ переводит U-изотипную компоненту $V_U\subset V$ в U-изотипную компоненту $W_U\subset W$. В частности, для любого подмодуля $V\subset W$ выполнено равенство $V_U=V\cap W_U$.

Доказательство. Гомоморфизм φ переводит любой лежащий в $\operatorname{im} c_{VU}$ вектор $\sum \psi_i(u_i)$, у которого $\psi_i \in \operatorname{Hom}_A(U,V)$, а $u_i \in U$, в вектор $\sum \varphi \psi_i(u_i) \in \operatorname{im} c_{WU}$, ибо $\varphi \psi_i \in \operatorname{Hom}_A(U,W)$.

Предложение 6.4

Над алгебраически замкнутым полем \Bbbk для любого неприводимого A-модуля U и произвольного A-модуля W каноническая свёртка (6-5) инъективна и, тем самым, задаёт изоморфизм

$$c_{WU}$$
: $\operatorname{Hom}_A(U, W) \otimes U \cong W_U$.

Доказательство. Будучи линейно порождённым простыми подмодулями, изоморфными U, модуль W_U полупрост и раскладывается в прямую сумму $W_U = \bigoplus_i V_i$ простых подмодулей V_i , каждый из которых изоморфен U. Зафиксируем для каждого i вложение $\psi_i : U \hookrightarrow W$, изоморфно отображающее U на подмодуль $V_i \subset W$. По сл. 6.2 пространство $\operatorname{Hom}_A(U,W) = \operatorname{Hom}_A(U,W_U) = \bigoplus_i \operatorname{Hom}_A(U,V_i)$ является прямой суммой одномерных пространств, порождённых вложениями ψ_i . Поэтому каждый элемент модуля $\operatorname{Hom}_A(U,W) \otimes U$ однозначно записывается в виде $\sum \psi_i \otimes u_i$ с $u_i \in U$. Если $c_{WU}(\sum \psi_i \otimes u_i) = \sum \psi_i(u_i) = 0$, то каждое слагаемое $\psi_i(u_i) \in V_i$ равно нулю в отдельности, ибо сумма $W_U = \bigoplus_i V_i$ прямая. Так как все ψ_i инъективны, все $u_i = 0$. \square

Предложение 6.5 (изотипное разложение)

Если A-модуль W полупрост, то в любом его разложении в прямую сумму простых подмодулей сумма тех слагаемых, что изоморфны U, совпадает с U-изотипной компонентой $W_U \subset W$. В частности, она не зависит от выбора разложения W в прямую сумму простых подмодулей, и если зафиксировать в каждом классе изоморфных простых модулей какой-нибудь представитель U, то всякий полупростой модуль будет иметь каноническое изотипное разложение

$$W = \bigoplus_{U} W_{U}, \qquad (6-6)$$

где суммирование происходит по всем неизоморфным друг другу неприводимым A-модулям U, для которых $\operatorname{Hom}_A(U,W) \neq 0$.

Доказательство. Пусть $W=\bigoplus_i W_i$, где все W_i просты. Так как $\operatorname{Hom}_A(U,W)=\bigoplus_i \operatorname{Hom}_A(U,W_i)$ и $\operatorname{Hom}_A(U,W_j)=0$ для всех $W_j\not\simeq U$, образ канонической свёртки (6-5) лежит в сумме тех подмодулей W_i , что изоморфны U.

Определение 6.1

Для простого модуля U и полупростого модуля W количество изоморфных U слагаемых в любом разложении модуля W в прямую сумму неприводимых подмодулей, обозначается

$$m_{IJ}(W) \stackrel{\text{def}}{=} \dim W_{IJ} / \dim U,$$
 (6-7)

и называется кратностью простого модуля U в полупростом модуле W.

Следствие 6.6

Над алгебраически замкнутым полем для всех конечномерных полупростых A-модулей V, W выполняются равенства $\dim \operatorname{Hom}_A(V,W) = \sum_U m_U(V) \, m_U(W) = \dim \operatorname{Hom}_A(W,V)$, где суммирование происходит по всем представителям U различных классов изоморфных простых модулей.

Доказательство. Пусть $V = \bigoplus_i V_i$ и $W = \bigoplus_j W_j$, где все V_i и W_j неприводимы. По лемме Шура пространства $\operatorname{Hom}_A(V_i,W_j)$ нулевые при $V_i \not\simeq W_j$ и одномерные при $V_i \simeq W_j$. Поэтому размерность пространства $\operatorname{Hom}_A(V,W) = \bigoplus_{ij} \operatorname{Hom}_A(V_i,W_j)$ равна $\sum_U m_U(U) m_U(W)$, и то же самое верно для $\operatorname{Hom}_A(W,V)$.

Следствие 6.7

Над алгебраически замкнутым полем для любого конечномерного A-модуля W и каждого простого A-модуля W выполняется равенство $m_U(W) = \dim \operatorname{Hom}_A(U,W) = \dim \operatorname{Hom}_A(W,U)$.

6.4. Представления групп. Действие группы G линейными преобразованиями на векторном пространстве V над полем \mathbbm{k} или, что то же самое, гомоморфизм групп $\varrho: G \to \operatorname{GL}(V)$, называется линейным представлением группы G в векторном пространстве V. Пространство V называется в этом случае G-модулем. Прямая сумма, тензорное произведение, а также внешние и симметрические степени G-модулей U,W канонически наделяются такими структурами G-модулей, что операторы $g \in G$ действуют по правилам

$$\begin{split} g(u \dotplus w) &\stackrel{\text{def}}{=} (gu) \dotplus (gw) \\ g(u_1 \land u_2) &\stackrel{\text{def}}{=} (gu_1) \land (gu_2) \\ \end{split} \qquad \qquad \begin{split} g(u \otimes w) &\stackrel{\text{def}}{=} (fu) \otimes (gw) \\ g(u_1 \cdot u_2) &\stackrel{\text{def}}{=} (gu_1) \cdot (gu_2) \,. \end{split}$$

Для любого G-подмодуля $V\subset W$ фактор пространство W/V также является G-модулем с действием $g[v]\stackrel{\mathrm{def}}{=} [gv]$.

Упражнение 6.14. Убедитесь, что все эти формулы корректно задают гомоморфизмы группы G в $GL(U \oplus W)$, $GL(U \otimes W)$, $GL(\Lambda(U))$, GL(S(U)) и GL(W/V) соответственно.

Для каждого представления $\varrho: G \to \mathrm{GL}(V)$ двойственное представление $\varrho^*: G \to \mathrm{GL}(V^*)$ определяется таким образом, чтобы свёртка векторов с ковекторами была G-инвариантна, т. е.

$$\forall g \in G, \ \forall \xi \in V^*, \ \forall w \in V \quad \langle \varrho^*(g)\xi, \varrho(g)w \rangle = \langle \xi, w \rangle. \tag{6-8}$$

Так как каждый оператор $\varrho(g)$ обратим, равенство (6-8) равносильно равенству

$$\langle \varrho^*(g)\xi, v \rangle = \langle \xi, \varrho(g^{-1})v \rangle,$$

которое означает, что оператор $\varrho^*(g) = \varrho(g^{-1})^*$ двойствен оператору $\varrho(g)^{-1}$ и переводит ковектор $\xi \in V^*$ в композицию $\xi \circ g^{-1} : v \mapsto \xi(g^{-1}v)$. В частности, матрица оператора $\varrho^*(g)$ в двойственном базисе получается из матрицы $\varrho(g)$ обращением и транспонированием.

Упражнение 6.15. Убедитесь, что ϱ^* : $G \to GL(V^*)$ является гомоморфизмом групп.

Для любых двух представлений $\varrho: G \to \operatorname{GL}(U)$ и $\lambda: G \to \operatorname{GL}(W)$ представление $\varrho^* \otimes \lambda$ задаёт действие группы G на пространстве $U^* \otimes V \simeq \operatorname{Hom}(U,V)$ всех линейных операторов $\varphi: U \to V$ по правилу

$$g: \varphi \mapsto g\varphi g^{-1}$$
. (6-9)

Упражнение 6.16. Убедитесь в этом.

Подпространство неподвижных векторов представления (6-9) обозначается

$$\operatorname{Hom}_{G}(U,V) \stackrel{\mathrm{def}}{=} \{ \varphi : U \to V \mid \forall g \in G \ g\varphi = \varphi g \}$$

и называется пространством G-инвариантных операторов¹.

Пример 6.3 (проектор на инварианты)

Пусть имеется линейное представление группы G в векторном пространстве V. Векторы, неподвижные относительно всех преобразований из G, образуют в V подмодуль G-инвариантов $V^G \stackrel{\mathrm{def}}{=} \{v \in V \mid gv = v \ \forall g \in G \ \}$, на котором группа G действует тривиально. Если группа G конечна и её порядок не делится на характеристику поля $\mathbb R$, то любое линейное представление V группы G допускает G-линейную проекцию на подмодуль G-инвариантов, которая сопоставляет вектору $v \in V$ центр тяжести

$$v^{\natural} \stackrel{\text{def}}{=} \frac{1}{|G|} \sum_{g \in G} gv \tag{6-10}$$

его G-орбиты 2 в аффинном пространстве $\mathbb{A}(V)$.

Упражнение 6.17. Убедитесь прямым вычислением, что при $\operatorname{char}(\Bbbk) \nmid |G|$ оператор $v \mapsto v^{\natural}$ перестановочен с действием G и линейно проектирует V на V^G .

Теорема 6.3

Каждое линейное представление V конечной группы G над полем, характеристика которого не делит |G|, вполне приводимо³.

Доказательство. Покажем, что любой G-подмодуль $U \subset V$ является образом G-линейного проектора⁴. Группа G действует на пространстве всех \mathbbm{k} -линейных отображений $\mathrm{Hom}(V,U)$ по правилу $g: \varphi \mapsto g\varphi g^{-1}$. Достаточно убедиться в том, что проекция на инварианты этого действия

$$\operatorname{Hom}(V,U) \twoheadrightarrow \operatorname{Hom}_G(V,U)\,, \quad \varphi \mapsto \varphi^{\natural} = |G|^{-1} \sum\nolimits_{g \in G} g \varphi g^{-1}$$

переводит проекторы V на U в проекторы V на U. Пусть $\pi:V \twoheadrightarrow U$ — любой \mathbbm{k} -линейный проектор. Тогда іт $\pi^{\natural} \subset U$, так как $g\pi g^{-1}U \subset U$ для всех $g \in G$, а любой вектор $u \in U$ неподвижен относительно π^{\natural} , ибо $g^{-1}U \subset U$ и $\pi|_U = \mathrm{Id}_U$ влекут $g\pi g^{-1}u = gg^{-1}u = u$.

 $^{^{1}}$ А также сплетающих операторов, G-линейных операторов или G-гомоморфизмов.

²Если |*G*| \vdots char(\Bbbk), то сумма весов элементов орбиты нулевая, и центр тяжести не определён.

 $^{^{3}}$ Т. е. является прямой суммой неприводимых представлений или, что то же самое, полупростым G-модулем.

⁴См. предл. 6.2 на стр. 66.

Лемма 6.3

Пусть |G| = n и основное поле \mathbbm{k} имеет char $\mathbbm{k} \nmid n$ и содержит все 1 n корней n-й степени из единицы. Тогда все элементы группы G действуют в любом её конечномерном линейном представлении диагонализуемыми операторами.

Доказательство. Каждый оператор из группы G аннулируются многочленом t^n-1 , который в силу сделанных предположений не имеет кратных корней и полностью раскладывается в $\Bbbk[t]$ на линейные множители. По упр. 6.4 такой оператор диагонализуем.

Следствие 6.8

Пусть V — конечномерное векторное пространство над полем \mathbbm{k} характеристики char $\mathbbm{k} \nmid n$, содержащем все n корней n-й степени из единицы, и $G \subset GL(V)$ — конечная группа. Все операторы из G одновременно диагонализуются в одном базисе если и только если группа G абелева.

Доказательство. Так как все диагональные матрицы коммутируют друг с другом, любая группа одновременно диагонализованных операторов абелева. Наоборот, в силу предл. 6.1 на стр. 64 любое множество коммутирующих диагонализуемых операторов можно диагонализовать одновременно.

6.5. Пример: представления конечных абелевых групп. Из сл. 6.8 вытекает, что каждое конечномерное линейное представление конечной абелевой группы G над алгебраически замкнутым полем \mathbbm{k} характеристики $\mathrm{char}(\mathbbm{k}) \nmid |G|$ является прямой суммой одномерных представлений. Поскольку на одномерном пространстве V все линейные операторы действуют скалярно, каждый оператор $g \in G$ действуют на векторы $v \in V$ по правилу

$$gv = \chi(g)v$$
, где $\chi: G \to \mathbb{k}^*$ — мультипликативный гомоморфизм, (6-11)

сопоставляющий элементу $g \in G$ ту константу, на которую оператор g умножает все векторы из V. Гомоморфизмы абелевой группы G в мультипликативную группу поля $\mathbb R$ называются мультипликативными характерами группы G. Одномерный G-модуль, на котором G действует по формуле (6-11) обозначается через V_{γ} .

Упражнение 6.18. Убедитесь, что $V_\chi \simeq V_\psi$ как G-модули если и только если $\chi = \psi$ как гомоморфизмы из G в \Bbbk^* .

Поскольку $\chi(g)^{|G|}=\chi\left(g^{|G|}\right)=\chi(e)=1$ для всех $g\in G$, множество значений любого мультипликативного характера $\chi:G\to \mathbb{k}^\times$ лежит в группе $\mu_{|G|}(\mathbb{k})\subset \mathbb{k}^*$ корней |G|-той степени из 1 в поле \mathbb{k} . Множество всех мультипликативных характеров $\chi:G\to \mathbb{k}^\times$ является мультипликативной абелевой подгруппой в алгебре \mathbb{k}^G всех функций на группе G со значениями в поле \mathbb{k} . Эта подгруппа обозначается G^\wedge и называется двойственной по Понтрягину к группе G. Единицей в G^\wedge служит тривиальный характер $\chi_1\equiv 1$, отвечающий тривиальному представлению. Обратный к $\chi\in G^\wedge$ характер χ^{-1} действует по правилу $\chi^{-1}(g)\stackrel{\mathrm{def}}{=}\chi(g)^{-1}=\chi(g^{-1})$.

Упражнение 6.19. Проверьте, что характер тензорного произведения одномерных представлений абелевой группы равен произведению их характеров, а характер двойственного представления обратен характеру исходного.

 $^{^{1}}$ Если char $\mathbb{k} \nmid n$, то у многочлена $t^{m}-1$ нет кратных корней, поскольку его производная $mt^{m-1} \neq 0$ не имеет с ним общих корней.

 $^{^{2}}$ См. предыдущую сноску.

6.5.1. Представление в пространстве функций на группе. Любая группа G действует на пространстве \mathbb{k}^G функций $G \to \mathbb{k}$ по правилу $g: f(x) \mapsto f(g^{-1}x)$.

Упражнение 6.20. Убедитесь, что это правило задаёт гомоморфизм любой 1 группы G в группу линейных автоморфизмов пространства \mathbb{k}^G .

Если группа G абелева, то для каждого характера $\chi \in G^{\wedge}$ изотипная компонента \mathbbm{k}_{χ}^{G} представления группы G в пространстве \mathbbm{k}^{G} состоит из всех таких функций $f: G \to \mathbbm{k}$, что

$$f(g^{-1}x) = \chi(g)f(x)$$
 для всех $x, g \in G$. (6-12)

Полагая в этом равенстве x=e, получаем $f(g^{-1})=\chi(g)f(e)$ для всех $g\in G$ и, переобозначая g^{-1} через h, заключаем, что $f(h)=f(e)\chi(h^{-1})=f(e)\chi^{-1}(h)$ для всех $h\in G$. Иными словами, каждая функция (6-12) пропорциональна характеру χ^{-1} , обратному к χ в группе G^{\wedge} . Мы заключаем, что изотипное разложение пространства функций на группе G имеет вид

$$\Bbbk^G = \bigoplus\nolimits_{\chi \in G^{\wedge}} \Bbbk \, \chi \, ,$$

т. е. каждое из неприводимых представлений группы G содержится в представлении группы G на пространстве функций $G \to \mathbb{k}$ с кратностью один. В частности, $|G^{\wedge}| = |G|$ и характеры образуют базис пространства функций на группе G со значениями в поле \mathbb{k} .

Упражнение 6.21. Для произвольной группы G покажите, что любое множество различных гомоморфизмов $G \to \mathbb{k}^*$ линейно независимо в пространстве \mathbb{k}^G .

Теорема 6.4 (двойственность Понтрягина)

Для каждого $g\in G$ функция вычисления $\mathrm{ev}_g\colon G^\wedge\to \Bbbk, \chi\mapsto \chi(g)$, является характером группы G^\wedge , а отображение $G\to G^{\wedge\wedge}, g\mapsto \mathrm{ev}_g$ является изоморфизмом групп.

Доказательство. Первое утверждение проверяется выкладкой

$$\operatorname{ev}_{a}(\chi_{1}\chi_{2}) = \chi_{1}(g) \chi_{2}(g) = \operatorname{ev}_{a}(\chi_{1}) \cdot \operatorname{ev}_{a}(\chi_{2}).$$

Равенства $\operatorname{ev}_{g_1g_2}(\chi)=\chi(g_1g_2)=\chi(g_1)\cdot\chi(g_2)=\operatorname{ev}_{g_1}(\chi)$ $\operatorname{ev}_{g_2}(\chi)$ показывают, что отображение $g\mapsto\operatorname{ev}_g$ является гомоморфизмом групп. Если элемент $g\in G$ лежит в его ядре, то $\chi(g)=1$ для всех $\chi\in G^\wedge$ и g тривиально действует в любом конечномерном представлении группы G. Поэтому $f(g^{-1}x)=f(x)$ для любой функции $f:G\to \Bbbk$, что возможно только при g=e. Поскольку $|G^{\wedge\wedge}|=|G|$, инъективность гомоморфизма $g\mapsto\operatorname{ev}_g$ влечёт его биективность.

6.5.2. Преобразование Фурье. На самом деле двойственность Понтрягина имеет место для всех локально компактных топологических абелевых групп, и конечные абелевы группы являются лишь первыми, простейшими примерами таких групп. В качестве двойственной к произвольной локально компактной топологической абелевой группе G берётся группа G непрерывных гомоморфизмов $G \to \mathbb{C}^*$. Например, мультипликативная группа U(1) комплексных чисел единичной длины двойственна по Понтрягину аддитивной группе целых чисел \mathbb{Z} : каждому $n \in \mathbb{Z}$ отвечает характер U(1) $\to \mathbb{C}^*$, $z \mapsto z^n$, а каждому $e^{2\pi i t} \in U(1)$ — характер $\mathbb{Z} \to \mathbb{C}^*$, $m \mapsto e^{2\pi i m t}$. Аддитивная группа \mathbb{R} вещественных чисел двойственна сама себе: каждому $\alpha \in \mathbb{R}$ отвечает характер $\mathbb{R} \to \mathbb{C}^*$, $x \mapsto e^{2\pi i \alpha x}$.

¹В том числе неабелевой.

 $^{^{2}}$ Не обязательно абелевой.

Каждая достаточно регулярная функция $f:G\to\mathbb{C}$ на локально компактной топологической абелевой группе G имеет единственное «линейное выражение» через характеры. Для группы U(1) это выражение представляет собою разложение функции $f:\mathrm{U}(1)\to\mathbb{C}$ в бесконечный ряд Фурье

$$f(z) = \sum_{m \in \mathbb{Z}} f^{\wedge}(m) \, z^m$$

с коэффициентами $f^{\wedge}(m) \in \mathbb{C}$, которые можно воспринимать как функцию $f^{\wedge}: \mathbb{Z} \to \mathbb{C}$ на двойственной по Понтрягину группе. Для аддитивной группы \mathbb{R} «линейное выражение» через характеры означает представление функции $f: \mathbb{R} \to \mathbb{C}$ в виде интеграла Фурье

$$f(x) = \int_{-\infty}^{+\infty} f^{\wedge}(\alpha) e^{2\pi i \alpha x} d\alpha,$$

в котором «семейство коэффициентов» $f^{\wedge}(\alpha)$ представляет собою функцию $f^{\wedge}: \mathbb{R} \to \mathbb{C}$ на двойственной по Понтрягину группе. Функции $f: G \to \mathbb{C}$ и $f^{\wedge}: G^{\wedge} \to \mathbb{C}$ однозначно восстанавливаются друг по другу по простым явным формулам, и с учётом двойственности Понтрягина $f^{\wedge \wedge} = f$. Инволюция $f \leftrightarrow f^{\wedge}$ называется преобразованием Фурье.

Ответы и указания к некоторым упражнениям

- Упр. 6.1. Для всех $w \in W$ и $u \in U$ вектор f(w + u) = fw + fu лежит в том же классе, что и fw, поскольку $fu \in U$.
- Упр. 6.3. При $m \geqslant 2$ классы многочленов, делящихся на p, составляют ненулевой собственный подмодуль в $\mathbb{k}[t]/(p^m)$. При m=1 фактор кольцо $\mathbb{k}[t]/(p)$ является полем, т. е. для любого ненулевого класса $[g] \in \mathbb{k}[t]/(p)$ существует такой многочлен $h \in \mathbb{k}[t]$, что $h \cdot [g] = [1]$. Поэтому любой класс $[f] \in \mathbb{k}[t]/(p)$ получается из класса [g] применением оператора $h(t) \cdot f(t)$.
- Упр. 6.4. Диагональный оператор с собственными числами $\lambda_1,\dots,\lambda_n$ аннулируется многочленом $\prod (t-\lambda_i)$. Наоборот, поскольку многочлен, аннулирующий модуль (6-2), делится все многочлены p^{ν} , стоящие в знаменателях разложения из форм. (6-2) на стр. 63, все эти многочлены p имеют вид $t-\lambda$ и входят в разложение (6-2) только в первых степенях, что и означает диагонализуемость оператора умножения на t в прямой сумме (6-2).
- Упр. 6.5. Верхней гранью цепи из \mathcal{S}' является объединение всех модулей цепи.
- Упр. 6.6. Пусть w = u + v. Тогда fw = fu + fv и $fv \in V$. Поэтому $\pi(fw) = fu = f\pi(w)$.
- Упр. 6.7. Пусть $\pi(S) \neq 0$ для простого подмодуля $U \subset W$. Поскольку $f\pi(s) = \pi(fs) \in \pi(S)$ для всех $f \in R$ и $s \in S$, подпространство $\pi(S)$ является R-подмодулем. Для любого R-подмодуля $M \subset \pi(S)$ пересечение

$$S \cap \pi^{-1}(M) = \{ s \in S \mid \pi(s) \in M \}$$

является R-подмодулем в S: если $\pi(s) \in M$, то $\pi(fs) = f\pi(s) \in M$ для всех $f \in R$ и $s \in S$. Так как в S нет ненулевых собственных подмодулей, их нет и в $\pi(S)$.

- Упр. 6.8. Верхней гранью цепи из S является объединение или, что то же самое, прямая сумма всех модулей цепи.
- Упр. 6.9. (а) и (б) проверяются непосредственно; (в) проверяется так: если $\varphi(v)=0$, то $\varphi(fv)=f\varphi(v)=f(0)=0$ для всех $f\in R$, а если $v=\varphi(u)$, то $fv=f\varphi(u)=\varphi(fu)$ для всех $g\in R$; (г) фактически было доказано в упр. 6.7.
- Упр. 6.11. $\varphi\psi = \sum_{\alpha,\beta} \iota_{\alpha} \varphi_{\alpha\beta} \pi_{\beta} \circ \sum_{\mu,\nu} \iota_{\mu} \varphi_{\mu\nu} \pi_{\nu} = \sum_{\alpha,\nu} \iota_{\alpha} p_{\alpha\nu} \pi_{\nu}$, где $p_{\alpha\nu} = \sum_{\eta} \varphi_{\alpha\eta} \psi_{\eta\nu}$, так как

$$\pi_{eta}\iota_{\mu}=\left\{egin{array}{ll} \mathrm{Id}_{V_{\eta}} & \mathrm{если}\ eta=\mu=\eta \\ 0 & \mathrm{в}\ \mathrm{остальных}\ \mathrm{случаяx}. \end{array}
ight.$$

- Упр. 6.12. Из равенства $\mathrm{Ass}(R)=\mathrm{End}(V)$ вытекает, что A_R действует транзитивно на ненулевых векторах пространства V, т. е. A_R -орбита любого ненулевого вектора совпадает со всем пространством V.
- Упр. 6.16. Поскольку правило $g: \varphi \mapsto g\varphi g^{-1}$ линейно по φ , его достаточно проверять только на разложимых $\varphi = \xi \otimes w$ с $\xi \in U^*$, $w \in W$. По определению

$$\varrho^* \otimes \lambda(g) : \xi \otimes w \mapsto \varrho(g^{-1})^* \xi \otimes \lambda(g) w = (\xi \circ g^{-1}) \otimes (gw).$$

Этот оператор переводит $u \in U$ в $\xi(g^{-1}u) \cdot gw = g\left(\xi(g^{-1}u) \cdot w\right) = g \circ (\xi \otimes w) \circ g^{-1}(u)$.

Упр. 6.21. Пусть множество различных гомоморфизмов ψ_{ν} : $G \to \mathbb{k}^*$ линейно зависимо. Рассмотрим линейную зависимость $\lambda_1 \psi_1 + \ldots + \lambda_n \psi_n = 0$ с минимально возможным числом слагаемых

и какой-нибудь элемент $h\in G$, на котором $\psi_1(h)\neq \psi_2(h)$. Поскольку для каждого $g\in G$ выполняется равенство $\sum_i \lambda_i \psi_i(h) \psi_i(g) = \sum_i \lambda_i \psi_i(hg) = 0$, имеется ещё одно линейное соотношение между функциями ψ_i с коэффициентами $\lambda_i \, \psi_i(h)$. Деля все коэффициенты на $\psi_1(h)$ и вычитая из первой зависимости, получаем линейную зависимость между ψ_i с нулевым коэффициентом при ψ_1 и ненулевым коэффициентом при ψ_2 . Она нетривиальна и содержит меньше слагаемых. Противоречие.