Rational functions and maps

AG61 (rational functions). Write $\Bbbk(X)$ for the algebra of rational functions on an affine algebraic variety *X*, that is, the algebra of fractions p/q, where $p, q \in \Bbbk[X]$ and q is not a zero divisor. For $f \in \Bbbk(X)$, the subset

$$Dom(f) \stackrel{\text{def}}{=} \{x \in X \mid \exists p, q \in \Bbbk[X] : q(x) \neq 0 \& f = p/q\} \subset X$$

is called the *domain* of *f*. Show that:

a) for $x \in \text{Dom}(f)$, the value $f(x) = p(x)/q(x) \in \mathbb{k}$ does not depend on a choice of fractional representation f = p/q with $p, q \in \mathbb{k}[X]$ and $q(x) \neq 0$

b) Dom(f) is open and dense in *X*

c) the map f: Dom $(f) \rightarrow \mathbb{k}$, $x \mapsto f(x)$, is continuous in Zariski topology.

AG6 \diamond **2.** Find Dom(*f*) for the following rational functions:

a) f = (1 - y)/x on $V(x^2 + y^2 - 1) \subset \mathbb{A}^2$

b)
$$f = y/x$$
 on $V(x^3 + x^2 - y^2) \subset \mathbb{A}^2$

- c) $f = x_1 / x_3$ on $X = V(x_1 x_4 x_2 x_3) \subset \mathbb{A}^4$.
- **AG63.** Let $X = X_1 \cup X_2 \cup \ldots \cup X_m$ be the irreducible decomposition of an affine algebraic variety *X*. Write $f|_{X_i}$ for the image of a rational function *f* on *X* under the homomorphism $\Bbbk(X) \to \Bbbk(X_i)$ that extends the pullback homomorphism $\varphi_i^* : \Bbbk[X] \to \Bbbk[X_i]$ of the closed immersion $\varphi_i : X_i \hookrightarrow X$. Prove that the map

$$\Bbbk(X) \xrightarrow{\sim} \Bbbk(X_1) \times \Bbbk(X_2) \times \cdots \times \Bbbk(X_m), \ f \mapsto \left(f|_{X_1}, f|_{X_2}, \dots, f|_{X_m}\right),$$

is an isomorphism of k-algebras.

AG64. Prove that $\mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n \setminus 0) = \mathbb{k}[\mathbb{A}^n]$ for $n \ge 2$.

- **AG6** \diamond **5**^{*}. Do there exist an affine algebraic variety *X* ⊂ \mathbb{A}^n and an open subset *U* ⊂ *X* such that the algebra $\mathcal{O}_X(U)$ is not finitely generated?
- **AG66** (Cremona's quadratic involution). Show that the assignment $(t_0 : t_1 : t_2) \mapsto (t_0^{-1} : t_1^{-1} : t_2^{-1})$ can be extended to a rational map $\varkappa : \mathbb{P}_2 \to \mathbb{P}_2$ defined everywhere except three points. Find these points and describe the action of \varkappa on the three lines joining these points. Describe the image of \varkappa .
- AG6 \diamond 7 (the graph of a rational map). Let $\psi : X \to Y$ be a rational map defined on some open dense subset $U \subset X$. The Zariski closure of the set $\{(x, \psi(x)) \in X \times Y \mid x \in U\}$ is called the *graph* of ψ and denoted by

$$\Gamma_{\psi} \subset X \times Y \,.$$

- **a)** Show that the graph of canonical projection $\mathbb{A}(V) \to \mathbb{P}(V)$ sending a nonzero vector $v \in V$ to the dimension-1 subspace $\mathbb{k} \cdot v \subset V$ coincides with the blowup of $\mathbb{A}(V)$ at the origin.
- **b)** Describe the graph $\Gamma_{\varkappa} \subset \mathbb{P}_2 \times \mathbb{P}_2$ of the Cremona quadratic involution from prb. AG6 \diamond 6 and the fibers of two projections of this graph to \mathbb{P}_2 's.
- **AG68.** Prove that the variety obtained from \mathbb{P}_2 by blowing up two different points on \mathbb{P}_2 is isomorphic to the blowup of $\mathbb{P}_1 \times \mathbb{P}_1$ at one point.

.

No	date	verified by	signature
1a			
b			
C			
2a			
b			
c			
3			
4			
5			
6			
7a			
b			
8			