Commutative algebra and affine algebraic geometry

- **AG5** •1. Let a polynomial f vanish along a hypersurface $V(g) \subset \mathbb{A}^n$ over an algebraically closed field. Prove that every irreducible factor of g divides f.
- **AG5**◇2. For the ideal $J = (xy, yz, zx) \subset \mathbb{C}[x, y, z]$, describe $V(J) \subset \mathbb{A}^3$ and $I(V(J)) \subset \mathbb{C}[x, y, z]$. Is it possible to describe the same variety by two polynomial equations?
- **AG53.** Find $f \in I(V(J)) \setminus J$ for the ideal $J = (x^2 + y^2 1, y 1) \subset \mathbb{C}[x, y]$.
- **AG54.** Describe $V(J) \subset \mathbb{A}^3$ and $I(V(J)) \subset \mathbb{C}[x, y, z]$ for the ideals **a)** J = (xy, (x - y)z) **b)** $J = (xy + yz + zx, x^2 + y^2 + z^2)$.
- **AG55.** Show that the ideal $I(C_3) \subset \mathbb{C}[x_0, x_1, x_2, x_3]$ generated by all homogeneous polynomials vanishing identically on the Veronese cubic $C_3 \subset \mathbb{P}_3$

a) is generated by three quadratic polynomials \mathbf{b}^*) can not be generated by two polynomials.

- **AG56.** For an arbitrary field k and two ideals $I, J \subset k[x_1, x_2, ..., x_n]$, is it true or not that **a**) $\sqrt{IJ} = \sqrt{I \cap J}$ **b**) $\sqrt{IJ} = \sqrt{I}\sqrt{J}$ **c**) $\left(I = \sqrt{I} \& J = \sqrt{J}\right) \Rightarrow IJ = \sqrt{IJ}$?
- **AG5 ◊7 .** Let $B \supset A$ be an extension of commutative rings such that B is finitely generated as A-module. Prove that $mB \neq B$ for all maximal ideals $m \subset A$.

AG5 +8 (Zariski topology).

- a) Let *A* be a finitely generated reduced k-algebra, $X = \operatorname{Spec}_{m} A$ the set of its maximal ideals. Verify that the sets $V(I) = \{ x \in X \mid f(x) = 0 \quad \forall f \in I \}$, where $I \subset A$ is an ideal, satisfy the axioms for closed sets of a topology. That is, the sets $X, \emptyset, V(I) \cup V(J)$ for any two ideals $I, J \subset A$, and $\bigcap_{I \in M} V(I)$ for any set *M* of ideals in *A*, can be written as V(K) for appropriate ideal $K \subset A$.
- **b)** The same question for an arbitrary commutative ring *A*, the set X = Spec A of all prime ideals¹ $\mathfrak{p} \subset A$, and the subsets $V(I) = \{\mathfrak{p} \in X \mid I \subset \mathfrak{p}\}$, where $I \subset A$ is an ideal.
- **AG5 9.** Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be affine algebraic varieties. Assuming that equations for *X*, *Y* are known, write explicit equations for $X \times Y \subset \mathbb{A}^{n+m}$ and show that $X \times Y$ is irreducible for irreducible *X*, *Y*.
- **AG510.** Let a \Bbbk -algebra *A* be of finite dimension as a vector space over \Bbbk . Prove that Spec_m(*A*) is finite.
- **AG511.** Give an example of regular non-finite² morphism of affine algebraic varieties $f : X \to Y$ such that every non-empty fiber of f is finite.
- **AG512.** For a given affine hypersurface $S = V(f) \subset \mathbb{A}^n$ over an algebraically closed field, describe all vectors of the form $v = (1, v_1, v_2, ..., v_n)$ such that the parallel projection of *S* along *v* to the hyperplane $x_1 = 0$ is **a**) dominant³ **b**) surjective **c**) finite.
- **AG513.** For an affine hypersurface $S \subset \mathbb{A}^n$ over an algebraically closed field, prove that
 - **a)** the central projection of *S* from a point $p \notin S$ onto a hyperplane $H \not\supseteq p$ is dominant
 - **b)** there exists a finite surjective parallel projection of *S* onto a hyperplane.
- **AG5** \diamond **14**^{*}. For a normal⁴ commutative ring *A*, prove that *A*[*x*] is normal as well.

¹A proper ideal $\mathfrak{p} \subset A$ is called to be *prime* if the quotient ring A/\mathfrak{p} has no zero divisors.

²A regular morphism of affine varieties $f : X \to Y$ is called to be *finite* if $\Bbbk[X]$ is finitely generated as a $f^*(\Bbbk[Y])$ -module.

³A morphism $f : X \to Y$ is called *dominant* if $f(X_i)$ is dense in Y for every irreducible component $X_i \subset X$.

⁴That is, having no zero divisors and integrally closed within its field of fractions.

No	date	verified by	signature
1			
2			
3			
4a			
b			
5a			
b			ļ
6a			
b c			
7		 T	
/ 8a		 T	
b			
9			
10			
11			
12a			
b			
C			ļ
13a			
b			
14			<u> </u>