Tensors and Plücker-Segre-Veronese interaction

AG31. Are the following decompositions valid for any vector space *V* over a field of zero characteristic: **a**) $V^{\otimes 2} \simeq \text{Sym}^2 V \oplus \text{Alt}^2 V$ **b**) $V^{\otimes 3} \simeq \text{Sym}^3 V \oplus \text{Alt}^3 V$?

If yes, prove it. If no, give an explicit example of a tensor that can not be decomposed in this way.

AG32 (spinor decomposition). Let V = End(U), where dim U = 2, char $\Bbbk \neq 2$. Show that

$$V^{\otimes 2} \simeq \underbrace{\left(\left(S^2 U^* \otimes S^2 U \right) \oplus \left(\Lambda^2 U^* \otimes \Lambda^2 U \right) \right)}_{\simeq \operatorname{Sym}^2 V} \bigoplus \underbrace{\left(\left(S^2 U^* \otimes \Lambda^2 U \right) \oplus \left(\Lambda^2 U^* \otimes S^2 U \right) \right)}_{\simeq \operatorname{Alt}^2 V}.$$

HINT. Use the decompositions $V = U^* \otimes U$ and $U^{\otimes 2} \simeq S^2 U \oplus \Lambda^2 U$.

AG3 3. For finite dimensional vector spaces U, V construct the canonical linear isomorphisms

 $\operatorname{Hom}(U \otimes \operatorname{Hom}(U, W), W) \simeq \operatorname{End}(\operatorname{Hom}(U, W)) \simeq \operatorname{Hom}(U, W \otimes \operatorname{Hom}(U, W)^*).$

Write $c : U \otimes \text{Hom}(U, W) \to W$ for the linear map $u \otimes f \mapsto f(u)$ and $\tilde{c} : U \to \text{Hom}(U, W)^* \otimes W$ for the linear map corresponding to c under the above isomorphism. May \tilde{c} be non-injective? Describe the linear endomorphism of Hom(U, W) corresponding to c and \tilde{c} .

HINT. Use the isomorphism $\text{Hom}(A, B) \simeq A^* \otimes B$, and that the decomposable tensors linearly span $A^* \otimes B$.

AG34. Let $G = V(g) \subset \mathbb{P}_3 = \mathbb{P}(V)$ be a smooth quadric. Write \tilde{g} for the polarization of quadratic form g and $\Lambda^2 \tilde{g}$ for the bilinear form on $\Lambda^2 V$ defined by prescription

$$\Lambda^2 \widetilde{g}(v_1 \wedge v_2, w_1 \wedge w_2) \stackrel{\text{def}}{=} \det \begin{pmatrix} \widetilde{g}(v_1, w_1) & \widetilde{g}(v_1, w_2) \\ \widetilde{g}(v_2, w_1) & \widetilde{g}(v_2, w_2) \end{pmatrix}.$$

- a) Verify that $\Lambda^2 \tilde{g}$ is symmetric and non degenerate. Write its Gram matrix in the basis $e_i \wedge e_j$ build from an orthonormal basis e_1 , e_2 , e_3 , e_4 for g in V.
- **b)** Prove that the quadric $V(\Lambda^2 g) \subset \mathbb{P}_5 = \mathbb{P}(\Lambda^2 V)$ intersects the Plücker quadric $Gr(2, V) \subset \mathbb{P}_5$ along the set of all tangent lines to $G \subset \mathbb{P}_3$.
- **AG3**◇**5.** Consider the previous prb. AG3◇4 for the space V = End(U) from prb. AG3◇2 and g = det, that is, for the Segre quadric $G = V(\text{det}) \subset \mathbb{P}(V)$. Show that two families of ruling lines on *G* are mapped by the Plücker embedding Gr(2, V) $\hookrightarrow \mathbb{P}(\Lambda^2 V)$ to the pair of smooth plane conics cut out the Plücker quadric by the complementary planes $\Lambda = \mathbb{P}(\Lambda^2 U^* \otimes S^2 U)$, $\Lambda^{\times} = \mathbb{P}(S^2 U^* \otimes \Lambda^2 U)$ embedded into $\mathbb{P}(\Lambda^2 \text{End}(U))$ via prb. AG3◇2. Verify that the both conics are embedded into these planes by the Veronese maps, i.e., the following diagram¹ is commutative:

AG3◇**6.** Write $S \subset \mathbb{P}_3$ for the surface ruled by the tangent lines to the Veronese cubic. Write an explicit equation for *S*, find its degree and all the singular points on *S*.

¹The Plücker embedding is dashed, because it sends lines to points.

N₂	date	verified by	signature
1a			
b			
2			
3			
4a			
b			
5			
6			