Projective quadrics

- **AG21**. Write the polarization $\tilde{q}(A, B)$ of quadratic form $q(A) = \det A$ on the space $Mat_2(\Bbbk)$ of 2×2 -matrices as $\tilde{q}(A, B) = \frac{1}{2} \operatorname{tr}(AB^{\vee})$. Describe explicitly how to get B^{\vee} from B.
- AG2 \diamond 2 (Euclidean polarities). Consider a circle on the real Euclidean plane \mathbb{R}^2 . By means of the ruler and compasses, construct
 - a) the polar line of a given point laying inside the circle
 - **b)** the pole of a given line non-intersecting the circle.
- AG2 \diamond 3. Show that all conics passing through the points a = (1 : 0 : 0), b = (0 : 1 : 0), c = (0 : 0 : 1), d = (1 : 1 : 1) in \mathbb{P}_2 form a pencil. Write an explicit equation for the conics of this pencil¹.
- AG2 \diamond 4. Over an algebraically closed field, let a pencil of conics on \mathbb{P}_2 contain a smooth conic. Can this pencil contain exactly a) 0 b) 1 c) 2 d) 3 e) 4 different degenerated conics? Does there exist a pencil of conics on \mathbb{P}_2 without any smooth conics at all?
- AG2 ◇5. Over an algebraically closed field, are there two smooth conics in P₂ intersecting in exactly a) 1 b) 2
 c) 3 different points?
- **AG2** \diamond **6.** Show that the polar lines of a given point *a* ∈ \mathbb{P}_2 w.r.t. all the smooth conics in a given pencil are intersecting in one common point.
- AG2 \diamond 7. Over the field \mathbb{F}_9 of nine elements 2, find the cardinality of
 - **a)** the conic $x_0^2 + x_1^2 + x_2^2 = 0$ in \mathbb{P}_2
 - **b)** the quadric $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ in \mathbb{P}_3 .
- **AG2** \diamond **8.** Given 4 mutually non-intersecting lines in **a**) $\mathbb{P}(\mathbb{C}^4)$ **b**) $\mathbb{P}(\mathbb{R}^4)$ **c**^{*}) \mathbb{C}^3 **d**^{*}) \mathbb{R}^3 , find how many lines do intersect them all. List all possible answers and indicate those which are stable under small perturbations of the given lines.
- **AG2**◇9. Consider the space $\mathbb{P}_5 = \mathbb{P}(S^2V^*)$ of conics in $\mathbb{P}_2 = \mathbb{P}(V)$. Write $S \subset \mathbb{P}_5 = \mathbb{P}(S^2V^*)$ for the locus of singular conics. Show that
 - **a**) *S* is a cubic algebraic hypersurface
 - **b)** the set Sing(*S*) of singular points on *S* coincides with the image of quadratic Veronese embedding

$$v_2: \mathbb{P}(V^*) \hookrightarrow \mathbb{P}_5, \quad \varphi \mapsto \varphi^2,$$

that is, a point $q \in S$ is singular iff the corresponding conic $Q = V(q) \subset \mathbb{P}_2$ is a double line

c) for a smooth point $q \in S$, which corresponds to a split conic $V(q) = \ell_1 \cup \ell_2 \subset \mathbb{P}_2$, the tangent space T_qS in \mathbb{P}_5 consists of all conics passing through the singular point $\ell_1 \cap \ell_2$ of V(q) in \mathbb{P}_2 .

¹This should be a quadratic form whose coefficients depend linearly on two homogeneous parameters.

²Recall that $\mathbb{F}_9 = \mathbb{Z}[x]/(3, x^2 + 1)$ consists of elements $a + b\sqrt{-1}$, where $a, b \in \mathbb{F}_3 = \mathbb{Z}/(3)$ and $\sqrt{-1} \cdot \sqrt{-1} = -1 \in \mathbb{F}_3$.

N⁰	date	verified by	signature
1			
2			
3			
4			
5a			
b			
c			
6			
7a			
b			
8a			
b			
С			
d			
9a			
b			
c			