Lines and conics on the projective plane

- **AG2** $\frac{1}{2}$ **41 (Dezargus theorem).** For two triangles $\triangle a_1b_1c_1$, $\triangle a_2b_2c_2$ in \mathbb{P}_2 , show that the points $(a_1b_1)\cap(a_2b_2)$, $(b_1c_1)\cap(b_2c_2)$, $(c_1a_1)\cap(c_2a_2)$ are collinear if and only if the lines (a_1a_2) , (b_1b_2) , (c_1c_2) are concurrent. (Such triangles are called *perspective*.)
- AG2 $\frac{1}{2}$ \diamond 2. Show that two triangles are perspective if and only if they are polar one to the other with respect to some smooth conic.
- AG2 $\frac{1}{2}$ \diamond 3. Show that the associated triangle of a quadrangle inscribed in a smooth conic is self-polar with respect to this conic.
- **AG2**¹/₂ **◇4.** For triangles $\triangle a_1b_1c_1$, $\triangle a_2b_2c_2$ inscribed in the same smooth conic, show that the triangle with vertexes $(a_1b_1) \cap (a_2b_2)$, $(b_1c_1) \cap (b_2c_2)$, $(c_1a_1) \cap (c_2a_2)$ and the triangle with sides (a_1a_2) , (b_1b_2) , (c_1c_2) are perspective.
- **AG2** $\frac{1}{2}$ **>5.** For two different involutions $\sigma_1, \sigma_2 : C \cong C$ on a smooth conic *C*,
 - **a)** find the number of points $p \in C$ such that $\sigma_1(p) = \sigma_2(p)$
 - **b)** show that $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ if and only if the fixed points of σ_1 are harmonic to the fixed points of σ_2
- **AG2**¹/₂ **◇6.** Let a simple pencil of conics *L* have the base points p_1 , p_2 , p_3 , p_4 and the singular conics S_1 , S_2 , S_3 . For a smooth conic *C* ∈ *L* compare the cross-ratios $[p_1, p_2, p_3, p_4]$ on *C* and $[S_1, S_2, S_3, C]$ on *L*.
- AG2 $\frac{1}{2}$ \$7. Drawn on a sheet of paper are two lines intersecting in some point *p* outside the sheet. By means of the ruler, plot the line passing trough *p* and a given point on the sheet.
- $AG2\frac{1}{2}$ \diamond 8. Marked on a wall are two points quite far from one other. Draw the line joining them by means of a «compound ruler» shorter than the distance between the points.
- AG2 $\frac{1}{2}$ \diamond 9. By means of the ruler, draw the tangent line to a given smooth conic at a given point of the conic.
- **AG2**¹/₂ **◇10.** By means of the ruler, draw a triangle whose vertexes lie on a given smooth conic *C* and (extensions of) sides pass through given points *a*, *b*, *c* ∉ *C*. How many solutions may have this problem? HINT. For $p \in C$, let $\gamma(p) \in C$ be the return point after the naive attempt to draw such a triangle starting from *p* and successively passing through *a*, *b*, *c* with two intermediate vertexes on *C*. Is the map $\gamma : C \to C$, $p \mapsto \gamma(p)$, a homography?

AG2 $\frac{1}{2}$ \diamond 11. Formulate and solve the problem projectively dual to the previous one.

N₂	date	verified by	signature
1			
2			
3			
4			
5a			
b			
6			
7			
8			
9			
10			
11			