
§9 Dimension

Everywhere in §8 we assume on default that the ground field 𝕜 is algebraically closed.
9.1 Basic properties of the dimension. Given an algebraic manifold  and a point ௫ ∈ , the
maximal  ∈ ℕ such that there exists an increasing chain of closed irreducible submanifolds

{௫} = బ  భ  ⋯  −భ   ⊂  (9-1)

is called the dimension of  at ௫ and denoted by dimೣ . For an irreducible , the maximality of
a chain (9-1) forces  = . Thus, if the point ௫ belongs to several irreducible components of ,
then dimೣ  equals the maximal dimension among the dimensions of those components.
Exercise 9.1. Check that dimೣ  = dimೣ for every affine chart  ∋ ௫.

Lemma 9.1
Given a finite morphism of irreducible algebraic varieties ఝ∶  → , then dimೣ  ⩽ dimക(ೣ)  for
all ௫ ∈ . If ఝ is not surjective, then the inequality is strict.

Proof. Replacing  by an affine neighborhood ofఝ(௫) and  by the preimage of this neighborhood
allows us to assume, by Exercise 9.1, that both ,  are affine. It follows from Proposition 7.12
on p. 94 that every chain (9-1) in  is mapped to the strictly increasing chain of closed irreducible
subvarieties ఝ() in . This leads to the required inequality. If ఝ() ≠ , then the last subvariety
of the chain is proper in , and therefore the chain can be enlarged at least by . �

Proposition 9.1
dimೣ 𝔸 =  for all ௫ ∈ 𝔸.

Proof. Since for every ௫ ∈ 𝔸 there is a chain (9-1) of strictly increasing affine subspaces  = 𝔸
passing through ௫, the inequality dimೣ 𝔸 ⩾  holds. The opposite inequality is established by
induction in . It is obvious for 𝔸బ. Let dimೣ 𝔸 = . Then the last element in every maximal
chain (9-1) for  = 𝔸 is  = 𝔸. The next to last element −భ ⊊  is a proper subvariety
in 𝔸. By Corollary 8.4 on p. 105, it admits a finite map to some proper affine subspace 𝔸ೖ ⊊ 𝔸.
By Lemma 9.1 and the inductive assumption applied for , dim−భ ⩽ dim𝔸ೖ ⩽  < . Hence,
 − ଵ ⩽  − ଵ as required. �

Proposition 9.2
Let  be an irreducible algebraic manifold. Then dimೣ  does not depend on ௫ ∈ . If  is affine,
then dim = tr deg𝕜[].

Proof. Replacing  by an affine neighborhood of ௫ ∈  allows us to assume that  is affine. By
the Corollary 8.4 on p. 105, there exists a finite regular surjection గ∶  ↠ 𝔸. Its pullback

గ∗ ∶ 𝕜[௫భ,௫మ, … ,௫] ↪ 𝕜[]

realizes 𝕜[] as an algebraic extension of 𝕜[௫భ,௫మ, … ,௫]. Therefore, tr deg𝕜[] = . By the
Proposition 9.1 and Lemma 9.1, dimೣ  ⩽ dim𝔸 =  for all ௫ ∈ . It remains to prove the
opposite inequality. Consider a maximal chain of increasing irreducible subvarieties in 𝔸

{గ(௫)} = బ  భ  ⋯  −భ   = 𝔸 .
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108 §9Dimension

By Proposition 7.13, every irreducible component of గ−భ() is surjectively mapped onto  for all .
Hence, there exists a strictly increasing chain {௫} = బ  భ  ⋯  −భ   =  in which
every  is an irreducible component of గ−భ() that contains −భ and is surjectively mapped onto
. This forces dimೣ  ⩾ . �

Corollar൰ 9.1
For every irreducible affine variety  and finite regular surjection  ↠ 𝔸, the equality  = dim
holds. �

Corollar൰ 9.2
The inequality dim ⩽ dim for a regular finite mapఝ∶  →  of irreducible manifolds1 becomes
the equality if and only if ఝ is surjective.

Proof. For nonsurjectife ఝ the inequality is strong by Lemma 9.1. For surjective ఝ, the algebra
𝕜[] is an algebraic extension of 𝕜[], and therefore tr deg𝕜[] = tr deg𝕜[]. �

Corollar൰ 9.3
dim( × ) = dim + dim for irreducible varieties , .

Proof. We can assume that ,  both are affine, and dim = , dim = . Then there exist
finite surjections గ∶  ↠ 𝔸, గೊ∶  ↠ 𝔸. Their direct product గ × గೊ∶  ×  ↠ 𝔸+ is
obviously regular and surjective. It is finite, because if some finite collections of elements  and
ೕ span, respectively, 𝕜[] as a 𝕜[௫భ,௫మ, … ,௫]-module and 𝕜[] as a 𝕜[௬భ,௬మ, … ,௬]-module,
then the products  ⊗ ೕ span 𝕜[] ⊗ 𝕜[] as a module over 𝕜[௫భ, … ,௫,௬భ, … ,௬]. �
Exercise 9.2. Verify the latter statement.

9.2 Dimensions of subvarieties. If an algebraic manifold  is reducible and a regular nonzero
function ∶  → 𝕜 vanishes identically along an irreducible component ′ ⊂  such that dim′ =
= dim, then for every point ௫ ∈ ′, the hypersurface () ⊂  has dimೣ () = dimೣ , though
() ≠  globally. For an irreducible , such phenomenon never happens.

Proposition 9.3
Let  be an irreducible affine algebraic variety and  ∈ 𝕜[]. Then dim () = dim() − ଵ for
all  ∈ ().

Proof. If () = ∅, there is nothing to prove. Assume that () ≠ ∅ and therefore,  ≠ const.
Then, for  = 𝔸, the statement follows from the Example 8.7 on p. 106 and the Corollary 9.1.
The general case is reduced to  = 𝔸 by the same geometric construction as in the proof of
Proposition 7.13 on p. 95. Namely, fix a finite surjection గ∶  ↠ 𝔸 and consider the map

ఝ = గ ×  ∶  → 𝔸 × 𝔸భ , ௫ ↦ ( �గ(௫),(௫)) � .

As we have seen in the proof of Proposition 7.13, the map ఝ provides  with the finite surjection
onto the hypersurface (ఓ) ⊂ 𝔸 × 𝔸భ, the zero set of the minimal polynomial

ఓ(௨, ௧) = ௧ + ఈభ(௨)௧−భ + ⋯ + ఈ(௨) ∈ 𝕜[௨భ,௨మ, … ,௨][௧]
1See Lemma 9.1 on p. 107.
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for  over 𝕜(𝔸). The hypersurface () ⊂  is surjectively mapped by ఝ onto the intersection
(ఓ) ∩ (௧). Within the affine space 𝔸 = (௧) the intersection (ఓ) ∩ (௧) is given by the
equation  = , and therefore dim(ఓ) ∩ (௧) = dim() =  − ଵ at every point of this
intersection. By the Corollary 9.2, dim() = (ఓ) ∩ (௧) = dim − ଵ. �

Corollar൰ 9.4
Let  be an affine algebraic variety and భ,మ, … , ∈ 𝕜[]. Then

dim (భ,మ, … ,) ⩾ dim() − (9-2)

for all  ∈ (భ,మ, … ,). If the class of  in the quotient 𝕜[] ∕ (భ,మ, … ,−భ) does not
divide zero for every1  = ଵ, ଶ, … , , then the inequality (9-2) becomes an equality.

Proof. Induction in . Let  = (భ,మ, … ,−భ),  ∈ , and  be an irreducible component
of  passing through . The function  ether vanishes identically on  or is restricted to nonzero
element of 𝕜[]. The first means that  divides zero in 𝕜[] = 𝕜[]∕(భ,మ, … ,−భ), and forces
dim( ∩ (భ,మ, … ,)) = dim . In the second case, dim( ∩ (భ,మ, … ,)) = dim  − ଵ
by Proposition 9.3. �

Caution 9.1. Note that Proposition 9.3 and Corollary 9.4 do not assert that (భ,మ, … ,) ≠ ∅.
Since the empty set contains no points , for (భ,మ, … ,) = ∅, the Corollary 9.4 remains
formally true but becomes empty. The weak Nullstellensatz implies that (భ,మ, … ,) = ∅ if
and only if the class of  in 𝕜[]∕(భ,మ, … ,−భ) is invertible for some , and this may routinely
happen. For example, consider  = 𝔸య = Specm 𝕜[௫,௬, ௭], భ = ௫, మ = ௫ + ଵ. Obviously,
(௫,௫ + ଵ) = ∅. The same warning applies to the next corollary as well.
Corollar൰ 9.5
For affine algebraic varieties భ,మ ⊂ 𝔸 and every point ௫ ∈ భ ∩ మ,

dimೣ(భ ∩ మ) ⩾ dimೣ భ + dimೣ మ −  .

Proof. Let ఝ∶  ↪ 𝔸,  = ଵ,ଶ, be the closed immersions corresponding to the quotient
maps ఝ∗

 ∶ 𝕜[௫భ,௫మ, … ,௫] ↠ 𝕜[]. Then భ ∩ మ is isomorphic to the preimage of the diagonal
௱𝔸 ⊂ 𝔸 × 𝔸 under the map ఝభ × ఝమ∶ భ × మ ↪ 𝔸 × 𝔸. Within భ × మ, this preimage is
determined by the  equations ఝ∗

భ × ఝ∗
మ(௫) = ఝ∗

భ × ఝ∗
మ(௬), the pullbacks of equations ௫ = ௬ for

௱𝔸 in 𝔸 × 𝔸. It remains to apply Corollary 9.4. �

Proposition 9.4
For any irreducible projective varieties భ,మ ⊂ ℙ, the inequality dimభ + dimమ ⩾  forces
భ ∩ మ ≠ ∅.

Proof. Let ℙ = ℙ() and 𝔸+భ = 𝔸(). Given a nonempty irreducible projective variety  ⊂ ℙ,
write ′ ⊂ 𝔸+భ for the affine cone over  provided by the same homogeneous equations on the
coordinates. Then the origin ை ∈ 𝔸+భ belongs to ′ and dimೀ ′ ⩾ dim+ଵ, because every chain

1For  = ଵ this means that భ is not a zero divisor in 𝕜[]. A sequence of functions possessing this property
is called a a regular sequence, and the corresponding subvariety (భ,మ, … ,) ⊂  ia called a complete
intersection.
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{௭} ⊊ భ ⊊ ⋯ ⊊  =  produces the chain of cones {ை} ⊊ (ை, ௭) ⊊ ′
భ ⊊ ⋯ ⊊ ′

 = ′ starting
with the point ை and the line (ை, ௭). Therefore, by Corollary 9.5

dimೀ(′
భ ∩ ″

మ ) ⩾ dimೀ(భ) + ଵ + dimೀ(మ) + ଵ −  − ଵ ⩾ ଵ .

Thus, ′
భ ∩ ″

మ is not exhausted by ை. �
9.2.1 Dimensions of fibers of regular maps. In a contrast to differential geometry and topol-

ogy, the dimensions of nonempty fibers of regular maps are controlled in algebraic geometry almost
as strictly as in linear algebra.
Theorem 9.1
Let ఝ∶  →  be a dominant regular map of irreducible algebraic varieties. Then for all ௫ ∈ ,

dimೣఝ−భ(ఝ(௫)) ⩾ dim − dim . (9-3)

Moreover, there exists a dense Zariski open set  ⊂  such that for all ௬ ∈  and all ௫ ∈ ఝ−భ(௬),

dimೣఝ−భ(௬) = dimೣ  − dim  . (9-4)

Proof. Replacing  by an affine chart  ∋ ఝ(௫) and  by an affine neighborhood of ௫ in ఝ−భ()
allows us to assume that ,  are affine. Composing ఝ with a finite surjection  ↠ 𝔸, we may
assume that  = 𝔸 = Specm 𝕜[௬భ,௬మ, … ,௬] and ఝ(௫) = . Then ఝ−భ() ⊂  is given by the
equations ఝ∗(௬) = , the pullbacks of the equations ௬ = , which describe the origin within 𝔸.
Thus, Corollary 9.4 implies inequality (9-3).

To prove the second statement, let us factorize ఝ into a closed immersion  ↪ ×𝔸 followed
by the projection గ∶  × 𝔸 ↠ , as in formula (7-7) on p. 94, and apply Corollary 8.3 on p. 105
to the fibers of గ. Consider the projective closure  ⊂ ×ℙ, fix a projective hyperplane ு ⊂ ℙ
and a point  ∈ ℙ ∖ ு such that the section  × {} ⊂  × ℙ is not contained in . Then the
fiberwise projection from  to ு satisfies the conditions of Proposition 8.1 in the fibers over all

௬ ∈  ∖ గ(�( � × {}) � ∩ ) � ,

where గ∶ ×ℙ ↠  is the projection along ℙ. Since the latter is a closed map, the inadmissible
points ௬ form a proper Zariski closed subset in . Therefore, there exists a nonempty principal
open set  ⊂  such that Proposition 8.1 can be applied fiberwise over all points ௬ ∈ . Since 
is an affine algebraic variety as well, we can replace  by  and  by  ∩ గ−భ(). After that,
Corollary 8.3 gives a finite parallel fiberwise projection of  in the direction  to affine hyperplane
 ×𝔸−భ = ( ×ு) ∩ ( ×𝔸). If it is not surjective, we repeat the procedure until we get a finite
surjection ట∶  ↠  × 𝔸 whose composition with the projection onto  equals ఝ. This forces
dim = + dim. Since the fiber ఝ−భ(௬) is surjectively and finitely mapped onto {௬} ×𝔸 for all
௬ ∈ , we conclude from Lemma 9.1 that dimೣఝ−భ(௬) =  = dim− dim for all ௫ ∈ ఝ−భ(௬). �

Corollar൰ 9.6 (Semicontinuit൰ Theorem)
For every regular map of algebraic manifolds ఝ∶  → , the sets

ೖ ≝ {௫ ∈  | dimೣఝ−భ(ఝ(௫)) ⩾ }

are closed in  for all  ∈ ℤ.
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Proof. If dim = , then this is trivially true for all  and . For dim =  >  we can assume
by induction that the statement holds for all , , and all  with dim < . Replacing  and 
by some irreducible components of maximal dimension passing through ఝ(௫) and ௫ respectively
allows us to assume that both  and  are irreducible. Since ೖ =  for  ⩽ dim() − dim() by
Theorem 9.1, the statement holds for all such . For  > dim() − dim(), we can replace  and 
by ′ =  ∖  and ′ = ఝ−భ(′), where  ⊂  is that from Theorem 9.1, and apply the inductive
assumption, because ೖ ⊂ ′ and dim′ < dim. �

Corollar൰ 9.7
Let ఝ∶  →  be a closed regular morphism of algebraic manifolds. Then the sets

ೖ ≝ {௬ ∈  | dimఝ−భ(௬) ⩾ }

are closed in  for all  ∈ ℤ. �
Theorem 9.2 (dimension criterion of irreducibilit൰)
Assume that a closed regular surjection of algebraic manifolds ఝ∶  ↠  has irreducible fibers of
the same constant dimension. Then  is irreducible if  is.

Proof. Let  = భ ∪ మ be reducible. Since every fiber of ఝ is irreducible, it is entirely contained
in భ or in మ. Put  ≝ {௬ ∈  | ఝ−భ(௬) ⊂ } for  = ଵ,ଶ. Then  = భ ∪ మ, and the subsets
భ,మ ⊊  are proper if భ,మ ⊊  are proper. Since  coincides with the locus of points in  over
which the fibers of the restricted map ఝ| ∶  →  achieve their maximal value, we conclude
from Corollary 9.7 that  is closed in  for both  = ଵ,ଶ. Thus, reducibility of  forces  to be
reducible. �

9.3 Dimensions of projective varieties. It follows from Proposition 9.4 on p. 109 that every
irreducible projective manifold  ⊂ ℙ = ℙ() of dimension dim = ௗ intersects all projective
subspaces ு ⊂ ℙ of dimension dimு ⩾  − ௗ. We are going to show that a generic projective
subspace ு of dimension dimு <  − ௗ does not intersect , and therefore, the dimension dim
is characterized as the maximal ௗ such that  intersects all projective subspaces of codimension ௗ.
We know from n∘ 4.6.4 on p. 58 that all projective subspaces of codimension ௗ + ଵ in ℙ = ℙ()
form the Grassmannian Gr(−ௗ,+ଵ) = Gr(−ௗ,), which is an irreducible projective manifold.
Consider the incidence variety

௰ ≝ {(௫,ு) ∈  × Gr( − ௗ,) | ௫ ∈ ு} (9-5)

and write గభ∶ ௰ ↠  and గమ∶ ௰ → Gr( − ௗ,) for the canonical projections.
Exercise 9.3. Convince yourself that ௰ is a projective algebraic variety.

The fiber of the first projection గభ∶ ௰ ↠  over an arbitrary point ௫ ∈  consists of all projective
subspaces passing trough ௫. It is naturally identified with the Grassmannian Gr( − ௗ − ଵ,) =
Gr(−ௗ− ଵ,∕𝕜 ⋅ ௫) of all (−ௗ− ଵ)-dimensional vector subspaces in the quotient space ∕𝕜௫.
Thus, గభ is a closed surjective morphism with irreducible fibers of the same constant dimension
( − ௗ − ଵ)(ௗ + ଵ). By Theorem 9.2, the incidence variety ௰ is irreducible, and

dim௰ = ௗ + ( − ௗ − ଵ)(ௗ + ଵ) = ( − ௗ)(ௗ + ଵ) − ଵ .

This forces the image of the second projection గమ(௰) ⊂ Gr(−ௗ,), which consists of all (−ௗ−ଵ)-
dimensional projective subspaces intersecting , to be a closed irreducible subvariety of dimension
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at most dim௰ in the grassmannian Gr( − ௗ,) of dimension ( − ௗ)(ௗ + ଵ) > dim௰. Therefore,
the codimension (ௗ+ଵ) projective subspaces ு not intersecting  form a dense Zariski open subset
in the Grassmannian Gr( − ௗ,).

In fact, dimensional arguments allow us to say much more about the interaction of  with the
projective subspaces in ℙ. If we repeat the previous construction for the Grassmannian Gr( −
ௗ + ଵ,) of codimension-ௗ subspaces ு′ ⊂ ℙ() and the incidence variety

௰′ ≝ {(௫,ு′) ∈  × Gr( − ௗ + ଵ,) | ௫ ∈ ு} ,

which is an irreducible projective manifold of dimension

dim + dim Gr( − ௗ,) = ௗ + ௗ( − ௗ) = ௗ( − ௗ + ଵ)

for the same reasons as above, we get a surjective projection గమ∶ ௰′ ↠ Gr( − ௗ + ଵ,), because
∩ு′ ≠ ∅ for all ு′ ⊂ ℙ(). Theorem 9.1 forces the fibers of గమ to achieve their minimal possible
dimension dim௰ − dim Gr( − ௗ + ଵ, + ଵ) = ௗ( − ௗ + ଵ) − ( − ௗ + ଵ)ௗ =  over all points
of some open dense subset in the Grassmannian. This means that a generic projective subspace of
codimension ௗ intersects  in a finite number of points. Let us fix such a subspace ு′ and draw an
(−ௗ−ଵ)-dimensional subspace ு ⊂ ு′ through some intersection point  ∈ ∩ு′. Then ு∩
is a nonempty finite set. Therefore, the second projection of the incidence variety (9-5)

గమ∶ ௰ → Gr( − ௗ,)

has a zero-dimensional fiber. This forces the minimal dimension of nonempty fibers to be zero. It
follows from Theorem 9.1 that dimగమ(௰) = dim௰ = dim Gr( − ௗ,) − ଵ. In other words, the
codimension (ௗ+ଵ) projective subspaces ு ⊂ ℙ() intersecting an irreducible variety  ⊂ ℙ() of
dimension ௗ form an irreducible hypersurface in the Grassmannian Gr(−ௗ,) of all codimension-
(ௗ + ଵ) projective subspaces in ℙ = ℙ().
Exercise 9.4. Deduce from this that for every irreducible projective variety  ⊂ ℙ of dimen-
sion ௗ, there exists a unique, up to a scalar factor, irreducible homogeneous polynomial in the
Plücker coordinates of a codimension-ௗ subspace ு ⊂ ℙ that vanishes at a given ு if and
only if ு ∩  ≠ ∅.

The above analysis illustrates a method commonly used in geometry for calculating the dimensions
of projective manifolds by means of auxiliary incidence varieties. Below are two more examples.

Example 9.1 (resultant)
Given collection of positive integers ௗబ,ௗభ, … ,ௗ ∈ ℕ, write ℙಿ = ℙ (ௌ∗) for the space of
degree-ௗ hypersurfaces in ℙ = ℙ(). We are going to show that the resultant variety1

ℛ = {(ௌబ, ௌభ, … , ௌ) ∈ ℙಿబ × ℙಿభ × ⋯ × ℙಿ | ∩ ௌ ≠ ∅}

of a system of ( + ଵ) homogeneous polynomial equations of given degrees in  + ଵ unknowns
is an irreducible hypersurface, i.e., there exists a unique, up to proportionality, irreducible poly-
nomial ோ in the coefficients of the equations, homogeneous in the coefficients of each equation,
such that ோ vanishes at a given collection of polynomials బ,భ, … , if and only if the equations

1See n∘ 6.8 on p. 79.
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(௫బ,௫భ, … , ௫) = ,  ⩽  ⩽ , have a nonzero solution. The polynomial ோ is called the resultant
of  + ଵ homogeneous polynomials of degrees ௗభ,ௗమ, … ,ௗ.

Consider the incidence variety ௰ ≝ {(ௌభ, ௌమ, … , ௌ, ) ∈ ℙಿబ × ⋯ × ℙಿ × ℙ |  ∈ ∩ௌ}.
Exercise 9.5. Convince yourself that ௰ is an algebraic projective variety.

Since the equation () =  is linear in , all degree-ௗ hypersurfaces in ℙ passing through a given
point  ∈ ℙ form a hyperplane in ℙಿ . Therefore, the projection గమ∶ ௰ ↠ ℙ is surjective, and
all its fibers, which are the products of projective hyperplanes in the spaces ℙಿ , are irreducible and
have the same constant dimension ∑(ே − ଵ) = ∑ே −  − ଵ. Thus, ௰ is an irreducible projective
variety of dimension ∑ே − ଵ.
Exercise 9.6. Write + ଵ hypersurfaces () ⊂ ℙ of prescribed degrees ௗ = deg such that
(బ,భ, … , ) is just one point.

The exercise shows that the projection గభ∶ ௰ → ℙಿబ × ℙಿభ × ⋯ × ℙಿ has a nonempty fiber of
dimension zero. This forces a generic nonempty fiber to be of dimension zero, and implies the
equality dimగభ(௰) = dim௰. Therefore, గభ(௰) is an irreducible submanifold of codimension ଵ in
ℙಿబ × ⋯ × ℙಿ .

Exercise 9.7. Show that every irreducible submanifold of codimension ଵ in a product of projec-
tive spaces is the zero set of an irreducible polynomial in the homogeneous coordinates on the
spaces, homogeneous in the coordinates of each space.

Example 9.2 (lines on surfaces)
Algebraic surfaces of degree ௗ in ℙయ = ℙ() form the projective space ℙಿ = ℙ(ௌ∗) of dimension
ே = భ

ల (ௗ+ଵ)(ௗ+ଶ)(ௗ+ଷ) −ଵ. The lines in ℙయ form the Grassmannian Gr(ଶ,ସ) = Gr(ଶ,), which
is isomorphic to the smooth ସ-dimensional projective Plücker quadric1

 = {ఠ ∈ ௸మ |ఠ ∧ ఠ = }

in ℙఱ = ℙ(௸మ) by means of the Plücker embedding, which maps a line (,) ⊂ ℙయ to the decom-
posable Grassmannian quadratic form  ∧  ∈ ℙఱ. Consider the incidence variety

௰ ≝ { �(ௌ, ℓ) ∈ ℙಿ × Gr(ଶ,ସ) | ℓ ⊂ ௌ } .

Exercise 9.8. Convince yourself that ௰ ⊂ ℙಿ × Gr(ଶ,ସ) is a projective algebraic variety.
The projection గమ∶ ௰ ↠ ொು is surjective and all its fibers are projective spaces of the same constant
dimension. Indeed, the line ℓ given by the equations ௫బ = ௫భ =  lies on a surface () if and only
if  = ௫మ ⋅  + ௫య ⋅  belongs to the image of the 𝕜-linear map

ట∶ ௌ−భ∗ ⊕ ௌ−భ∗ → ௌ∗ , (,) ↦ ௫మ + ௫య .

This image is isomorphic to the quotient of the space ௌ−భ∗ ⊕ ௌ−భ∗ by the subspace
ker ట = {(,) = (௫య, −௫మ) |  ∈ ௌ−మ∗} .

Since dim ௌ−భ∗ = భ
ల ௗ(ௗ + ଵ)(ௗ + ଶ) and dim ker ట = భ

ల (ௗ − ଵ)ௗ(ௗ + ଵ), the degree-ௗ surfaces
containing ℓ form a projective space of dimension

ଵ
 (� ଶ ௗ(ௗ + ଵ)(ௗ + ଶ) − (ௗ − ଵ)ௗ(ௗ + ଵ) )� − ଵ = ଵ

 ௗ(ௗ + ଵ)(ௗ + ହ) − ଵ .

1Compare with Problem 17.20 of Algebra I
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We conclude that ௰ is an irreducible projective variety of dimension

dim௰ = ଵ
 ௗ(ௗ + ଵ)(ௗ + ହ) + ଷ .

The image of projection గభ∶ ௰ → ℙಿ consists of all surfaces containing at least one line. It follows
from the above analysis that గభ(௰) is an irreducible closed submanifold of ℙಿ.
Exercise 9.9. For every integer ௗ ⩾ ଷ find a degree-ௗ surface ௌ ⊂ ℙయ containing just a finite
number of lines.

The exercise shows that for ௗ ⩾ ଷ, the projection గభ has a nonempty fiber of dimension zero.
Therefore, a generic nonempty fiber of గభ is finite, and dimగభ(௰) = dim௰ for ௗ ⩾ ଷ. Since the
difference ே − dim௰ = భ

ల ( �(ௗ + ଵ)(ௗ + ଶ)(ௗ + ଷ) − ௗ(ௗ + ଵ)(ௗ + ହ)) � − ସ = ௗ − ଷ, every cubic
surface in ℙయ contains a line, and the set of cubic surfaces with a finite number of lines lying on
them contains a dense Zariski open subset of ℙಿ. At the same time, there are no lines on a generic
surface of degree ௗ ⩾ ସ.
9.4 Application: 27 lines on a smooth cubic surface. Let ௌ ⊂ ℙయ be a smooth cubic surface
provided by equation ி(௫) = . We are going to show that there are exactly ଶ lines laying on ௌ
and the configuration of these lines does not depend on ௌ up to permutations of the lines.

9.4.1 The 10 lines associated with a given line. To construct the lines laying on ௌ, we
consider one such a line ℓ ⊂ ௌ, which exists by the previous Example 9.2, and intersect ௌ with the
planes passing through ℓ.
Lemma 9.2
A reducible plane section of ௌ splits into a union of either a line and a smooth conic or a triple of
distinct lines. In other words, it does not contain a double line component.

Proof. Let a plane section గ ∩ ௌ contain a double line ℓ. In coordinates where గ has the equation
௫మ =  and ℓ is given by ௫మ = ௫య = , the equation of ௌ acquires the form

ி(௫) = ௫మொ(௫) + ௫మయ(௫) = 

for some linear  and quadratic ொ. Let  be an intersection point of ℓ with the quadric ொ(௫) = .
The relations ௫మ() = ௫య() = ொ() =  force all partial derivatives డி∕డ௫ vanish at . Thus, ௌ
is singular at . �

Corollar൰ 9.8
For a point  ∈ ௌ, there may be at most three lines lying on ௌ and passing through , and all such
lines must be coplanar.

Proof. All lines passing through  ∈ ௌ and lying on ௌ lie inside ௌ ∩ ்ௌ, which is a plane cubic
that may split into a union of at most three lines. �

Lemma 9.3
For every line ℓ ⊂ ௌ, there are exactly five distinct planes గభ,గమ, … ,గఱ containing ℓ and intersect-
ing ௌ in a triple of lines. Let గ ∩ ௌ = ℓ ∪ ℓ ∪ ℓ′

 , then ℓ ∩ ℓೕ = ℓ ∩ ℓ′
ೕ = ℓ′

 ∩ ℓ′
ೕ = ∅ for all  ≠ ,

and every line on ௌ that does not intersect ℓ must intersect exactly one of the lines ℓ, ℓ′
 for every

 = ଵ, … , ହ.
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Proof. Fix a basis {బ, భ, మ, య} in  such that ℓ = (బభ) is given by equations ௫మ = ௫య = .
Then the equation of ௌ acquires the form

బబ(௫మ,௫య) ⋅ ௫మబ + ଶబభ(௫మ,௫య) ⋅ ௫బ௫భ + భభ(௫మ,௫య) ⋅ ௫మభ+
+ ଶொబ(௫మ,௫య) ⋅ ௫బ + ଶொభ(௫మ,௫య) ⋅ ௫భ + ோ(௫మ,௫య) =  , (9-6)

where ೕ,ொഌ,ோ ∈ [௫మ,௫య] are homogeneous of degrees ଵ,ଶ,ଷ respectively. Let us parameterize
the pencil of plains గഛ passing through ℓ by the points

ഛ ≝ గഛ ∩ (మ, య) = ణమమ + ణయయ ∈ (మయ)

and write (௧బ ∶ ௧భ ∶ ௧మ) for the homogeneous coordinates in the plane గഛ = (బభഛ) with respect
to the basis బ, భ, ഛ. The equation for the plane conic (గഛ ∩ ௌ)⧵ℓ is obtained by the substitution
௫ = (௧బ ∶ ௧భ ∶ ణమ௧య ∶ ణయ௧య) in the equation (9-6) and canceling the common factor ௧య. The
resulting conic has the Gram matrix

ீ =
⎛
⎜
⎜
⎝

బబ(ణ) బభ(ణ) ொబ(ణ)
బభ(ణ) భభ(ణ) ொభ(ణ)
ொబ(ణ) ொభ(ణ) ோ(ణ)

⎞
⎟
⎟
⎠

whose determinant (ణ) is the following homogeneous degree-ହ polynomial in ణ = (ణమ ∶ ణయ)

బబ(ణ)భభ(ణ)ோ(ణ) + ଶబభ(ణ)ொబ(ణ)ொభ(ణ) − భభ(ణ)ொమబ(ణ) − బబ(ణ)ொమభ (ణ) − బభ(ణ)మோ(ణ) .

It has five roots, and we have to show that all these roots are simple. Every root corresponds to a
splitting of the conic into a pair of lines ℓ′, ℓ″. There are two possibilities: either the intersection
point ℓ′ ∩ ℓ″ lies on ℓ or it lies outside ℓ.

In the first case, we can fix a basis in order to have ℓ′ = (బమ) and ℓ″ = ( �బ (భ + మ)) �. These
lines are given by the equations ௫య = ௫భ =  and ௫య = (௫భ − ௫మ) = , and the splitting appears
for ణ = (ଵ ∶ ). The multiplicity of this root equals the highest power of ణయ dividing (ణమ,ణయ).
Since ℓ, ℓ′, ℓ″ ⊂ ௌ, the equation (9-6) has the form ௫భ௫మ(௫భ − ௫మ) + ௫య ⋅ (௫) for some quadratic
(௫). Thus, elements of ீ that may be not divisible by ణయ are exhausted by భభ ≡ ௫మ (mod ణయ)
and ொభ ≡ −௫మమ ∕ଶ (mod ణయ). So, (ణమ,ణయ) ≡ −బబொమభ (mod ణమయ). This term is of order one in ௧య
if the monomials ௫భ௫మమ and ௫మబ௫మ appear in (9-6) with non zero coefficients. The first of these two
monomials is the only monomial that gives a nonzero contribution in డி∕డ௫భ computed at మ ∈ ௌ
and the second in డி/డ௫మ at బ ∈ ௌ. Hence, they have to appear in ி.

In the second case, we fix a basis in order to have ℓ′ = (బమ), ℓ″ = (భమ), the lines given by
the equations ௫య = ௫భ =  and ௫య = ௫బ = . The splitting happens again for ణ = (ଵ ∶ ). The
equation (9-6) turns to ௫బ௫భ௫మ +௫య ⋅(௫). A nonzero modulo ణయ contribution may come only from
బభ ≡ ௫మ ∕ଶ (mod ణయ). Thus, (ణమ,ణయ) ≡ −మబభோ (mod ణమయ) is of the first order in ௧య if ௫మమ௫య and
௫బ௫భ௫మ appear in (9-6). The first is the only monomial giving a non zero contribution to డி∕డ௫య
computed at మ ∈ ௌ. Thus, it does appear. The second does too, because otherwise ி would be
divisible by ௫య.

All the remaining statements of the lemma follow immediately from Corollary 9.8, Lemma 9.2
and the fact that every line in ℙయ intersects every plane. �

Lemma 9.4
Any four mutually nonintersecting lines on ௌ do not lie simultaneously on a quadric, and there exist
either one or two (but no more!) lines on ௌ intersecting each of the four lines.
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Proof. If the four given lines lie on some quadric ொ, then ொ is smooth and the lines belong to
the same ruling family1. Every line from the second ruling family lies on ௌ, because a line passing
through four distinct points of ௌ must lie on ௌ. Hence, ொ ⊂ ௌ and therefore, ௌ is reducible. It
remains to apply Exercise 2.14. �

9.4.2 The configuration of all 27 lines. Fix two nonintersecting lines ,  ⊂ ௌ and consider
the five pairs of lines ℓ, ℓ′

 provided by Lemma 9.3 applied to the line ℓ = . Write ℓ for the lines
that do meet , and ℓ′

 for the remaining lines, which do not. There are five more lines ℓ″
 coupled

with ℓ by the Lemma 9.3 applied to the line ℓ = . Every line ℓ″
 intersects  but neither  nor ℓೕ

for  ≠ . Thus, ℓ″
 intersects all ℓ′

ೕ with  ≠ . Every line  ⊂ ௌ, different from the ଵ lines just
constructed, intersects neither  nor . At the same time, for each , it must intersect either ℓ or ℓ′

 .
By Lemma 9.4, the lines intersecting ⩾ ସ of the ℓ’s are exhausted by  and . Let  intersect ⩽ ଶ
of the ℓ’s, say ℓ′

భ, ℓ′
మ, ℓ′

య and either ℓ′
ర or ℓఱ. In both cases, we already have two distinct lines ,

ℓ″
ఱ other than  intersecting all the four lines. This contradicts to Lemma 9.4. We conclude that 
intersects exactly three of the five lines ℓ.
Lemma 9.5
The remaining lines  ⊂ ௌ stay in bijection with ଵହ triples {, , } ⊂ {ଵ, ଶ, ଷ, ସ, ହ}.

Proof. For every triple of lines ℓ, there is at most one line  other than  intersecting the three
given lines and the remaining two lines ℓ′

ೕ , because these five lines are mutually nonintersecting.
On the other hand, it follows from Lemma 9.3 that for every , there are exactly ଵ lines on ௌ
intersecting the line ℓ. Four of them are , , ℓ′

 , ℓ″
 . Each of the other six lines must intersect

exactly two of the remaining four ℓೕ’s. So, we have a bijection between these six lines and the
= (రమ) pairs of ℓೕ’s. �

Corollar൰ 9.9
Every smooth cubic surface ௌ ⊂ ℙయ contains exactly ଶ lines and their incidence matrix2 is the
same for all ௌ up to reordering the lines. �

Exercise 9.10∗. Write ீ ⊂ ௌమళ for the group of all permutations of the ଶ lines that preserve all
pairwise incidences between them. Consider the field of ସ elements 𝔽ర def= 𝔽మ[ఠ]∕(ఠమ+ఠ+ଵ),
where 𝔽మ = ℤ∕ (ଶ). The extension 𝔽మ ⊂ 𝔽ర is equipped with the conjugation automorphism3

௭ ⟼ ௭ def= ௭మ, which lives 𝔽మ fixed and permutes two roots of the polynomial ఠమ + ఠ + ଵ.
Show that the unitary4 ସ × ସ matrices with elements in 𝔽ర, considered up to proportionality,
form a (normal) subgroup of index ଶ in ீ, and find the order of ீ.

1See n∘ 2.5.1 on p. 23.
2That is, the matrix of size ଶ × ଶ whose rows and columns stay in bijection with the lines, and the

element in a position (, ) equals ଵ if ℓ ∩ ℓೕ ≠ ∅ and  otherwise.
3It is quite similar to the complex conjugation in the extension ℝ ⊂ ℂ.
4That is, satisfying ெ ⋅ெ = ா.



Comments to some exercises

Exrc. 9.1. Let భ,మ ⊂  be two closed irreducible subsets, and  ⊂  an open set such that
both intersections భ ∩ , మ ∩  are nonempty. Then భ = మ ⟺ భ ∩  = మ ∩ , because
 =  ∩ .

Exrc. 9.3. Chose some basis in ு and write the coordinates of the basis vectors together with the
coordinates of a variable point  ∈ ℙ as the rows of ( − ௗ + ଵ) × ( + ଵ)-matrix. Then the
condition  ∈ ு is equivalent to vanishing of all the minors of maximal degree  − ௗ + ଵ in these
matrix. The latter are quadratic bilinear polynomials in the homogeneous coordinates of  and the
Plücker coordinates1.

Exrc. 9.5. The set ௰ ⊂ ℙಿబ × ⋯ × ℙಿ × ℙ is given by the equations

బ() = భ() = ⋯ = () = 

on  ∈ ℙಿ and  ∈ ℙ, linear homogeneous in each  and homogeneous of degrees ௗ in .
Exrc. 9.6. Take + ଵ hyperplanes intersecting at one point and exponentiate their linear equations
in the prescribed degrees.

Exrc. 9.7. Consider the product ℙభ × ℙమ × ⋯ × ℙ and write ௫() = (௫()
బ ∶ ௫()

భ ∶ … ∶ ௫()
 ) for

the set of homogeneous coordinates on the 
divs th factor ℙ . Modify the proof of Lemma 8.1 on p. 103 to show that any closed submanifold
 ⊂ ℙభ × ℙమ × ⋯ × ℙ can be described by appropriate system of global polynomial equations
ഌ (௫(భ), ௫(మ), … , ௫()) = , homogeneous in every group of variables ௫(). Then assume that  is ir-
reducible of codimension ଵ, show that there exists an irreducible polynomial  (௫(భ), ௫(మ), … , ௫())
vanishing on , and use the dimensional argument to check that  = () is the zero set of . Fi-
nally, use the strong Nullstellensatz to show that for irreducible polynomials భ, మ, the equality
(భ) = (మ) forces భ, మ to be proportional.

Exrc. 9.8. Identify Gr(ଶ,ସ) with the Plücker quadric  ⊂ ℙఱ = ℙ(௸మ) by sending a line (,) ⊂
ℙయ to the point  ∧  ∈ ℙఱ. The line (,) lies on the surface () ⊂ ℙయ if and only if the
polynomial  vanishes identically on the linear span of vectors , , which is the linear support of
the Grassmannian polynomial ∧ and coincides with the image of the map ∗ → , క ↦ క⌙(∧),
contracting a covector క ∈ ∗ with the first tensor factor of ( ⊗  −  ⊗ )∕ଶ ∈ Skewమ . Verify
that the identical vanishing of the function క ↦ (క⌙( ∧ )) can be expressed by a system of
bihomogeneous equations on the coefficients of  and the Plücker coordinates ௫ೕ of the bivector
 ∧  = ∑బ⩽<ೕ⩽య ௫ೕ ∧ ೕ.

Exrc. 9.9. Show that the affine surface ௫భ௫మ …௫ = ଵ contains no affine lines and its projective
closure intersects the hyperplane of infinity in  lines ௫ = .

Exrc. 9.10. Hint: use the fact that over 𝔽ర, the Fermat cubic form ∑௫య , whose zero set is a smooth
cubic surface, coincides with the standard Hermitian inner product ∑௫௫. The final answer is
|ீ| = ହଵ଼ସ = ଶళ ⋅ ଷర ⋅ ହ.

1Recall that they equal the top degree minors of the transition matrix from some basis in ு to the the
standard basis in , see Example 8.4 on p. 101.
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