
§7 Affine algebraic geometry

We assume on default in §7 that the ground field 𝕜 is algebraically closed.
7.1 Affine Algebraic –Geometric dictionary. A map ఝ∶  →  between affine algebraic vari-
eties  ⊂ 𝔸 and  ⊂ 𝔸 is called regular or polynomial if its action is described in coordinates by
the rule (௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫)), where ఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫]. We write
𝒜ff 𝕜 for the category1 of affine algebraic varieties and regular maps between them.

7.1.1 Coordinate algebra. A function  ∶  → 𝕜 on an affine algebraic variety  ⊂ 𝔸
is called regular if it provides  with a regular map  ∶  → 𝔸భ, that is, if there exists some
polynomial in the coordinates ௫భ,௫మ, … ,௫ on 𝔸 whose restriction on  coincides with . Two
polynomials determine the same regular function if and only if they are congruent modulo the
ideal ூ() = { ∈ 𝕜[௫భ,௫మ, … ,௫] | | ≡ }. The regular functions  → 𝕜 form a 𝕜-algebra with
respect to the usual addition and multiplication of functions taking values in a field. This algebra
is called the coordinate algebra of  and denoted by

𝕜[] ≝ Hom𝒜ff 𝕜
(,𝔸భ) ≃ 𝕜[௫భ,௫మ, … ,௫]∕ூ() . (7-1)

Since for a function  ∶  → 𝕜, the equality  =  implies  = , the coordinate algebra 𝕜[]
has no nilpotent elements. This forces the ideal ூ() to be radical, that is, coinciding with √ூ().
Algebras without nilpotent elements are said to be reduced. We write 𝒜ℓg𝕜 for the category of
finitely generated reduced 𝕜-algebras and 𝕜-algebra homomorphisms respecting units.
Proposition 7.1
Every reduced finitely generated algebra  over an algebraically closed field 𝕜 is isomorphic to the
coordinate algebra 𝕜[] of some affine algebraic variety  over 𝕜.

Proof. Write  as a quotient  = 𝕜[௫భ,௫మ, … ,௫] ∕ . Since  is reduced, √ = . By the
strong Nullstellensatz, this forces  to coincide with the ideal ூ(()) of the affine algebraic variety
() ⊂ 𝔸. Thus,  = 𝕜[] for  = (). �

7.1.2 Maximal spectrum. Associated with every point  ∈  on an affine algebraic variety 
is the evaluation homomorphism ev ∶ 𝕜[] → 𝕜,  ↦ (). It is obviously surjective and therefore,
its kernel

𝔪 ≝ ker ev = { ∈ 𝕜[] | () = }

is a maximal ideal in 𝕜[], called themaximal ideal of the point  ∈ . Note that for every  ∈ 𝕜[],
the residue class  (mod𝔪) coincides in 𝕜[]∕𝔪 ≃ 𝕜 with the class of constant (), i.e., the
evaluation at  can be thought as the factorization modulo the ideal 𝔪 ⊂ 𝕜[].

Given an arbitrary commutative 𝕜-algebra , the set of all maximal ideals 𝔪 ⊂  is called the
maximal spectrum of  and denoted by Specm(). For every 𝔪 ∈ Specm , the quotient ∕𝔪 ⊃ 𝕜

1A category 𝒞 is a class of objects, where for every ordered pair of objects , , a set Hom𝒞(,) of
morphisms  →  is given and for every ordered triple of objects , ,  the composition map

Hom𝒞(,) × Hom𝒞(,) → Hom𝒞(,) , (ఝ,ట) ↦ ఝ ∘ ట ,

is defined such that (ఎ ∘ ఝ) ∘ ట = ఎ ∘ (ఝ ∘ ట) for any composable morphisms ఎ, ఝ, ట, and every object 
possesses the identity endomorphism Id ∈ Hom𝒞(,) satisfying the relations ఝ ∘ Id = ఝ and Id ∘ ట = ట
for all morphisms ఝ∶  → , ట ∶  → .
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is a field. If  is finitely generated, then this quotient is finitely generated as well and therefore,
is an algebraic extension of 𝕜 by Theorem 6.2 on p. 75. For algebraically closed 𝕜, this forces
∕𝔪 = 𝕜. Thus, for such  and 𝕜, every factorization homomorphism  ↠ ∕𝔪 = 𝕜 takes values
in 𝕜. Vice versa, every homomorphism of 𝕜-algebras ఝ∶  → 𝕜 sends ଵ to ଵ and therefore, is
surjective. Thus, its kernel ker ఝ is a maximal ideal in . We conclude that for an arbitrary finitely
generated algebra over an algebraically closed field 𝕜, the 𝕜-algebra homomorphisms  → 𝕜 stay in
canonical bijection with the points of Specm . In what follows, we make no difference between the
points 𝔪 ⊂ Specm  and the homomorphisms  → 𝕜, and write ev𝔪∶  → 𝕜 for the factorization
homomorphism modulo 𝔪. There is a natural homomorphism from  to the algebra  → 𝕜Specm ಲ

of functions Specm  → 𝕜. It sends an element  ∈  to the function

 ∶ Specm  → 𝕜 , 𝔪 ↦ ev𝔪() =  (mod 𝔪) ∈ ∕𝔪 = 𝕜 . (7-2)

The kernel of this homomorphism, that is, the set of all elements  ∈  vanishing at every point of
the spectrum, coincides with the intersection of all maximal ideals in . It is called the Jackobson
radical of  and denoted 𝔯().

Proposition 7.2
For a finitely generated algebra  over an algebraically closed field 𝕜, the Jackobson radical 𝔯()
coincides with the set of all nilpotent elements in , that is, with the nilradical

𝔫() ≝ √ = { ∈  |  =  for some  ∈ ℕ} .

Exercise 7.1. Check that 𝔫() is an ideal in .
Proof of Proposition 7.2. Since the algebra of functions Specm  → 𝕜 is reduced, every
nilpotent element of  produces the zero function. Thus, 𝔫() ⊂ 𝔯(). To prove the converse
inclusion, let red ≝  ∕𝔫(). Since red is finitely generated and reduced, there exists an affine
algebraic variety  ⊂ 𝔸 with the coordinate algebra 𝕜[] = red. If  lies in the kernel of every
homomorphism  → 𝕜, then the image of  in 𝕜[] also lies in the kernel of every homomorphism
𝕜[] → 𝕜. In particular, () =  for all  ∈ , that is,  =  in 𝕜[] = ∕𝔫(). Hence,  ∈ 𝔫().

�

Exercise 7.2. For an arbitrary commutative ring  with unit, show that the nilradical 𝔫()
coincides with the intersection of all prime1 ideals in .

Proposition 7.3
For an affine algebraic variety  over an algebraically closed field 𝕜, the map

 → Specm 𝕜[] ,  ↦ 𝔪 = ker ev ,

is bijective.

Proof. This map is injective regardless of whether 𝕜 is algebraically closed, because for  ≠ ,
there exists, for example, an affine linear function  ∶ 𝔸 → 𝕜 such that () =  and () = ଵ.
Let us show that over algebraically closed field 𝕜, every maximal ideal 𝔪 ⊂ 𝕜[] coincides with

1An ideal 𝔭 ⊂  is called prime, if the quotient ring ∕𝔭 has no zero divisors.
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𝔪 = ker ev for some  ∈ . Write �̃� ⊂ 𝕜[௫భ,௫మ, … ,௫] for the full preimage of 𝔪 under the
factorization homomorphism 𝕜[௫భ,௫మ, … ,௫] ↠ 𝕜[] = 𝕜[௫భ,௫మ, … ,௫]∕ூ(). Since

𝕜[௫భ,௫మ, … ,௫]∕�̃� = 𝕜[]∕𝔪 = 𝕜 ,

�̃� is a proper maximal ideal containing ூ(). By the week Nullstellensatz, (�̃�) is a non-empty
subset of . Pick a point  ∈ (�̃�). Since 𝔪 ⊂ 𝔪 and 𝔪 is maximal, 𝔪 = 𝔪. �

Example 7.1 (the affine space)
Since a homomorphism of algebras ఝ∶ 𝕜[௫భ,௫మ, … ,௫] → 𝕜 is uniquely determined by the images
of generators ఝ(௫) ∈ 𝕜, a bijection Specm 𝕜[௫భ,௫మ, … ,௫] ⥲ 𝔸 is given by sending ఝ to the
point  = ( �ఝ(௫భ), … ,ఝ(௫)) � ∈ 𝔸. As a consequence, we conclude that every maximal ideal in
𝕜[௫భ,௫మ, … ,௫] is generated by an -tuple of linear forms ௫ − , where  ∈ 𝕜, ଵ ⩽  ⩽ ,
and the equality of ideals (௫భ − భ, … , ௫ − ) = (௫భ − భ, … , ௫ − ) is equivalent to the
equality of points (భ,మ, … ,) = (భ,మ, … ,) in 𝔸.

7.1.3 Pullback homomorphisms. Associated with an arbitrary map of sets ఝ∶  →  is the
pullback homomorphism ఝ∗ ∶ 𝕜ೊ → 𝕜, which maps a function  ∶  → 𝕜 to the composition

 ∘ ఝ∶  → 𝕜 .

Let  ⊂ 𝔸,  ⊂ 𝔸 be affine algebraic varieties with the coordinate algebras
𝕜[] = 𝕜[௫భ,௫మ, … ,௫]∕ூ() , 𝕜[] = 𝕜[௬భ,௬మ, … ,௬]∕ூ() ,

and let the map ఝ∶  →  be given in coordinates by the assignment
(௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫)) .

Then the pullbacks of the coordinate functions ௬ ∶  → 𝕜 are ఝ∗(௬) = ఝ. Since the ௬ gen-
erate the coordinate algebra 𝕜[], the regularity of ఝ, meaning that ఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫], is
equivalent to the inclusion ఝ∗ (𝕜[]) ⊂ 𝕜[], meaning that the pullback of every regular function
is regular.
Exercise 7.3. Verify that a set-theoretical map of topological spaces  →  is continuous if and
only if the pullback of every continuous function on  is a continuous function on .

Note that the inclusion of sets ఝ() ⊂  implies the inclusion of ideals ఝ∗( �ூ()) � ⊂ ூ(), which
forces the map 𝕜[௬భ,௬మ, … ,௬] → 𝕜[௫భ,௫మ, … ,௫], ௬ ↦ ఝ(௫భ,௫మ, … ,௫), to be correctly
factorized through the map 𝕜[] = 𝕜[௬భ,௬మ, … ,௬] ∕ ூ() → 𝕜[௫భ,௫మ, … ,௫] ∕ ூ() = 𝕜[].
Thus, every regular map of affine algebraic varieties ఝ∶  →  produces the well defined pullback
homomorphism of the coordinate algebras ఝ∗ ∶ 𝕜[] → 𝕜[].

Vice versa, associated with every homomorphism of finitely generated 𝕜-algebras ట∶  →  is
the pullback map of spectra ట∗ ∶ Specm  → Specm  which takes an evaluation ev𝔪∶  → 𝕜 with
the kernel 𝔪 ∈ Specm  to the evaluation ev𝔪 ∘ట = evഗ−భ(𝔪) ∶  → 𝕜 with the kernel ట−భ(𝔪) ∈
Specm .
Proposition 7.4
For any affine algebraic varieties , , the pullback maps

Hom𝒜ff 𝕜
(,)

ക↦ക∗
// Hom𝒜ℓg𝕜(𝕜[],𝕜[])

ഗ∗↤ഗ
oo

are inverse to each other and therefore bijective.
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Proof. Let a regular map from  ⊂ 𝔸 to  ⊂ 𝔸 act by the rule
(௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫))

for someఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫]. Then the pullbackఝ∗ ∶ 𝕜[] → 𝕜[] takes ௬ ↦ ఝ (mod ூ()) .
The pullback of ఝ∗, that is, the map ఝ∗∗ ∶ Specm 𝕜[] → Specm 𝕜[], sends the evaluation at a
point  = (భ,మ, … ,) ∈ 

ev ∶ 𝕜[] → 𝕜 , (௫) ↦ () ,

to the composition ev ∘ఝ∗, which sends every generator ௬ ∈ 𝕜[] toఝ() and therefore, coincides
with the evaluation at the point ఝ(). Thus, ఝ∗∗ = ఝ. The equality ట∗∗ = ట for a homomorphism
ట ∶ 𝕜[] → 𝕜[] is checked similarly, and we leave its verification to the reader as an exercise. �

7.1.4 Equivalence of categories. A contravariant functor1 ி ∶ 𝒜ff 𝕜 → 𝒜ℓg𝕜 is assigned by
sending an affine algebraic variety  to the coordinate algebra 𝕜[] and a regular map of affine
algebraic varieties ఝ∶  →  to the pullback homomorphism ఝ∗ ∶ 𝕜[] → 𝕜[].

By the Proposition 7.1, every algebra  in𝒜ℓg𝕜 is isomorphic to the coordinate algebra of some
affine algebraic variety. Let us fix such an isomorphism

ಲ∶  ⥲ 𝕜[ಲ] (7-3)
for each , and for every affine algebraic variety , put 𝕜[] =  and 𝕜[] ∶ 𝕜[] → 𝕜[] to
be the identity map Id𝕜[]. The pullback maps of the isomorphisms (7-3) assign the bijections
∗
ಲ∶ ಲ ⥲ Specm . Write ∶ 𝒜ℓg𝕜 → 𝒜ff 𝕜 for the contravariant functor sending an algebra  to
the affine variety ಲ and a homomorphism of algebras ట∶  →  to the regular map of algebraic
varieties (ట) = ∗

ಲ
−భ ∘ట∗ ∘ ∗

ಳ∶ ಳ → ಲ, which fits in the commutative diagram

ಳ
ು(ഗ) //

∗
ಳ ≀
��

ಲ
∗
ಲ≀

��
Spec() ഗ∗

// Spec() ,

where the bottom row is the pullback of ట.
Exercise 7.4. Convince yourself that (ట) is a regular map of affine algebraic varieties.

By the construction, the composition  ∘ ி ∶ 𝒜ff 𝕜 → 𝒜ff 𝕜 acts identically on the objects and
morphisms, that is, equals the identity functor. The reverse composition ி ∘ sends every algebra 
to the isomorphic algebra 𝕜[ಲ], and the isomorphisms (7-3) assign a natural isomorphism2 between

1A contravariant functor3 ி ∶ 𝒞 → 𝒟 from a category 𝒞 to a category 𝒟 assigns an object ி() in 𝒟 to
every object  in 𝒞, and assigns a map Hom𝒞(,) → Hom𝒟(ி(),ி()), ఝ ↦ ி(ఝ), to every ordered pair
of objects ,  in 𝒞, such that ி(Id) = Idಷ() for all objects  and ி(ఝ ∘ట) = ி(ట) ∘ி(ఝ) for all composable
morphisms ఝ, ట in 𝒞.

2Two functors ி,ீ∶ 𝒞 → 𝒟 are said to be naturally isomorphic if for every object  in 𝒞 there exist an
isomorphism ∶ ி() ⥲ ீ() in 𝒟 such that for every morphism ఝ ∶  →  in 𝒞, the following diagram
in 𝒟 is commutative:

ி()
ಷ(ക) //

ೊ ≀
��

ி()
≀
��

ீ() ಸ(ക)
// ீ()
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the identity functor on𝒜ℓg𝕜 and the composition ி∘. Indeed, for every homomorphism of algebras
ట∶  → , the diagram

 ഗ //

ಲ ≀
��


ಳ≀
��

𝕜[ಲ] ಷು(ഗ)
// 𝕜[ಳ]

is commutative, because ி(ట) = ி(∗
ಲ

−భ ∘ట∗ ∘ ∗
ಳ) = ∗∗

ಳ ∘ట∗∗ ∘ ∗∗
ಲ

−భ = ಳ ∘ట ∘ −భ
ಲ .

In this situation, the functors ி and  are said to be contravariant equivalences between the
categories 𝒜ℓg𝕜 and 𝒜ff 𝕜. Informally, this means that an affine algebraic variety  is recovered
from the coordinate algebra 𝕜[] uniquely up to a regular isomorphism, the regular morphisms
 →  stay in the canonical bijection with the homomorphisms of algebras 𝕜[] → 𝕜[], this
bijection respects the composition of morphisms and is respected by the isomorphisms of algebraic
varieties sharing the same coordinate algebra.

A choice of isomorphisms (7-3) used in the construction of the functor  is equivalent to a
presentation of every algebra  in the form 𝕜[௫భ,௫మ, … ,௫]∕ூ(ಲ), that is, to a choice of algebra
generators for . This is similar to a choice of basis in a vector space , that provides  with an iso-
morphism  ⥲ 𝕜. Thus, the set Specm  can be thought of as an «abstract» affine algebraic variety
which possesses various realizations in the form (ூ) ⊂ 𝔸 provided by a choice of presentation
 ⥲ 𝕜[௫భ,௫మ, … ,௫]∕ூ of the algebra  in terms of generators and relations.
Example 7.2 (punctured line and h൰perbola)
As we have seen in Example 7.1, the spectrum Specm 𝕜[௧] is realized as the affine line 𝔸భ = 𝕜
by sending an evaluation ట∶ 𝕜[௧] → 𝕜 to the point  = ట(௧) ∈ 𝕜. By the same reason, the
spectrum Specm 𝕜[௧, ௧−భ] of the algebra of Laurent polynomials is naturally identified with the
punctured line 𝔸భ ∖ {} = 𝕜∗, because the evaluations ట∶ 𝕜[௧, ௧−భ] → 𝕜 also stay in bijection
with their values  = ట(௧) = ଵ∕ట(௧−భ) ∈ 𝕜∗. A presentation of the algebra 𝕜[௧, ௧−భ] in terms
of generators and relations is provided by the isomorphism ∶ 𝕜[௧, ௧−భ] ⥲ 𝕜[௫,௬] ∕ (௫௬ − ଵ),
௧ ↦ ௫, ௧−భ ↦ ௬. It realizes Specm 𝕜[௧, ௧−భ] as the hyperbola (௫௬ − ଵ) ⊂ 𝔸మ. The pullback map
∶ (௫௬ − ଵ) ⥲ 𝔸భ ∖ {} projects the hyperbola on the punctured ௫-axis along the ௬-axis in 𝔸మ.
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Fig. 7⋄1. The universal property of product. Fig. 7⋄2. The universal property of coproduct.
Example 7.3 (coproduct of affine algebraic varieties)
The direct product of 𝕜-algebras  ×  is uniquely determined by the following universal property
of the projections ಲ∶  ×  →  and ಳ∶  ×  → : for any pair of 𝕜-algebra homomorphisms
ఈ∶  →  and ఉ∶  →  there exists a unique homomorphism of 𝕜-algebras ఈ × ఉ∶  →  × 
such that ಲ ∘ (ఈ × ఉ) = ఈ and ಳ ∘ (ఈ × ఉ) = ఉ, see fig. 7⋄1.
Exercise 7.5. Convince yourself that if a pair of 𝕜-algebra homomorphisms ′

ಲ∶  →  and
′
ಳ∶  →  also possesses this universal property, then the map ′

ಲ × ′
ಳ∶  →  ×  is an

isomorphism.
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The direct product of finitely generated reduced 𝕜-algebras  = 𝕜[],  = 𝕜[] is also finitely
generated and reduced. Hence, the spectrum Specm(×) is realized by an affine algebraic variety
equipped with the pullback maps ∗

ಲ∶  → , ∗
ಳ∶  →  possessing the dual1 universal property:

for any pair of regular maps ఝ∶  → ௐ, ట∶  → ௐ of affine algebraic varieties there exists a
unique regular map ఎ∶  → ௐ such that ఎ ∘ ∗

ಲ = ఝ, ఎ ∘ ∗
ಳ = ట, see fig. 7⋄2. This universal

property determines the variety  uniquely up to a unique regular isomorphism commuting with
the maps ∗

ಲ, ∗
ಳ. In an abstract category, the object  possessing this universal property is called

the coproduct of objects , .
Exercise 7.6. Convince yourself that in the category of sets, the coproduct of sets,  is provided
by the disjoint union  ⊔ , and verify that Specm( × ) = Specm  ⊔ Specm  as a set.

Thus, the disjoint union ⊔ of affine algebraic varieties  ⊂ 𝔸,  ⊂ 𝔸, has a structure of affine
algebraic variety whose coordinate algebra is isomorphic to 𝕜[] × 𝕜[].
Example 7.4 (product of affine algebraic varieties)
The direct product of spectra Specm() × Specm() in the category of sets admits a structure of
affine algebraic variety whose coordinate algebra is the tensor product of algebras ⊗, which gives
the direct coproduct in the category 𝒜ℓg𝕜 and is constructed as follows. Let us equip the tensor
product of vector spaces  ⊗  over 𝕜 with the multiplication defined by (భ ⊗ భ) ⋅ (మ ⊗ మ) ≝
(భమ) ⊗ (భమ).
Exercise 7.7. Verify that ⊗  becomes a commutative 𝕜-algebra with the unit ଵ⊗ ଵ, and the
𝕜-algebra homomorphisms  ↪ ⊗ ↩ ,  ↦ ⊗ଵ,  ↦ ଵ⊗, give the coproduct in the
category of commutative 𝕜-algebras with unit.

It follows from the universal property of coproduct that there exists a bijection
Specm() × Specm() ⥲ Specm( ⊗ )

sending a pair of homomorphisms ev ∶  → 𝕜,  ↦ () and ev ∶  → 𝕜,  ↦ (), to the
homomorphism  ⊗  → 𝕜,  ⊗  ↦ ()(). If the algebras ,  are finitely generated, say,
by some elements భ,మ, … , ∈ , భ,మ, … , ∈ , then  ⊗  is certainly generated by
the elements  ⊗ ೕ. Let us verify that the tensor product of reduced algebras ,  is reduced.
By Proposition 7.2 on p. 83, it is enough to check that every element  ∈  ⊗  that is evaluated
to zero at every point of Specm( ⊗ ) must be the zero element. Write such an element as  =
∑ഌ ⊗ഌ, where ഌ ∈  are linearly independent over 𝕜. Since (ev ⊗ ev) =  for all (,) ∈
Specm( ⊗ ), the linear combination ∑ഌ() ⋅ ഌ ∈  is the zero function on Specm  for every
fixed  ∈ Specm . Since  is reduced, this linear combination is the zero element of . Therefore,
all its coefficients ഌ() = , because of the linear independence of ഌ over 𝕜. Since this holds for
all  ∈ Spec, every element ഌ ∈  is the zero function on Specm . This forces ഌ = , because
 is reduced. Hence,  = . We conclude that the tensor product 𝕜[] ⊗ 𝕜[] gives the direct
coproduct in 𝒜ℓg𝕜. Thus, in the category of affine algebraic varieties, the direct product

Specm() × Specm() = Specm( �𝕜[] ⊗ 𝕜[]) � .

For example, 𝔸 × 𝔸 ≃ 𝔸+, because of the isomorphism
𝕜[௫భ,௫మ, … ,௫] ⊗ 𝕜[௬భ,௬మ, … ,௬] ≃ 𝕜[௫భ,௫మ, … ,௫,௬భ,௬మ, … ,௬]

provided by the map ௫ೞభభ ௫ೞమమ …௫ೞ ⊗ ௬ೝభభ ௬ೝమమ …௬ೝ ↦ ௫ೞభభ ௫ೞమమ …௫ೞ ௬ೝభభ ௬ೝమమ …௬ೝ .
1That is, obtained from the original by reversing all arrows.
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Exercise 7.8. Given some polynomial equations ഌ(௫) = , ഋ(௬) = , describing affine alge-
braic varieties  ⊂ 𝔸,  ⊂ 𝔸, write down an explicit system of polynomial equations whose
solution set is  ×  ⊂ 𝔸 × 𝔸.

7.2 Zariski topology. The set  = Specm  possesses the natural topology, called the Zariski
topology, whose closed sets are the subsets of  that can be described by polynomial equations, i.e.,
the sets

(ூ) = {௫ ∈  | (௫) =  for all  ∈ ூ} =
= {𝔪 ∈ Specm  | ூ ⊂ 𝔪} =
= {ఝ∶  → 𝕜 | ఝ(ூ) = }

taken for all ideals ூ ⊂ .
Exercise 7.9. Verify that a) ∅ = ((ଵ)) b)  = (()) c) ⋂ഌ (ூഌ) =  (∑ഌ ூഌ), where the
ideal ∑ഌ ூഌ consists of finite sums of elements ഌ ∈ ூഌ d) (ூ) ∪ () = (ூ ∩ ) = (ூ),
where the ideal ூ ⊂ ூ ∩  consist of finite sums of products  with  ∈ ூ,  ∈ .

The Zariski topology has a purely algebraic nature. It reflects divisibility relations rather than
closeness or remoteness. For this reason some properties of the Zariski topology are discordant
with intuition based on the metric topology. One of the most important differences which should
be always taken in mind is that the Zarisky topology on the product  ×  is strictly finer than the
product of Zariski topologies on the factors , , i.e., the products of closed subsets in ,  do not
form a base for the closed subsets  ⊂  × . For example, for  =  = 𝔸భ, every plane algebraic
curve, e.g., the hyperbola (௫௬ − ଵ), is Zariski closed in 𝔸భ × 𝔸భ = 𝔸మ, whereas the products of
closed subsets in 𝔸భ are exhausted by ∅, 𝔸మ, and finite unions of points and lines parallel to the
coordinate axes.
Proposition 7.5 (base for open sets and compactness)
Every Zariski open subset  of an affine algebraic variety  is a finite union of principal open sets

𝒟() ≝  ∖ () = {௫ ∈  | (௫) ≠ }

for some  ∈ 𝕜[], and is compact in the induced topology, meaning that every open covering of 
contains a finite subcovering.

Proof. Let  =  ∖ (ூ). Since 𝕜[] is Noetherian, ூ = (భ,మ, … ,) for some  ∈ 𝕜[].
Therefore (ூ) = ⋂() and  = ⋃ ( ∖ ()) = ⋃𝒟(). Further, let  be covered by a family
of principal open sets 𝒟(ഌ), and ூ the ideal spanned by the functions ഌ. Then (ூ) ⊂  ∖  and
ூ = (భ,మ, … ,) for some finite collection భ,మ, … , of the functions ഌ. Therefore, the
open sets 𝒟(), ଵ ⩽  ⩽ , cover  as well. �

Proposition 7.6 (continuit൰ of regular maps)
Every regular map of affine algebraic varieties ఝ∶  →  is continuous in the Zariski topology.

Proof. For any closed set (ூ) ⊂ , the preimage ఝ−భ( �(ூ)) � consists of the points ௫ ∈  such
that  = (ఝ(௫)) = ఝ∗(௫) for all  ∈ ூ. Therefore, it coincides with () for the ideal  ⊂ 𝕜[]
generated by the image of ூ under the pullback homomorphism ఝ∗ ∶ 𝕜[] → 𝕜[]. �
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7.2.1 Irreducible components. A topological space  is called reducible if  = భ ∪ మ for
some proper closed subsets భ,మ  . Otherwise  is called irreducible. In the usual metric
topology, almost all spaces are reducible. In the Zariski topology, the irreducible affine algebraic
varieties play the same role as the powers of prime numbers in arithmetic.
Exercise 7.10. Verify that () ⊂  is nonempty and proper for any nonzero non-invertible
element  ∈ 𝕜[].

Proposition 7.7
An affine algebraic variety  is irreducible if and only if its coordinate algebra 𝕜[] has no zero
divisors.

Proof. If  = భ ∪ మ with proper closed భ, మ, then there exist nonzero regular functions
భ,మ ∈ 𝕜[] such that భ ∈ ூ(భ), మ ∈ ூ(మ). Since భమ vanishes at every point of , it equals
zero in 𝕜[]. Conversely, if భమ =  for some nonzero భ,మ ∈ 𝕜[], then  = (భ) ∪ (మ),
where the closed sets (భ), (మ) are proper. �

Corollar൰ 7.1
Given a polynomial  ∈ 𝕜[௫భ,௫మ, … ,௫], the affine hypersurface () ⊂ 𝔸 is irreducible if and
only if  =  for some irreducible  ∈ 𝕜[௫భ,௫మ, … ,௫] and  ∈ ℕ.

Proof. Since the polynomial ring 𝕜[௫భ,௫మ, … ,௫] is a unique factorization domain, a polynomial
 ∈ 𝕜[௫భ,௫మ, … ,௫] is irreducible if and only if the quotient ring 𝕜[௫భ,௫మ, … ,௫] ∕ () has no
zero divisors, and for every  the radical √() is the principal ideal generated by the product of
all pairwise non-associated irreducible divisors of . Therefore, 𝕜[()] = 𝕜[௫భ,௫మ, … ,௫]∕√()
has no zero divisors if and only if  has a unique (up to a constant factor) irreducible divisor. �

Example 7.5 (big open sets)
If  is irreducible, then any two nonempty open sets భ,మ ⊂  have nonempty intersection,
because otherwise  could be decomposed as  = (∖భ)∪(∖మ). In other words, any nonempty
open subset of an irreducible variety  is dense in . Thus, the Zariski topology is quite far from
being Hausdorf.

Exercise 7.11. Let  be an irreducible algebraic variety and , ∈ 𝕜[]. Prove that if () =
= () for all points  from a nonempty open subset  ⊂ , then  =  in 𝕜[].

Theorem 7.1
Any affine algebraic variety  admits a decomposition  = భ ∪ మ ∪ … ∪ ೖ, where all  ⊂ 
are closed irreducible and  ⊄ ೕ for all  ≠ . This decomposition is unique up to renumbering
of components.

Proof. If  is reducible, write it as  = భ∪మ, where భ,మ ⊂  are proper closed, and repeat the
procedure recursively for every component until it stops on some finite decomposition  = ⋃ഌ,
where all ഌ are irreducible. If the procedure newer stoped, we could chose an infinite strictly
decreasing chain of closed sets  ⊋ భ ⊋ మ ⊋ ⋯ , whose ideals form a strictly increasing chain
() ⊊ ூ(భ) ⊊ ூ(మ) ⊊ ⋯ in 𝕜[], which is impossible, because 𝕜[] is Noetherian. Now let
భ ∪ మ ∪ … ∪ ೖ = భ ∪ మ ∪ … ∪  be two decompositions satisfying the conditions of the
theorem. Since భ = ⋃(భ ∩ ) is irreducible, భ ∩  = భ for some , that is, భ ⊂ . By the
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same reason,  ⊂ ೕ for some . Since భ ⊄ ೕ for  ≠ ଵ, we conclude that భ = . Renumber
s in order to have భ = భ.
Exercise 7.12. Let  ⊊  ⊂  be closed, and  irreducible. Prove that  =  ∖  (the closure
within ). Convince yourself that this may fail for reducible .

Now we can remove భ and భ, and proceed by induction on the number of components. �

Definition 7.1
The decomposition  = భ ∪మ ∪ … ∪ೖ from Theorem 7.1 is called the irreducible decomposition
of the algebraic variety , and its components  ⊂  are called the irreducible components of .

Remark 7.1. (Noetherian spaces) Theorem 7.1 and its proof hold for any topological space 
that does not allow strictly decreasing infinite chains of closed subsets  ⊋ భ ⊋ మ ⊋ ⋯ . Every
such topological space is called Noetherian.
Proposition 7.8
A nonzero element  ∈ 𝕜[] is a zero divisor if and only if  has the zero restriction on some
irreducible component of .

Proof. Let  =  for some  ≠ . Write , ∈ 𝕜[] for the restrictions of ,  to the
irreducible component  ⊂ . Since 𝕜[] has no zero divisors, at least one of ,  vanishes for
every . Since  ≠  for some  (otherwise  =  in 𝕜[]), we conclude that  = . Conversely,
if  = , then  =  for every nonzero function  ∈ ூ (⋃ഌ≠ ഌ). �

7.3 Rational functions. For every commutative ring , the set of all non-zero-divisors

∘ ≝ { ∈  |  ≠  for all  ∈  ∖ }

is multiplicative, i.e., contains ଵ, does not contain , and for , ∈ ∘, the product  ∈ ∘. Thus,
one can localize  with respect to ∘, that is, consider the fractions1 ∕ with  ∈ ,  ∈ ∘. The
fractions are added and multiplied by the standard rules and form a ring denoted by ொಲ and called
the ring of fractions of the commutative ring . If  has no zero divisors, i.e., is a domain, then
∘ =  ∖  and ொಲ is a field, called the field of fractions of the domain .

For an affine algebraic variety , the 𝕜-algebra of fractions ொ𝕜[] is traditionally denoted by
𝕜() and called the algebra of rational functions on . Thus, a rational function on  is a fraction
∕, where , ∈ 𝕜[] and  is not a zero divisor, and భ ∕భ = మ ∕మ in 𝕜() if and only if
భమ = మభ in 𝕜[]. If  is irreducible, the algebra 𝕜() becomes a field.

A rational function  ∈ 𝕜() is said to be regular at a point ௫ ∈  if there exist a fraction
∕ =  such that (௫) ≠ . In this case, the number (௫) ≝ (௫)∕(௫) ∈ 𝕜 is referred to as the
value of  at the point ௫ ∈ .
Exercise 7.13. Verify that the value (௫) does not depend on the choice of admissible represen-
tation  = ∕.

1Given a multiplicative set ௌ ⊂ , the fraction ∕௦ with the denominator in ௌ is the class of pair (, ௦) ∈
×ௌ modulo the equivalence relation on ×ௌ generated by the identifications ೌ

ೞ = ೌ
ೞ for all  ∈ , ௦, ௧ ∈ ௌ.

It is a good exercise, to show that భ ∕௦భ = మ ∕௦మ if and only if (భ௦మ − మ௦భ)௧ =  for some ௧ ∈ ௌ. The
fraction can be added and multiplied by the usual rules, and form a commutative ring denoted by ௌ−భ and
called the localization of  with respect to ௌ. See details in: A. L. Gorodentsev. Algebra I. Textbook for
Students of Mathematics. Springer, 2016. Section 4.1.
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If a rational function  = ∕ has (௫) ≠  at some point ௫ ∈ , then  is regular at every
point in the principal open neighborhood 𝒟() of the point ௫. Moreover, by Proposition 7.8, this
neighborhood has nonempty intersection with every irreducible component of , because  is not
a zero divisor in 𝕜[]. Therefore, all points ௫ ∈ , at which  is regular, form an open dense subset
in . It is called the domain of  and denoted Dom().
Exercise 7.14. Verify that భ = మ in 𝕜() if and only if భ(௫) = మ(௫) for all ௫ in some open
dense subset of .

Proposition 7.9
Let  be an affine algebraic variety over an infinite field, and  ∈ 𝕜() a rational function. Then
ூ ≝ { ∈ 𝕜[] |  ∈ 𝕜[]} is an ideal in 𝕜[] with the zero set (ூ) =  ∖ Dom().

Proof. The closed set  ∖Dom() is the set of common zeros of denominators  ∈ 𝕜[]∘ appearing
in various fractional representations  = ∕. The intersection ூ ∩ 𝕜[]∘ consists exactly of these
denominators. It is enough to check that the intersection ூ ∩ 𝕜[]∘ generates the ideal ூ. Let us
show that it spans ூ even as a vector space over 𝕜. By Proposition 7.8, the complement ூ ∖ 𝕜[]∘,
which consists of all zero divisors in ூ, splits in the finite union of vector subspaces ூ ∩ ூ().
Since ூ ∩𝕜[]∘ ≠ ∅, every subspace ூ ∩ ூ() is proper. If the 𝕜-linear span of ூ ∩𝕜[]∘ is proper
too, the vector space ூ becomes a finite union of proper subspaces. The next exercise makes this
impossible. �
Exercise 7.15. Prove that a vector space over an infinite field cannot be decomposed into a finite
union of proper vector subspaces.
7.3.1 The structure sheaf. Given an affine algebraic variety , for every open  ⊂ , we put

𝒪() ≝ { ∈ 𝕜() | Dom() ⊃ } .

The assignment 𝒪∶  ↦ 𝒪() provides the topological space  with a sheaf1 of 𝕜-algebras,
called the structure sheaf of  or the sheaf of regular rational functions on . For an open  ⊂ , the
algebra 𝒪() is often denoted by 𝕜[] and referred to as the algebra of rational functions regular
in . This makes no confusion for  = , because of the following claim.
Proposition 7.10
Let  be an affine algebraic variety over an algebraically closed field and  ∈ 𝕜[]∘. Then

𝒪 (𝒟()) = 𝕜[][−భ] = {∕ |  ∈ 𝕜[],  ∈ ℤ⩾బ}

is the localization of 𝕜[] with respect to the multiplicative system of nonnegative integer pow-
ers .

1A presheaf ி of objects from a category 𝒞 on a topological space  is a contravariant functor from the
category of open subsets in  and inclusions of open sets as the morphisms to the category 𝒞. This means
that attached to every open  ⊂  is an object ி() in 𝒞, called sections of ி over . Depending on 𝒞, the
sections can form a set, a vector space, an algebra, etc Associated with every inclusion  ⊂ ௐ of open sets
is the morphism ி(ௐ) → ி(), called the restriction of sections from ௐ to . The restriction of a section
௦ ∈ ி(ௐ) to  ⊂ ௐ is commonly denoted ௦|ೆ. The functoriality of ி means that for every triple of nestled
open sets  ⊂  ⊂ ௐ and every ௦ ∈ ி(ௐ), the relation ௦|ೆ = �௦|ೇ|ೆ holds. A presheaf ி is called a sheaf ,
if for every set of sections ௦ ∈ ி() such that ௦|ೆ∩ೇ

= ௦ೕ|ೆ∩ೇ
for all , , there exists a unique section

௦ ∈ ி (⋃ ) such that ௦|ೆ
= ௦ for all .
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Proof. A rational function  ∈ 𝕜() is regular in 𝒟() if and only if () contains the closed
subset  ∖ Dom() = (ூ), see Proposition 7.9. By the strong Nullstellensatz1,  ∈ ூ for some
ௗ ∈ ℕ. Thus,  ⋅  ∈ 𝕜[], as required. �

Corollar൰ 7.2
𝒪() = 𝕜[].

Proof. Apply Proposition 7.10 for  = ଵ, 𝒟() = . �

Example 7.6 (principal open sets as affine algebraic varieties)
For every  ∈ 𝕜[]∘, the algebra 𝒪(𝒟()) = 𝕜[][−భ] ≃ 𝕜[][௧]∕ (ଵ − ௧) is finitely generated
and reduced, and the points of the principal open set 𝒟() ⊂  stay in bijection with the points
of the hypersurface (ଵ − ௧) ⊂  × 𝔸భ. The notation 𝕜[ �𝒟()] �, which may be treated either as
the coordinate algebra of the affine algebraic variety 𝒟() ⊂  × 𝔸భ or as the subring in 𝕜()
formed by the rational functions regular in the open set 𝒟() ⊂ , makes actually no confusion:
two interpretations agree by Proposition 7.10. The pullback homomorphism of the projection

గ∶ (ଵ − ௧) →  ,

which maps (ଵ − ௧) ⊂  × 𝔸భ isomorphically to 𝒟() ⊂ , is the canonical map

గ∗ ∶ 𝕜[] ↪ 𝕜[][−భ] ,  ↦ ∕ଵ ,

from a ring to its localization. By the universal property of the ring of fractions, this map is uniquely
extended to the isomorphism

గ̃∗ ∶ 𝕜() ⥲ 𝕜( �𝒟()) � . (7-4)

Caution 7.1. A nonprincipal open set  ⊂  might not be an affine algebraic variety, and the
canonical inclusion  ↪ Specm 𝒪(), sending a point ௨ ∈  to its maximal ideal 𝔪ೠ = ker evೠ ⊂
⊂ 𝒪(), may be nonsurjective.

Exercise 7.16. Let  ⩾ ଶ and  = 𝔸 ∖ை be the complement to the origin. Verify that 𝒪𝔸[] =
𝕜[𝔸] and therefore, Specm 𝒪𝔸[] = 𝔸 ≠ .

Proposition 7.11
Let  = భ ∪మ ∪ … ∪ೖ be the irreducible decomposition of an affine algebraic variety . Then
𝕜() = 𝕜(భ) × 𝕜(మ) × … × 𝕜(ೖ).

Proof. Write ூ = ூ( �⋃≠ೕ( ∩ ೕ)) � ⊂ 𝕜[] for the ideal of all regular functions on  vanishing on
every intersection  ∩ ೕ,  ≠ .
Exercise 7.17. Prove that ூ is linearly spanned over 𝕜 by ூ ∩ 𝕜[]∘.

Let us chose some regular function  ∈ ூ ∩ 𝕜[]∘ and write  =  (mod ூ()) ∈ 𝕜[] for its
restriction to the irreducible component  ⊂ . Then the affine algebraic variety

ௐ = 𝒟() = Specm 𝕜[][−భ]
1See Theorem 6.3 on p. 78.
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splits into a disjoint union of affine algebraic varieties
ௐ = ௐ ∩  = 𝒟() = Specm 𝕜[][−భ

 ] .

By Example 7.3, 𝕜[ௐ] ≃ 𝕜[ௐభ] × 𝕜[ௐమ] × ⋯ × 𝕜[ௐೖ].
Exercise 7.18. For family of commutative rings ഌ, prove that (∏ഌ)

∘ = ∏∘
ഌ as sets, and

deduce from this the isomorphism ொ∏ಲഌ ≃ ∏ொಲഌ for the rings of fractions.
Therefore, 𝕜() ≃ 𝕜(ௐ) ≃ ∏𝕜(ௐ) ≃ ∏𝕜() by formula (7-4). �

7.4 Geometric properties of algebra homomorphisms. Every homomorphism of finitely gen-
erated reduced 𝕜-algebras ఝ∗ ∶ 𝕜[] → 𝕜[] can be canonically factorized into a composition of a
quotient epimorphism followed by a monomorphism:

𝕜[] ക∗
భ // // 𝕜[]∕ker(ఝ∗) = im(ఝ∗) �

� ക∗
మ // 𝕜[] . (7-5)

Since 𝕜[] is finitely generated and 𝕜[] is reduced, the 𝕜-algebra 𝕜[]∕ker(ఝ∗) = im(ఝ∗) ⊂ 𝕜[] is
both finitely generated and reduced. Thus, it is the coordinate algebra of the affine algebraic variety
 = Specm (im(ఝ∗)) ≃  (ker(ఝ∗)) ⊂ . The injectivity of homomorphism ఝ∗

భ∶ 𝕜[] → 𝕜[]
means that there are no nonzero functions  ∈ 𝕜[] vanishing on ఝభ() ⊂ . Therefore, ఝభ()
is Zariski dense in . In other words,  = ఝ() ⊂  is the closure of ఝ() in , situated within
 as the zero set (ker ఝ∗) of the ideal ker ఝ∗ ⊂ 𝕜[]. Thus, the algebraic factorization (7-5)
geometrically corresponds to the factorization of a regular map of algebraic varieties ఝ∶  → 
into the composition

 കమ //  = ఝ() � � കభ // 
of the closed immersion  ↪  preceded by the regular morphism  →  with dense image.

7.4.1 Closed immersions. A regular morphism of affine algebraic varieties ఝ∶  →  is
called a closed immersion if its pullback homomorphism ఝ∗ ∶ 𝕜[] → [] is surjective. In this
case, ఝ establishes the regular isomorphism between  and the closed subset (ker ఝ∗) ⊂ . The
pullback of this isomorphism of algebraic varieties is the canonical isomorphism of 𝕜-algebras

𝕜[]∕ker ఝ∗ ≃ 𝕜[] .

For an irreducible closed subset  ⊂ , the pullback homomorphism ∗ ∶ 𝕜[] ↠ 𝕜[] of the
closed immersion ∶  ↪  takes values in the integral domain 𝕜[], canonically embedded into its
field of fractions 𝕜(). By the universal property of 𝕜(), the epimorphism ∗ is uniquely extended
to the epimorphism

evೋ∶ 𝕜() ↠ 𝕜() , (7-6)
which restricts the rational functions from  onto . Intuitively, the homomorphism (7-6) can be
thought of as the evaluation of rational functions at the «generic point» of . The result of such
evaluation is an element of 𝕜(), which may be further evaluated at particular points of . It follows
from the surjectivity of homomorphism (7-6) that every rational function on  is a restriction of
some rational function on , i.e. can be written as a fraction ∕ whose denominator  ∈ 𝕜[]∘ is
not a zero divisor in 𝕜[]. Note that such a presentation may be not so obvious in the case when
 ⊂  is an irreducible component of .
Exercise 7.19. Let  = (௫௬) = Specm 𝕜[௫,௬]∕(௫௬) be the Cartesian cross on the affine plane
𝔸మ = Specm 𝕜[௫,௬], and  = Specm 𝕜[௫] = (௬) be its horizontal component. Write the
rational function ଵ∕௫ ∈ 𝕜() as a fraction ∕ ∈ 𝕜(), where  ∈ 𝕜[]∘.
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7.4.2 Dominant morphisms. For an irreducible variety , a regular morphism of algebraic
varietiesఝ∶  →  is called dominant if its pullback homomorphismఝ∗ ∶ 𝕜[] → [] is injective.
As we have seen above, this means that ఝ() = . For reducible , a regular map ఝ∶  →  is
called dominant if its restriction ఝ = ఝ| onto every irreducible component  ⊂  assigns the
dominant map ఝ ∶  → . In this case the pullback ఝ∗

 ∶ 𝕜[] ↪ 𝕜[] ⊂ 𝕜() embeds 𝕜[]
in the field 𝕜(). In particular, this forces  to be irreducible. By the universal property of 𝕜(),
the previous inclusion is uniquely extended to the inclusion of fields 𝕜() ↪ 𝕜(). Thus, every
dominant morphism  = ⋃ →  leads to the inclusion 𝕜() ↪ ∏𝕜() = 𝕜().
Exercise 7.20. Prove that any dominant morphism of irreducible affine algebraic varieties
ఝ∶  →  can be factorized as

 �
� ഗ //  × 𝔸 ഏ // //  , (7-7)

where ట is a closed immersion, and గ is the projection along 𝔸.
7.4.3 Finite morphisms. Every regular map of affine algebraic varieties ఝ∶  →  equips

𝕜[] with the structure of a finitely generated algebra over the subringఝ∗(𝕜[]) = 𝕜[ఝ()] ⊂ 𝕜[].
The map ఝ is called finite if 𝕜[] is finitely generated as a module1 over ఝ∗([]), or equivalently,
if the extension of rings ఝ∗(𝕜[]) ⊂ 𝕜[] is an integral extension.

Proposition 7.12 (closeness of finite morphisms)
Let ఝ∶  →  be a finite morphism of affine algebraic varieties, and  ⊂  a closed subset. Then
ఝ() ⊂  is also closed, and the restriction ఝ|ೋ∶  → ఝ() is a finite morphism. For irreducible 
and proper  ⊊ , the image ఝ() ⊊  is also proper.

Proof. Write ூ = ூ() ⊂ 𝕜[] for the ideal of . The pullback homomorphism of the restricted map
ఝ|ೋ∶  →  is factorized asఝ|∗

ೋ∶ 𝕜[] ക∗
−→ 𝕜[] ↠ 𝕜[]∕ூ, where the second arrow is the quotient

homomorphism. Since 𝕜[] is finitely generated as ఝ∗(𝕜[])-module, the quotient 𝕜[] = 𝕜[]∕ூ
is finitely generated as a module over ఝ|∗

ೋ(𝕜[]) = ఝ∗(𝕜[]) ∕ ( �ூ ∩ ఝ∗(𝕜[])) �. Therefore, the
restricted map ఝ|ೋ∶  → ఝ() is finite. The equality ఝ() = ఝ() can be proved separately for
each irreducible component of . Thus, we can assume that  =  is irreducible, and  = . In this
case, ఝ∗ embeds  = 𝕜[] in  = 𝕜[] as a subalgebra  ⊂ , this extension of algebras is integral,
 has no zero divisors, and the map ఝ from  = Specm  to  = Specm  sends a maximal ideal
𝔪 ⊂  to the intersection 𝔪 ∩  ∈ Specm . We have to show that for every maximal ideal 𝔪 ⊂ ,
there exists a maximal ideal �̃� ⊂  such that �̃� ∩  = 𝔪. If the ideal 𝔪, spanned by 𝔪 in , is
proper, then every maximal ideal �̃� ⊂  containing𝔪 solves the problem. It remains to check that
𝔪 ≠  for every proper ideal 𝔪 ⊂ . Assume the contrary. Let 𝔪 =  for some maximal ideal
𝔪 ⊂ , and భ,మ, … , ∈  span  as a -module. Then (భ,మ, … ,) = (భ,మ, … ,) ⋅ெ
for some  ×  matrix with elements in 𝔪. Hence, (భ,మ, … ,) ⋅ (ா − ெ) = . Similarly to
the prove of Lemma 6.2 on p. 72, this implies that the multiplication by det(ா − ெ) annihilates ,
because it acts on the generators as

(భ,మ, … ,) ↦ (భ,మ, … ,) ⋅ (det(ா − ெ) ⋅ ா) = (భ,మ, … ,) ⋅ (ா − ெ)(ா − ெ)∨ ,
1That is, there are some భ,మ, … , ∈ 𝕜[] such that any  ∈ 𝕜[] can be written as  = ∑ఝ∗()

for appropriate  ∈ 𝕜[].
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where (ா − ெ)∨ is the adjunct matrix for (ா − ெ). Since  has no zero divisors, det(ா − ெ) = .
Expanding the determinant shows that ଵ ∈ 𝔪, i.e., the ideal 𝔪 ⊂  is not proper. Contradiction.

To prove the last statement of the Proposition, consider a nonzero function  ∈ 𝕜[] whose
restriction to  ⊊  is zero. It satisfies some polynomial equation with coefficients in ఝ∗([]). Let

ఝ∗(బ) +ఝ∗(భ)−భ + ⋯ +ఝ∗(−భ) +ఝ∗() = 

be such an equation of the minimal possible degree. Then  ≠ , because otherwise the degree
could be decremented by canceling1 one . Evaluation of the left hand side at all points ௭ ∈ 
shows that ఝ∗()|ೋ = |ക(ೋ) = . Hence, ఝ() ⊂ ()   is proper. �

7.4.4 Normal varieties. An irreducible affine algebraic variety  is called normal if its coor-
dinate algebra 𝕜[] is a normal ring in the sense of n∘ 6.3. This means that 𝕜[] is integrally closed
in the field of rational functions 𝕜(). Since every factorial ring is normal, every irreducible affine
variety with the factorial coordinate algebra is normal. For example, the affine space 𝔸 is normal
for every .
Proposition 7.13 (openness of finite surjection onto normal variet൰)
Let  be a normal affine algebraic variety. Then every finite regular surjection ఝ∶  ↠  is
open2 Moreover, for all closed irreducible subsets  ⊂ , every irreducible component of ఝ−భ() is
surjectively mapped onto .

Proof. Since ఝ∗ ∶ 𝕜[] ↪ 𝕜[] is injective, we can consider 𝕜[] as a subalgebra in 𝕜[]. It is
enough to show thatఝmaps any principal open set𝒟() ⊂  to an open subset of . This means that
for every point  ∈ 𝒟(), there exists a regular function  ∈ 𝕜[] such thatఝ() ∈ 𝒟() ⊂ ఝ(𝒟())
in . To construct such a function, consider the map

ట = ఝ ×  ∶  →  × 𝔸భ ,  ↦ ( �ఝ(),()) � .

Its pullback homomorphism ట∗ ∶ 𝕜[ × 𝔸భ] = 𝕜[][௧] → [] evaluates polynomials in ௧ with
coefficients in 𝕜[] at the element  ∈ 𝕜[]. Write ఓ for the minimal polynomial of  over
𝕜(). By Corollary 6.4, the coefficients of ఓ belong to 𝕜[]. This forces ట∗ to be the factorization
homomorphism modulo the principal ideal (ఓ) = ker ట∗ ⊂ 𝕜[ × 𝔸భ]. Thus, ట is the finite
surjection of  onto the hypersurface in  × 𝔸భ defined by the equation ఓ = . Let us write
ఓ = ఓ(௬; ௧) as the polynomial in the coordinate ௧ on 𝔸భ with the coefficients  ∈ 𝕜[]:

ఓ = ௧ + భ(௬)௧−భ + ⋯ + (௬) ∈ 𝕜[][௧] = 𝕜[ × 𝔸భ] .

The restriction of ఓ onto the line ௬×𝔸భ over a point ௬ ∈  is the polynomial in ௧ whose roots are
equal to the values of  at all points of  mapped to ௬ by ఝ. In particular, ఝ(𝒟()) consists of those
௬ ∈  over which the polynomial ఓ(௬; ௧) has a non-zero root. Since the polynomial ఓ(ఝ(); ௧)
that appears for ௬ = ఝ() has the root () ≠ , at least one of the coefficients of ఓ, say ೖ(௬),
does not vanish at ௬ = ఝ(). This forces the polynomial ఓ(; ௧) to have a nonzero root for all
 ∈ 𝒟(ೖ). Hence, 𝒟(ೖ) ⊂ ఝ(𝒟()) as required.

To prove the second statement, consider the irreducible decomposition గ−భ() = భ ∪ … ∪ 
and let  =  ∖ ⋃

ഌ≠
ഌ,ௐ =  ∩ =  ∖ ⋃

ഌ≠
ഌ. Since  is open in , its image ఝ() is open in

1This can be done, because 𝕜[] has no zero divisors.
2That is, ఝ() is open in  for any open  ⊂ .
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, and therefore  ∩ ఝ() = ఝ(ௐ) is open and dense within , because  is irreducible. By the
same reason,ௐ is dense in . Therefore, ఝ() = ఝ(ௐ) = ఝ(ௐ) =  ∩ ఝ() = . �



Comments to some exercises

Exrc. 7.1. If  =  and  = , then ( + )+−భ =  and () =  for all .
Exrc. 7.2. Since ∕𝔭 has no zero divisors for all prime 𝔭 ⊂ , every factorization map  ↠ 𝔭
by prime 𝔭 annihilates all the nilpotents. Thus, 𝔫() ⊂ ⋂ 𝔭. Conversely, let  ∈  be non-
nilpotent. Then all nonnegative integer powers  form the multiplicative system . Write [−భ]
for the localization1 by this system. This is a nonzero ring2. The full preimage of any prime ideal3
𝔪 ⊂ [−భ] under the canonical homomorphism  → [−భ] is the prime ideal of  that does not
contain .

Exrc. 7.6. Homomorphisms 𝕜[] × 𝕜[] ↠ 𝕜 stay in bijection with the pairs of homomorphisms
𝕜[] ↠ 𝕜, 𝕜[] ↠ 𝕜.

Exrc. 7.7. Since (భమ)⊗(భమ) is linear in each of four elements, the multiplication (భ⊗భ)⋅(మ⊗
మ) ≝ (భమ)⊗(భమ) is correctly extended to the 𝕜-bilinear map (⊗)×(⊗) → ⊗, which
provides ⊗  with a commutative associative binary operation. The required universal property
of maps  ഀ−→  ⊗  ഁ←−  follows from the universal property of the tensor product of vector
spaces. Namely, for any two homomorphisms of 𝕜-algebras with unit ఝ∶  → , ట∶  → , the
bilinear map × → , (,) ↦ ఝ() ⋅ట(), is uniquely passed through the tensor product ⊗.

Exrc. 7.8. Take the union of equations ഌ(௫) = , ഋ(௬) = , each considered as the equation on
the whole set of coordinates (௫,௬) in 𝔸 × 𝔸.

Exrc. 7.9. The equalities (a), (b), (c), and the inclusions (ூ) ∪() ⊂ (ூ∩) ⊂ (ூ) ⊂ (ூ) ∪()
in (d) follow immediately from the definitions. Note that coincidence (ூ∩) = (ூ) is equivalent
to the equality of radicals √ூ ∩  = √ூ, which can be easily verified independently.

Exrc. 7.10. Let  ⊂ 𝔸,  ∈ 𝕜[௫భ,௫మ, … ,௫]. If () = , then  ∈ ூ() and therefore, the class
of  in 𝕜[] equals zero. If () = ∅, then the ideal spanned in 𝕜௫ by  and ூ() has empty zero
set and therefore, contains the unity. Hence, ଵ ≡  (mod ூ()) for some  ∈ 𝕜[௫భ,௫మ, … ,௫].
Thus, the classes of  and  are inverse one to the other in 𝕜[].

Exrc. 7.11. Otherwise  = ( ∖) ∪ ( − ). More scientifically, this holds because both ,  are
continuous and  is dense.

Exrc. 7.12.  = ( ∩ ) ∪  ∖ , where the first subset of  is proper by the assumption.
Exrc. 7.15. Let  = భ∪మ∪ … ∪. For every , chose a nonzero linear form క ∈ ∗ annihilating
. Then  = ∏

=భ క ∈ ௌ∗ is the nonzero polynomial on  evaluated to zero at every point of
𝔸(). This is impossible over an infinite ground field.

Exrc. 7.16. Use the open covering  = ⋃𝒟(௫) and Proposition 7.10.
Exrc. 7.17. Every intersection ூ ∩ ூ() is a proper vector subspace of ூ, because if ூ ⊂ ூ(ഌ), then
ഌ ⊂ ⋃

≠ೕ
(∩ೕ) and therefore, ഌ ⊂ ∩ೕ for some  ≠ , although such inclusions are forbidden.

If the 𝕜-linear span of ூ ∩ 𝕜[]∘ is proper too, ூ splits in a finite union of proper vector subspaces.
Exrc. 7.20. Let  = 𝕜[],  = 𝕜[]. The inclusion ఝ∗ ∶  ↪  provides  with the struc-
ture of finitely generated -algebra. This allows to rewrite  as  ≃ [௫భ,௫మ, … ,௫] ∕ . Then

1See Section 4.1.1 of Algebra II.
2which may be a field
3which is zero if [−భ] is a field
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ట∗ ∶ [௫భ,௫మ, … ,௫] ↠  is the quotient homomorphism, and గ∗ ∶  ↪ [௫భ,௫మ, … ,௫] is the
inclusion of constants into polynomial ring.
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