§6 Commutative algebra draught

Everywhere in §6, the term «ring» means by default a commutative ring with unit. All ring homo-
morphisms are assumed to map the unit to the unit.

6.1 Noetherian rings. Every subset M in a commutative ring K generates an ideal (M) C K
formed by all finite sums b;a, + b,a, +:-- + b, ay,, where a,,a,, ..., a,, € M, by, b,,...,by €K,
m € N. Every ideal I C K is generated by some subset M C K, e.g., by M = I. Anideal ] C M
is said to be finitely generated if it admits a finite set of generators, that is, if it can be written as
I =(a,a,,...,ar) ={b;a, + bya, + - + bray | b; € K} for some a,,a,,...,a, €I.

LEMMA 6.1
The following properties of a commutative ring K are equivalent:

1) Every subset M C K contains some finite collection of elements a4, a,, ..., a; € M such that
(M) = (al’ a27 ey ak)'

2) Every ideal I C K is finitely generated.

3) For every infinite chain of increasing ideals I; C I, C I3 C --- in K there exists n € N such
that I, =1, forallv > n.

PROOF. Clearly, (1) = (2). To deduce (3) from (2), write I = |JI,, for the union of all ideals in
the chain. Then I is an ideal as well. By (2), I is generated by some finite set of its elements. All
these elements belong to some I,,. Therefore, I,, = I = I,, for all v > n. To deduce (1) from (3),
we construct inductively a chain of strictly increasing ideals I,, = (a,, a,, ..., @,) starting from an
arbitrary a; € M. While I, # (M), we choose any element ay,,; € M I, and put I, = (Qp1Ulg).
Since I, € I, in each step, by (3) this procedure has to stop after a finite number of steps. At that
moment, we obtain I, = (a4, Qy, ..., Ay) = (M). O

DEFINITION 6.1
A commutative ring K is called to be Noetherian if it satisfies the conditions from Lemma 6.1. Note
that every field is Noetherian.

THEOREM 6.1 (HILBERT’S BASIS THEOREM)
For every Noetherian commutative ring K the polynomial ring K[x] is Noetherian as well.

PROOF. Consider an arbitrary ideal I C K[x] and write Ly C K for the set of leading coefficients
of all polynomials of degree < d in I including the zero polynomial. Also we write L,, = U, Ly for
the set of all leading coefficients of all polynomials in I.

EXERCISE 6.1. Verify that all of the L; and L, are the ideals in K.

Since K is Noetherian, all ideals L; and L, are finitely generated. For all d (including d = o0), write

(1'1), (zd), e %Z € K|[x] for those polynomials whose leading coefficients span the ideal L; C K.
Let D = maxdeg f §°°). We claim that polynomials f{° and ﬁd) for d < D generate I. Let us show first

that each polynomial g € I is congruent modulo f (1°°), (2°°), cees %’12 to some polynomial of degree
less than D. Since the leading coefficient of g lies in L, it can be written as Y, A;a;, where 1; € K
and a; is the leading coefficient of f §°°). Aslong as deg g > D all differences m; = degg —deg f §°°)

are nonnegative, and we can form the polynomialh =g — Y A;- f Ew)(x) . x;ni, which is congruent
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to g modulo I and has deg h < deg g. We replace g by h and repeat the procedure while degh > D.
When we come to a polynomial h = g (mod I) such that degh < D, the leading coefficient of h
falls into some Ly with d < D, and we can cancel the leading terms of h by subtracting appropriate
combinations of polynomials fj-d) for 0 < d < D until we get h = 0. (Il

COROLLARY 6.1

For every Noetherian commutative ring K, the ring K[x,, X5, ..., X,] is Noetherian. g
EXERCISE 6.2. For every Noetherian commutative ring K show that the ring K [[x, X5, ..., x,] of
formal power series in x{, x,, ..., x,, with coefficients in K is Noetherian as well.

COROLLARY 6.2
Every infinite system of polynomial equations with coefficients in a Noetherian commutative ring
K is equivalent to some finite subsystem.

PROOF. Since K[x;,X5,...,Xy] is Noetherian, among the right hand sides of a polynomial equa-
tion system f,(x;,X5,...,X,) = O there is some finite collection f, f,,..., fm that generates
the same ideal as all the f,,. This means that every f, = g.f1 + g>f2 + -+ + gmfm for some
gi € K[x1,x,,...,x,]. Hence, every equation f,, = 0 follows from f, = f, = -+ = f,,, = 0. O

EXERCISE 6.3. Show that all quotient rings of a Noetherian ring are Noetherian.

CAUTION 6.1. A subring of a Noetherian ring is not necessary Noetherian. For example, the ring
C[z]] is Noetherian by Exercise 6.2. However, the subring H C C[z] of holomorphic functions’
f : C - C is not Noetherian, because there exist a sequence of holomorphic functions f,,: C - C
such that for all n € N, f,,(z) = 0 exactly for z € Z ~ [-n, n] and therefore, I, = (f1,f2...., fn)
form an infinite chain of strictly increasing ideals.

EXERCISE 6.4. Construct such a sequence (f,),cy €xplicitly.

6.2 Integral elements. An extension of rings is a pair A C B, where A is a subring of a ring B
and both rings have common unit. Given such a ring extension A C B, an element b € B is called
integral over A if it satisfies the conditions of the following lemma.

LEMMA 6.2 (CHARACTERIZATION OF INTEGRAL ELEMENTS)
The following properties of an element b € B in a ring extension A C B are equivalent:

(1) p=a, b™*+ - +a,_,b+a,, forsomemeNanda,,a,,...,a, €A.
(2) The A-linear span of all nonnegative integer powers b™ is a finitely generated A-module.

(3) There exists a finitely generated A-module M C B such that bM C M and b’M # 0 for all
nonzero b’ € B.

PROOF. The implications (1) = (2) = (3) are obvious. Let us show that (3) = (1). Fix some
€1,€y,..., ey spanning M over A. Then (be,, be,, ... ,bey) = (€4, €5, ...,e,) - Y for some matrix

!That is, power series converging everywhere in C.
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Y € Mat,,,(4) and therefore, (e;,e,,...,e,) - (bE —Y) = 0. It follows from the matrix identity!
detX - E = X - XV, where X is a square matrix over a commutative ring, E is the identity matrix
of the same size, and X" is the adjunct matrix? of X, that the image of multiplication by det X lies
in the linear span of the columns of the matrix X. For X = (bE —Y) € Mat,,(B), this means that

det(bE —Y)-M is contained in the B-linear span of vectors (e, e,, ..., ey) - (bE —Y), which is zero.
The last property in (3) forces det(bE — Y) = 0. Since all elements of Y lie in A, the latter equality
can be rewritten in the form appearing in (1). O

DEFINITION 6.2

Let A C B be an extension of rings. The set of all elements b € B integral over A is called the
integral closure of A in B. If it coincides with A, then A is said to be integrally closed in B. If all
elements of B are integral over A, then the extension A C B is called an integral ring extension, and
we say that B is integral over A.

EXAMPLE 6.1 (Z 1S INTEGRALLY CLOSED IN Q)
Let A =7, B = Q. If a fraction p/q € Q with coprime p,q € Z satisfies a monic polynomial

equation
m-—1

p™ p
q—m:alﬁ+ +am_1a+am

with a; € Z, then p™ = a;qp™ * + - + a;p_19q™ 1p + a,,q™ is divisible by g. Since p, q are

coprime, we conclude that g = +1. Hence, Z is integrally closed in Q.

EXAMPLE 6.2 (INVARIANTS OF A FINITE GROUP)

Let a finite group G act on a ring B by ring automorphisms, and B¢ € {a € B|ga =a Vg €G } be
the subring of G-invariants. Then B is integral over B¢. Indeed, write by, b,, ..., b, for the G-orbit
of an arbitrary element b = b; € B. Then b is a root of the monic polynomial

f&) =[]t - bo) € B®1t]
as required in the first property of Lemma 6.2.

PROPOSITION 6.1

Let A C B be an extension of rings, and Ag C B the integral closure of A in B. Then Ap is a subring
of B, and for any ring extension C D B, every element ¢ € C integral over Ag is integral over A as
well.

PROOF. If elements p, q € B satisfy the monic polynomial equations

1P e X D+ X
a"t+ e +Yno1 g+ Y

for some x,,y, € A, then the products p'q/ with 0 < i <m—1,0 < j < n— 1 span a finitely
generated A-module, containing the unit and mapped to itself by the multiplication by p and by q.

IThis is n = 1 case of the Laplace identity X, - X}, = det X - E from the Example 4.4 on p. 47.
2That is, transposed to the matrix of algebraic complements (—1)"*/ x;; to the elements x;; of matrix X,
see Example 4.4 on p. 47.
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Therefore, it satisfies the condition (3) from Lemma 6.2 for both b = p + q and b = pq. Similarly,
if the monic polynomial equations

"=z, + o+ 2z CH 2,

m —
Z =g 2™+ e+ Q-1 2K+ Qm, 1S KST,

hold for some ¢ € C, z;,2,, ..., Z, € Ag, and Ay € A, then the A-linear span of products

cizlizl ozl 0<i<r—1,0<j,<m—1,

contains the unit and goes to itself under the multiplication by c. Thus, c is integral over A. (I

PROPOSITION 6.2 (GAUSS — KRONECKER — DEDEKIND LEMMA)

Let A C B be an extension of rings, and f, g € B[x] monic polynomials of positive degree. Then all
coefficients of the product fg are integral over A if and only if all coefficients of the polynomials
f, g are integral A.

PROOF. Let C D B be an extension of rings such that the polynomials f, g are completely factoris-
able in C[x] as f(x) = [[(x — @;) and g(x) = [[(x — B,) for some a,,, B, € C. Then their product
h(x) = f(x)g(x) = [[(x — a) [](x — B,) is also completely factorisable.
EXERCISE 6.5. Given a finite set of monic polynomials of positive degree in B[x], prove that
there is an extension of rings B C C such that all polynomials become completely factorisable
in C[x].
If all coefficients of h are integral over A, then all the roots a,, 8, € C are integral over Ac and
therefore integral over A by Proposition 6.1. Since integral elements form a ring, all coefficients
of both f, g, which are the symmetric functions of a,,, B, are also integral over A. The same
arguments work in the opposite direction as well. O

PROPOSITION 6.3
Let A C B be an integral extension of rings. If B is a field, then A is a field too. Conversely, if A4 is
a field and B has no zero divisors, then B is a field.

PROOF. Let B be an integral field over A. Then, for any nonzero a € A, the inverse elementa™* € B
satisfies a monic polynomial equation a™™ = a; a>™™ + -+ + a1 a”! + @, for some a, € A.
Multiplication of the both sides by a™~! shows that a™! = a; + a,a + - + a,, a™ ! € A.
Conversely, if B is an integral algebra over a field A, then for every b € B, the A-linear span
of all nonnegative integer powers b™ is a vector space V of finite dimension over A. If b # 0, the
linear endomorphism b : V — V, x — bx, is injective, because B has no zero divisors. This forces
it to be bijective. The preimage of the unit 1 € V is b™1. (Il

6.3 Normal rings. A commutative ring A without zero divisors is called normal if A is integrally
closed in its field of fractions Q4. In particular, every field is normal. The same arguments as
in Example 6.1 show that every unique factorization domain A is normal. Indeed, a polynomial
apt™ + a;t™ 1 + - + a;,_1t + a,, € A[t] annihilates a fraction p/q € Q4 with (p,q) = 1 only
if q | ap and p | a,,. Therefore, a, = 1 forces g = 1. As a consequence, the polynomial rings over
a unique factorization domain are normal. For normal rings, Proposition 6.2 leads to the following
classical claim going back to Gauss.
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COROLLARY 6.3 (GAUSS LEMMA II)
Let A be a normal ring, Q4 its field of fractions, and f € A[x] a monic polynomial. If f = gh in
Q4l[x] for some monic polynomials g, h, then f, g € A[x]. O

COROLLARY 6.4
Under the conditions of Corollary 6.3, let B O Q4 be a ring extending Q4. If an element b € B is
integral over A, then the minimal polynomial! of b over Qg4 lies in A[x].

PROOF. Since b is integral over A, there exists a monic polynomial f € A[x] such that f(b) = 0.
The minimal polynomial of b over Q4 divides f in Q4[x], and the quotient is also monic. It remains
to apply Corollary 6.3. O

6.4 Algebraic elements. Let B be a commutative algebra with unit over an arbitrary field k.
Given an element b € B, we write k[b] C B for the smallest k-subalgebra containing 1 and b. It
coincides with the image of evaluation map

evy, : kix] > B, fw~ f(b). 6-1)

Recall that b is said to be transcendental over k if ker evy, = 0. In this case, k[b] ~ k[x] is infinite-
dimensional as a vector space over k and is not a field. If ker ev,, # 0, that is, f(b) = 0 for some
nonzero polynomial f € k[x], the element b is algebraic. In this case, ker(evy,) = (up) is the
principal ideal in k[x] generated by the minimal polynomial of b over k, and k[b] = k[x]/(up)
has dimension deg u}, as a vector space over k. This dimension is called the degree of b over k and
denoted by deg; (b). Note that the algebraicity of b over k means the same as the integrality, and
in this case, every element in k[b] is algebraic, and the algebra k[b] is a field if and only if it has
no zero divisors. This certainly holds if B has no zero divisors. On the other side, k[b] has no zero
divisors if and only if the minimal polynomial yj is irreducible in k[x].

6.5 Finitely generated algebras over a field. A commutative k-algebra B with unit is said to
be finitely generated if there are some elements by, b,, ..., b, € B such that the evaluation map

©Vp. by, by - K[X1, X, . Xm] = B, x; > by fori =1, 2, ..., m, is surjective. In this case, B =
klx1, %5, ..., xm]/I, where the ideal I = kerev, ,  , consist of all polynomial relations between
the generators® by, b, ... , by, of the algebra B. It follows from the Corollary 6.1 and Exercise 6.3 on

p. 72 that all finitely generated commutative k-algebras are Noetherian, and the ideal of polynomial
relations between any set of generators for such an algebra is finitely generated.

THEOREM 6.2
If a finitely generated commutative k-algebra B is a field, then every element of B is algebraic
over k.

PROOF. Let elements by, b,,...,b,, generate B as an algebra over k. We proceed by induction
on m. The case m = 1, B = k[b], was already considered in n° 6.4. Let m > 1. If b,, is algebraic
over k, then k[b,,] is a field. By induction, B is algebraic over k[b,,], and Proposition 6.1 forces
B to be algebraic over k as well. Thus, it is enough to check that b,, actually is algebraic over k.

1 That is, the monic polynomial p;, € Q4[x] of minimal positive degree such that u,(b) = 0.

2Generators of an algebra should be not confused with generators of a module. If elements e, e,, ..., ey
span a ring B over a subring A C B as a module, this means that B consists of finite A-liner combinations
of these elements e;, whereas if b,,b,,...,b,, span B as an A-algebra, then B is formed by finite linear
combinations of various monomials biibgz ...bm.
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Assume the contrary. Then the evaluation map (6-1) is injective for b = b,;, and is uniquely
extended to an embedding of fields k(x) < B by the universal property of the quotient field. Write
k(b,,) C B for the image of this embedding. This is the smallest subfield in B containing b,,. By
induction, B is algebraic over k(b,,). Therefore, every generator b;, 1 < i < m — 1, is a root
of some polynomial with coefficients in k(b,,). Multiplying this polynomial by an appropriate
polynomial in b,, allows us to assume that all (m — 1) polynomials annihilating the generators
by,b,, ..., by, have coefficients in k[ b,, | and share the same leading coefficient, which we denote
by p(b,,) € k[b,,]. Thus, the field B is integral over the subalgebra F = k[b,,, 1/p(b,,)] C B
spanned over k by the elements b,,, and 1/p(b,,). By the Proposition 6.3, F is a field. This forces p
to be of positive degree, because otherwise F = k[b,,,] is not a field. Now we claim that the element
1+ p(b,,) has no inverse in F. Indeed, in the contrary case, there exists a polynomial g € k[x, x;]
such that g (by,, 1/p(by)) - (1 + p(by)) = 1. Write the rational function g (x, 1/p(x)) as
h(x)/p*(x), where h € k[x] is not divisible by p in k[x]. Then we get the polynomial relation
h(by) - (P(by)+1) = p¥(b,,) on b,,. It is nontrivial, because the left hand side has positive degree
and is not divisible by p(x) in k[x]. Contradiction. O

COROLLARY 6.5
Let a field [F be finitely generated as an algebra over a subfield k C F. Then F has finite dimension
as a vector space over k.

PROOF. If FF is generated as a k-algebra by algebraic elements b4, b,, ..., by, then the monomials
by'b3? ... byt with 0 < s; < degy b; linearly span F over k. U

6.6 Transcendence generators. Everywhere in this section we write A for a finitely generated
k-algebra without zero divisors, and Q4 for its field of fractions. Given a collection of elements
a,,a,,...,a, € A, we write k(a,, a,, ...,a,,) C Q4 for the smallest subfield containing all these
elements.

Elements a,, a,, ..., a;, € A are called algebraically independent if the evaluation map

eVia,.ap,...am) - k(xi, X2, ..., Xpm] > A, xXj > a;, 1<i<m,

is injective, that is, there are no polynomial relations between a,, a,,...,a,,. In this case the
evaluation map is uniquely extended to the isomorphism of fields

k(xy, X2, ..., xm) = k(aq,a,, ...,a;m) C Q4.

which maps a rational function of (x4, x5, ..., X;,) to its value at (a4, a,, ..., Q).

Elements aq,a,,...,a,, € A are called transcendence generators of A over k, if any element
of A is algebraic over k(a;,a,,...,a;,). In this case the whole field Q4 is also algebraic over
k(aq,a,, ..., a,,), because the integer closure of k(a,,a,,...,a;) in Q4 is a field by Proposi-
tion 6.3, and Q4 is contained in any field containing A by the universal property of the field of
fractions.

An algebraically independent collection a4, a,, ..., a,, of transcendence generators of A over
k is called a transcendence basis of A over k. Since any proper subset of a transcendence basis is al-
gebraically independent, the transcendence bases can be equivalently characterized as the minimal
with respect to inclusions collections of transcendence generators, or as the maximal algebraically
independent collections.

Similarly to the bases of vector spaces, any two transcendence bases of A have the same cardi-
nality, and the proof is based on the same Exchange Lemma.
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LEMMA 6.3 (EXCHANGE LEMMA)

Let elements a4, a,, ..., a,, be transcendence generators of A over k, and let by, b,, ..., b, € A be
algebraically independent over k. Then n < m, and after appropriate renumbering of the a; and
replacing the first n of them by by, b,, ..., by, the resulting elements by, b,, ..., by, Apniqs .- » Ay
are transcendence generators of A as well.

PROOF. Since b, is algebraic over k(a,, a,, ..., a,,), there is a polynomial relation

f(bl? al,az,...,am)ZO, fEk[xl,xz,...,Xm+1].

Since b, is transcendental over k, this relation contains some a;. After appropriate renumbering,
we can assume that i = 1. Then a, and therefore all of Q4 is algebraic over k(b,, a,, ..., a;n).
Assume by induction that by, ..., by, k44, ... , @y are transcendence generators of A over k for
k < n. Since by, is algebraic over k (bl, vee s Dgy Qpyqs oo s am), there is a polynomial relation

f (b1, ..o s iy Dryas Qpeggs v s @) =0, f €KXy, X0, 00, Xppq].

It must contain some ay,;, because of algebraic independence of b;,b,,...,b, over k. Hence,
m > k and after renumbering of the remaining elements a;, we can assume that a,_, is algebraic
over k (bl, e s Dly1s Qpyos -on s am). Therefore, all of the Q4 is algebraic over this field too. This
completes the induction step. O

COROLLARY 6.6

Let A be a finitely generated commutative k-algebra without zero divisors. Then all transcendence
bases of A over k have the same cardinality, any system of transcendence generators of A over k
contains some transcendence basis, and every algebraically independent collection of elements in
A can be included in a transcendence basis. O

DEFINITION 6.3
The cardinality of a transcendence basis of a finitely generated commutative k-algebra A without
zero divisors is called the transcendence degree of A and denoted tr deg A.

EXAMPLE 6.3
Let A C k(t) be a k-subalgebra different from k. Then tr deg, A = 1. Indeed, for every

¥ =f(t)/g(t) € ANk,

the element t satisfies the algebraic equation ¥ - g(x) — f(x) = 0 with the coefficients in k().
This forces the whole of k(t) to be algebraic over k(1)) C Q4 and 1 to be transcendental over k,
because otherwise, t would be algebraic over k. Thus, any i) € A\ k is a transcendence basis for
both A and k(t).

6.7 Systems of polynomial equations. Any system of polynomial equations
fv(xl’xZ’”"xn):O’ fVEk[xbev‘”vxn]a (6'2)

can be extended to a system whose left hand sides form the ideal J C k[x,, x,,...,x,] spanned
by the polynomials f,, from (6-2). The extended infinite system has the same set of solutions in
the affine space A™ = Aff(k™) as the original system, because the equalities f, = 0 imply the
equalities )’ g, f, = 0 for all g,, € k[x4,X,, ..., X,]. Since the polynomial ring is Noetherian, the
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system f = 0, f € ], is equivalent to a finite subsystem consisting of equations whose left hand
sides generate J. Moreover, by the Lemma 6.1 on p. 71, this finite set of generators can be chosen
among the original polynomials f, from (6-2). Thus, every (even infinite) system of polynomial
equations is always equivalent, on the one hand, to some finite subsystem, and on the other hand,
to a system of equations f = 0, where f runs through some ideal in k[x;, x5, ..., x,].

Given an ideal J C Kk[x;,x,, ..., x,], its zero set V(J) € {a € A™| f(a) = 0 VfeE ] }is
called an affine algebraic variety determined by J. Note that V(J) may be empty. This happens, for
example, if ] = (1) = k[x4, x5, ..., X, ] contains the equation 1 = 0.

Associated with an arbitrary subset @ C A™ is the ideal

(@)L {f eklxy,Xp,....xp]| f(p) =0 forallp € &},

called the ideal of @. Its zero set V(I(®)) is the smallest affine algebraic variety containing &. For
every ideal J C k[x{, x,, ..., x,] there is the tautological inclusion J C I(V(J)). In general, it is
proper. Say, for n = 1, the ideal ] = (x?) C k[x] determines the variety V(x?) = {0} C A® whose
ideal is I(V(x?)) = (x) 2 (x?).

THEOREM 6.3 (HILBERT’S NULLSTELLENSATZ)

Let k be an algebraically closed field, J C k[x,, x,, ..., x,] an ideal, \/7 LifldmeN: fMme])
the radical of J. Then I(V(])) = \/7 (the strong Nullstellensatz). In particular, V(J) = @ if and only
if 1€ J (the week Nullstellensatz).

PROOF. Let us prove the week Nullstellensatz first. It is enough to show that for any proper ideal
J € k[xq,%5,...,x,], there exists a point p € A™ such that f(p) = 0 for all f € J. Without loss of
generality the ideal J can replaced by a maximal proper ideal m D J.

EXERCISE 6.6. Convince yourself that an ideal m in a commutative ring K is maximal among the
proper ideals of K partially ordered by inclusions if and only if the quotient ring K /m is a field.

Thus, we can assume that the quotient ring k[x;, x,, ..., x,]/mis a field. Since it is finitely generated
as a k-algebra, the Theorem 6.2 forces every element 9 € k[x,, x5, ..., x,]/mto be algebraic over k,
that is, to satisfy an equation u(9) = 0 for a monic irreducible polynomial u € k[t]. Since k is
algebraically closed, the polynomial u has to be linear, and therefore, 9 € k. In other words, every
polynomial is congruent modulo m to a constant. Write p; € k for the constant congruent to x;.
Then the factorization homomorphism k[x;, x,, ..., x,] = k[x;,x,,...,x,]/m ~ k maps every
polynomial f(x,,x5,...,Xy,) to the class of constant f(p;,p5,...,Pn) € k. Since all f € m are
mapped to zero, they all vanish at p = (p;, D2, ...,Pn) € A™, as desired.

The strong Nullstellensatz is trivial for V(J) = @. Assume that V(J) # @, that is, J # (1).
Consider A™ as the hyperplane t = 0 in the affine space A™*! with the coordinates

(t, X1, X5, .., Xp)-

If a polynomial f € k[xy, x5, ...,x,] C k[t, x;,X,,...,X,] vanishes everywhere on the cylinder
V(J) c A™"1, then the polynomial g(t,x) = 1 — t f(x) equals 1 at every point of V(J). Therefore,
the ideal spanned in K[¢t, X, X5, ...,X,] by J and g(t, x) has the empty zero set in A"*1, By the
week Nullstellensatz, this ideal contains 1, i.e., there exist q,, 44, ..., qs € K[t, x1, X5, ..., x,] and
f1.f2s-.., fs € J such that qo(x, t) - (1 = tf(x)) + q4(t, %) - f1(X) + - + qs(x, ) - f5(x) = 1. The
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homomorphism k[t, x, x5, ..., %,] = k(xq,x,,...,x,) acting on the variables as t — 1/ f(x),
x, — x, for 1 < v < n, maps this equality to the equality

a1 (1/f(x), x) - f1(0) + - +qs(1/F(x), x) - fs(x)=1. (6-3)

in the field k(x;, x5,...,X,). Since 1 € J, some qv(l /f (x),x) have nontrivial denominators.
All these denominators are canceled via multiplication by f™ for some m € N. Multiplying both
sides by this f™ leads to the required equality f™(x) = q;(x) - f1(x) + -+ + qs(x) - fs(x) with
gy € K[x1, x5, ..., %51 O

6.8 Resultants. Given a system of homogeneous polynomial equations

fl(xO,xl, ceesy xn) =0
fz(xo,xl, ...,xn): 0 (6_4)
fm(xo’xh EAR xn) =0 5

where every f; € k[x,, x4, ..., X,] is homogeneous of degree d;, the set of its solutions, considered

up to proportionality, is the intersection of m projective hypersurfaces S; = V(f;) C P(V), where
V = k™1, The projective hypersurfaces of degree d in P(V) can be viewed as points of the projective
space P(S9V*). All collections of hypersurfaces (S;, S,, ..., Sp,) of given degrees d,, d,, ... , d,, With
nonempty intersection [); S; # @ form the figure

R+ 1;dy,dy, ..., dp) CP(SHV*) X P(S%2V*) X - X P(S4mV*), (6-5)

called the resultant variety of the homogeneous system (6-4). When m = n + 1 and all d; = 1, the
system (6-4) becomes the system of linear equations Ax = 0 with the square matrix A = (ai ]-). It
has a nonzero solution if and only if det (ai j) = 0. Thus, in this simplest case, the resultant variety is
a projective variety determined by one multilinear equation of total degree n+ 1 on the coefficients
a;j. We are going to check that the resultant variety (6-5) can always be described by a system
of polynomial equations in the coefficients of the polynomials f;. This system is called a resultant
system. It depends only on the number of variables and the collection of degrees d,,d,,...,dn.
Every resultant equation is homogeneous in the coefficients of each polynomial.

Write ] = (f1, f2,---» fm) C K[xg, X4, ..., xy] for the ideal spanned by the polynomials (6-4).
If V(J) is exhausted by the origin, then every coordinate linear form x; vanishes on V(J), and
therefore, all x| € J for some m € N by the strong Nullstellensatz. This forces J to contain all
homogeneous polynomials of degree d > (m — 1)(n + 1). Conversely, if J] D SV* for all d > 0,
then the system (6-4) implies the equations x& = x¢ = .- = x4 = 0, and therefore, has only the
zero solution. For any d € N, the intersection ] N S*V* coincides with the image of k-linear map

(Go:g1>- )~ L Gv fy

Ug : ST hyr @ syt @ ... @ STdmy* s4, (6-6)

The matrix of this map in the standard monomial bases consists of zeros and the coefficients of
polynomials f,,. For d > 0, the dimension of the left hand side in (6-6) grows as

§<n+d—dv)den
] n n!
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and becomes greater that the dimension of the right hand side, which grows as

<n + d) 1 an
n n!

Thus, for every d > 0, the condition Siy* ¢ J, thatis, the non-surjectivity of the map (6-6), means
that the rank of the matrix of u; is not maximal. This is equivalent to the vanishing of all minors
of the maximal degree in the matrix. Thus, the resultant variety is the zero set of all these minors
written for all d such that the dimension of the left hand side of (6-6) is not less than that of the
right han side. Since the polynomial ring is Noetherian, this huge system of equations is equivalent
to some finite subsystem. If the ideal of the resultant variety (6-5) is not principal, such a system
of resultants is not unique in general.

EXAMPLE 6.4 (RESULTANT OF TWO BINARY FORMS)
Let the ground field k be algebraically closed. Then every homogeneous binary form of degree d

fto,t)) =agtd+astotét+a,t2td 2+ - +ag_td 1t +a,td

has d roots @y, @y, ..., a4, a; = (a} : af), on P; = P(k?) and is factorized as

d d
t t
— " _ ! — 0 1
f(t()» tl) - g(al t() altl) gdet <a/ c{//>

L L

The coefficients of f are expressed as the homogeneous polynomials in the roots by means of the
homogeneous Viéte’s formulas: a; = (-1)%*gr(a’, a”), where

opla’,a”) = 2 (H aj; -Haf’)

#I=k icl jél

and I runs through the strictly increasing sequences of k indexes. In particular, a is bihomogeneous
of bidegree (k,d — k) in (a’, a”). Let us fix two degrees r, s € N and consider the polynomial ring
kla’',a”,B’, B"] in four collections of variables

[ ! ! !’ n _ " ” ”
a =(ag,as,...,a5) a’" =(af,ay,..., a4

B =(B1:Bs. - Br) B =(B1.Bz..... BY).

Within this ring, consider the product

R (aiey - arf)) = [T = o [T o
J= =

ij

The polynomial R is bihomogeneous of bidigree (r's,7s) in (a, B). It is evaluated to zero at the
roots a, f of binary forms f(to,t;) = X7 a;tott™, g(to.ty) = ]r':o b; tht7"’ if and only if
these forms have a common root in P;. Let us show that R is expressed as a polynomial Rf, in

the coefficients a; = (-1)" ‘oy(a’, a”), b; = (—1)m_joj(ﬁ’, B") of f, g by the following Sylvester
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formula
a, a, as D
aO al cee cee as
. >r
a, a as | J
R, = det 6-7
r9 =% by b, b, ©7
b, b, b,
. >S
by by - - b))
T':S

where the matrix in the right hand side is transposed to the matrix of the linear map (6-6) written
forn=1, m =2, and d = s + r — 1 in the standard monomial bases, when it turns to

Usir_q - STV @ SSV* - §5Y7-1y* . (hy,hy) = fhy + gh,, dimV =2,

and the both sides are of equal dimension r + s.
EXERCISE 6.7. Verify this carefully.

Write S = S(a’,a”,B',B8") € kla’,a”,B’, B"] for the Sylvester determinant from the right
hand side of (6-7), and put D;; = a; B} — a; p;. For every point (a, f) € V(D;;), we have the
equality (aj'ty — ajt;) = (B{to — it;) up to a constant factor, and this linear form divides f(t),
g(t), and all polynomials f(t)h,(t) + g(t)h,(t) in K[t,,t;]. Hence, im p,rs_; # ST51V*, and
therefore, S(a, ) = 0. Thus, S vanishes identically on V(D;;). By the strong Nullstellensatz, some
power of S is divisible by D;;. Since D;; is irreducible and the polynomial ring k[a’, a”, B’, B"] is
factorial, D;; divides S, and therefore, S is divisible by the product Ry, of all D;;. Comparison of
the degrees and coefficients of the lexicographically maximal monomials in S and Ry, shows that
these two polynomials must be equal.

We conclude that the resultant variety (6-5) for a pair of binary forms f, g of degrees s, 7 is
the hypersurface! in P; X P, determined by one equation R rg = 0 on the coefficients of f, g. The
polynomial Ry ;4 is called the resultant of f, g. For t, = 1, t; = X, it is specialized to the resultant
Ry . 9. Of tWo non-homogeneous polynomials f,(x) = f(1, %), garr(x) = g(1, x) in one variable x.
Under the assumption that? ayb, # 0, the resultant R f.m.g.¢ Vanishes if and only if the polynomials
faft> 9ae have a common root in k.

'In Example 9.1 on p. 112, we will see that the same holds for any system of homogeneous polynomial
equations in which the number of equations equals the number of unknowns.

21t says that both binary forms f, g do not vanish at the point (0 : 1), the infinity of the affine chart U,
in which the coordinate x is defined.



Comments to some exercises

EXRC. 6.1. Let polynomials f(x),g(x) € I have degrees m > n and leading coefficients a, b.
Then a + b equals either zero or the leading coefficient of polynomial f(x) + x™ ™ - g(x) € I of
degree m. Similarly, for every @ € K the product aa either is zero or equals the leading coefficient
of polynomial af(x) € I of degree m.

EXRC. 6.2. Repeat the arguments proving Theorem 6.1 on p. 71 but cancel non-zero monomials of
the lowest degree instead of the leading.

EXRC. 6.3. Let : A » B be the quotient epimorphism. The complete preimage 7~ 1(I) of every
ideal I C B is an ideal in A, and therefore, it is generated by a finite set of element. Their images
under 7T generate I.

EXRC. 6.4. Begin with f, = zsin(2miz).

EXRC. 6.5. It is enough to construct such extension for just one monic irreducible polynomial f €
B[x] of positive degree. If deg f = 1, put C = B. Then use induction on deg f. The quotient ring
D = B[x]/(f) contains B as the subring formed by residue classes of the constants. Write 9 € D
for the residue class of x. Then f(9) = 0 and therefore, f is divisible by (x — 9) in D[x], that is,
becomes a product of irreducible monic polynomials of smaller degree in D[x].

EXRC. 6.6. An element a € K \ m is invertible in K /m if and only if 1 € (a,m).
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