84 Tensor Guide

4.1 Tensor products and Segre varieties. Let V,,V,,...,V, and W be vector spaces of dimen-
sions d,,d,,...,d, and m over a field k. Amap ¢ : V; XV, X -+ XV,, > W is called multilinear,
if it is linear in each argument when all the other are fixed:

o(..., AW +uv”, .. )=2A@(..., v, .. )+ uel.,v",..).

Multilinear maps V,; XV, X --- XV, — W form a vector space denoted Hom(V{,V,, ...,V ;W). As
soon some bases e;, e,, ..., e, € W and e(li), eg), ,egi) € V;, 1 £ i< n, are fixed, every multilin-
ear map ¢ € Hom(V,,V,,...,V,; W) can be uniquely described by the values on all collections of
basis vectors:
o e&ll), e&zz), e eg;)) = Z q{frdetn) o ey
v
that is, by m - [] d,, constants aﬁ,"‘l’“”"’“") € k, which can be organized in the matrix of dimension
(n + 1) and size! m x d; X d, X -+ X d,,. The multilinear map ¢ corresponding to such a matrix
sends a collection of vectors vy, V,, ..., Vy, where v; = Ziizl xgl.) egi) e V;yfor1 <i<n,tothe
vector
m

Q1. V3, ..., Vp) = 2( Z P R AR -xfz’f[))-ev ew.

V=1 ay,a,,...,Q,
Thus, dimHom(V,,V,, ..., Vy; W) =dimWw - [],, dimV,,.

EXERCISE 4.1. Check that A) a collection of vectors v,v,,..., v, € Vi XV, X -+ XV,
does not contain the zero vector if and only if there exists a multilinear map ¢ such that
@Wq,V,,...,v,) # 0 B) for alinear F: U — W and multilinear ¢ : V, XV, X - XV, - U,
the composition Fe @ : Vy XV, X -+ XV, — W is multilinear.

4.1.1 Tensor product of vector spaces. Given a multilinear map
T:leVZX'“XVn—)U (4'1)

and a vector space W, composing T with linear maps F : U — W assigns the map

F—Fo
Hom(U, W) —— s Hom(Vy, Vs, ...,V W) (4-2)
which is obviously linear in F.

DEFINITION 4.1

A multilinear map (4-1) is called universal if for any vector space W, the linear map (4-2) is an
isomorphism. In the expanded form, this means that for every vector space W and multilinear map
@:ViXV,yX - XV, —> W, there exist a unique linear operator F : U — W such that ¢ = F o T,
i.e., two solid multilinear arrows in the diagram

U
T
|
|
|
|

Y

ViXVyX oo XV F

1)
w

1 The usual matrices of dimension 2 and size d X m describe linear maps V — W.
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4.1. Tensor products and Segre varieties 39

are uniquely completed to a commutative triangle by the dashed linear arrow.

LEMMA 4.1
For every two universal multilinear maps

Tl:V]_XVzX"'XVn—)Ul, TZ:V]_XVZX"'XVTL—)Uz,
there exists a unique linear isomorphism ¢ : U; = U, such that 7, = t1;.

PROOF. By the universal properties of 7,, T,, there exists a unique pair of linear maps F,, : U; — U,
and Fq, : U, — U, that fit in the commutative diagram

Uy U,
\\ 7 7, //
Fyy N 7 F
21 N 7 7 » 12
IdU1 UZ%VJ_XVZX oo XVn—>U1 IdUz
Fip 7 Fa
/s T T AN
y ! z 0N
Uy U,

Since the factorizations T, = ¢ © Ty, T, = Y ° T, are unique and hold for ¢ =1dy , ¥ =1dy, , we

CODClude that F21F12 = IdU2 and F12F21 = Idul. |:|
LEMMA 4.2 - .
Given a basis el”, e, ..., egi) eVifor1<i<n,writeV; ®V, ® -+ ® V,, for the vector space

with basis formed by [] d; formal expressions
e%)®eg2)®---®eg;), 1<a;<d;. (4-3)

Then the multilinear map 7 : V, XV, X - XV, >V, ®V, ® --- ® V,, sending every collection
1) () (n)

of basis vectors (eal, €ys s ean) €V, XV, X - XV, to the expression (4-3) is universal.

PROOF. For a multilinear ¢ : V; XV, X -+ XV, > Wandlinear F: V,®V, ® - Q V,, - W,
the identity ¢ = F o T mans exactly that F(egzll) ® efxzz) ® ... 0 eg}f) = (p(efxll), efzzz), e efﬁl)) for all
collections of basis vectors. O

DEFINITION 4.2
The universal multilinear map (4-1) is denoted by

TIVIXVX - XV =2 ViQV,® - QVy, (V1,V3,...,0) P V1@V, Q - Qv (4-4)

and called tensor multiplication. The target space V; @ V, ® --- ® V, is called the tensor product of
spaces V,,V,, ..., V, and its elements are called tensors.

4.1.2 Decomposable tensors and Segre varieties. The image of tensor multiplication (4-4)
consists of the tensor products v; @ v, ® --- ® v,, called tensor monomials or decomposable tensors.
They do not form a vector space, because the map (4-4) is not linear but multilinear. However, the
linear span of decomposable tensors is the whole space V, ® V, ® -+ ® V,,. Over an infinite ground
field, a random tensor is most likely an indecomposable linear combination of tensor monomials.
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Geometrically, the tensor multiplication assigns a map
ST PWV)XPWV)X - XPV) =P (V; @V, ® - @Vy) (4-5)

sending a collection of dimension 1 subspaces k - v; C V; spanned by non zero vectors v; € V; to
the dimension 1 subspace k- v; @ v, @ - QV, CV; QV, ® -+ QV,,.

EXERCISE 4.2. Verify that the map (4-5) is a well defined and injective.

The map (4-5) is called the Segre embedding and its image, i.e., the projectivization of the set of
decomposable tensors, is called the Segre variety. Since the decomposable tensors linearly span the
whole space, the Segre variety is not contained in a hyperplane. Note that the dimension of Segre
variety equals ). m;, where m; = d; — 1, and is much smaller then dim P (V1 RV, - ® Vn) =
= [[(1+m;)—1. By the construction, the Segre variety is ruled by n families of projective subspaces
of dimensions m,,m,, ..., m,. The simplest example of the Segre variety is provided by the Segre
quadric from n° 2.5.1 on p. 22.

EXAMPLE 4.1 (DECOMPOSABLE LINEAR MAPS)

For any two vector spaces U, W, the bilinear map U* X W — Hom(U, V) is provided by sending
(¢é,w) € U* X W to the linear operator U -» W, u — (&, u) - w. By the universal property of
tensor multiplication, there exists a unique linear map

U*®V — Hom(U,V) (4-6)

sending every decomposable tensor £ @ w to the same operator. Note that this operator has rank 1,
its image is spanned by w € W, and the kernel is Ann(§) C U.

EXERCISE 4.3. Check that A) every linear map F : U — W of rank 1 equals £ ® w for appropriate
& € U*, w € W uniquely up to proportionality determined by F B) the linear map (4-6) is an
isomorphism for any vector spaces U and V of finite dimensions.

Geometrically, the operators of rank 1 form the Segre variety S C P;,,_1 = P(Hom(U, W)), which is
ruled by two families of projective spaces £ @ P(W), P(U*)®w and is not contained in a hyperplane.
If we fix some bases in U, W, write operators U — W by their matrices A = (ai j) in these bases,
and use the matrix elements a;; as the homogeneous coordinates in P(Hom(V, W)), then the Segre
variety is described by the equation rk A = 1, which encodes the system of homogeneous quadratic
equations

a.. a.
det < Y Lk) =Qpjapx — AigQpj = 0
Aej  QApg

forall1<i<?<dimW,1<j<k<dimU. The Segre embedding
PU*) XP(V) =Pp_y X Py & Py = P(Hom(U, W))

takes a pair of points x = (x; : X, ! = I Xp), Y =1 I Yy i - ! Yp) to the rank 1 matrix
A(x,y) = y*-x whose a;j = xjy;. FordimU = dimW = 2, we get the Segre quadric in IP; discussed
inn°2.5.1 on p. 22.

4.2 Tensor algebra and contractions. Given a vector space V, we write V" =V QV ® - QV
for the tensor product of n copies of V an call it the n th tensor power of V. We also put V®° ¥

v®1 ¥ v The infinite direct sum TV & Do V®" s called the tensor algebra of V. This is



4.2. Tensor algebra and contractions 41

an associative (non-commutative) graded algebra with the multiplication provided by the tensor
product of vectors. For every basis e,, e,, ..., e, in V, the tensor monomials

evl ® ev2 ® o0 ® evm (4'7)

form a basis of TV over k. These monomials are multiplied just by writing them sequentially
with the sign ® between then. Linear combinations of monomials are multiplied by the usual
distributivity rules. Thus, TV may be thought of as the algebra of polynomials in n non-commuting
variables e,. Another name for TV is the free associative k-algebra with unit spanned by the vector
space V. This name emphasizes the following universal property of the k-linear map

L: VSTV (4-8)

embedding V into TV as the subspace V®? of linear homogeneous polynomials.

EXERCISE 4.4. Prove that for every associative k-algebra A with unit and k-linearmap f: V — A4,
there exists a unique homomorphism of associative k-algebras a : TV — A such that! f = ao..
Convince yourself that this property characterizes the inclusion (4-8) uniquely up to a unique
isomorphism of the target space commuting with the inclusion.

4.2.1 Total contraction and duality. There is the canonical pairing between (V*)®™ and V®"
provided by the total contraction, whichsends § = ¢, ® &, ® - ® &, V=1, @V, ® - vV, to

(£, v) & []C& v). (4-9)

Since the right hand side is multilinear in v;’s, every collection of &;’s assigns the well defined linear
map V®" — Kk, which depends on &;’s also multilinearly. Hence, the contraction of decomposable
tensors (4-9) is uniquely extended to the bilinear pairing v*®" x y®n , k. For a pair of dual
bases eq,e,,...,e, €V, X1,%X,,...,X, € V¥, the tensor monomials e, Ve, ® - Qe and
Xj, ®xj, ® -+ @ xj_form the dual bases of TV and TV* with respect to this pairing. In particular,
for a finite dimensional vector space V, we have the canonical isomorphism

(ven)" ~ ()" . (4-10)

It follows from the universal property of V®" that the space (V®n)* of the linear maps V®" — k
is canonically isomorphic to the space of multilinear maps V XV X --- XV = L, i.e.,

(v®")" ~ Hom(V, ...,V ; k). (4-11)
Combining (4-10) and (4-11) leads to the canonical isomorphism
V*®" ~ Hom(V, ... ,V; k). (4-12)

It sends a decomposable tensor &; ® &, ® --- ® &, to the multilinear map V XV X --- XV — k
taking (vy, vy, ..., vn) = [, §i(vy).

'n other words, for every k-algebra A, the homomorphisms of k-algebras TV — A stay in bijection with
the k-linear maps V — A.
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4.2.2 Partial contractions. Consider two inclusions® of sets

1,2, ....p)——>(1,2 ... m =12, ... q),

and write i,, j, for I(v), J(v) respectively. Thus, we have two numbered collections of indexes
I = (1,05, 5im), ] = (1,2, ---» Jm) Staying in the fixed bijection. A partial contraction of y*®P
and V®4 in indexes I, J is the linear map

which contracts i, th factor of v*®P with Jjv th factor of V®4 for every v = 1, 2, ... , m and keeps
all the other factors in their initial order:

$185:,Q &V ®V; ® - vy - H:;n=1<€iv’ Uh)‘(%fi) ® (%}Vj)- (4-13)
i j

Note that different choices of the maps I, J lead to the different contraction maps even if the images
of I, J remain unchanged.

EXAMPLE 4.2 (INNNER PRODUCT BETWEEN VECTORS AND MULTILINEAR FORMS)

Let us treat a n-linear form ¢@(v;,v,,...,v,) as a tensor from V@™ via isomorphism (4-12). The
contraction of this tensor with a vector v € V in the first tensor factor is a tensor from V*®(n_1),
which can be considered as an (n — 1)-linear form on V. This form is called the innner product of v
and ¢ and denoted by i,¢ or v _¢.

EXERCISE 4.5. Check that i,@(W{, W5, ...,Wy_1) = @V, W1, Wy, ... ,Wp_1).

4.2.3 The linear support of a tensor. Given a tensor t € V®", the intersection of all vector
subspaces W C V such that t € W®™" is called the linear support of t and denoted by Supp(t) C V.
It follows from the next the Exercise 4.6 that Supp(t) is the unique minimal® subspace in V among
those W C V for which t € wW®n,

EXERCISE 4.6. For any subspaces U, W C V, verify that U®™ n W®" = (U N W)®" in V®",

def

The dimension of Supp t is called the rank of t and denoted by rkt = dim Supp t. We say that t is
degenerated if rkt < dim V. In this case, the number of variables in the expansion of ¢ through the
basis tensor monomials can be reduced by a linear change of variables.
EXERCISE 4.7. Show that if dim Supp(t) = 1 and the ground field is algebraically closed, then
t=21-v® forsomelek,veV.
The space Supp(t) admits an effective description as a linear span of some finite collection of vectors
constructed by means of contraction maps. Namely, for every injective®> map

J:{1,2, ..., n-1}>{1,2,...,n}, (4-14)

write {jy, jz, ..., jn_1} C {1,2, ..., n} for the image of J and j for the remaining index outside
im J. Consider the contraction map

. -1 1,2,..., -1
oy Ly Céjl,jz,...,;(':_o))(f ®t) (4-15)

! Not necessary monotonous.
ZWith respect to inclusions.
Not necessary monotonous.
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which couples v th tensor factor of v*@m) with j th tensor factor of t forall 1 < v < (n — 1).

The result of such contraction is obviously a linear combination of j th tensor factors of t. Thus, it
belongs to Supp(t).

THEOREM 4.1
For every t € V®™, the linear support Supp(t) C V is spanned by the images of all contraction maps
(4-15) coming from n! different choices of the map (4-14).

PROOF. Let Supp(t) = W C V. It is enough to check that every linear form & € V* annihilating

all the subspaces im (c{) annihilates W as well. Assume the contrary: let a linear form & € V*

annihilate all ci (V*®(n_1)) but have a non-zero restriction on W. Chose a basis ¢,,¢,,...,&4 € V*
such that &; = & and the restrictions of &;,&,, ..., &, on W form a basis in W*. Expand t through
the tensor monomials built from the dual basis vectors wq,w,, ..., w, € W. The value

£(c(6, 96,0 08,,))

is equal to the complete contraction of t with the basic monomial §; ® §,, ® §,, ® - ® ¢, _ in
the order of coupling prescribed by J. This contraction kills all tensor monomials in the expansion
of t except for the one, dual to the monomial obtained from §; ® §,, ® ¢,, ® - ® &, | by some
permutation of factors depending on J. Thus, the result of contraction is equal to the coefficient of
some monomial containing w, in the expansion of t. Since every such monomial can be reached
by appropriate choice of J, we conclude that w; ¢ Supp(t). Contradiction. O

4.3 Symmetric and grassmannian algebras. A multilinear map ¢ : VXV X -« XV — U is
called symmetric if it remains unchanged under permutations of the arguments, and alternating if it
vanishes as soon some of the arguments coincide.

EXERCISE 4.8. Verify that under a permutation of the arguments, the value of an alternating
multilinear map is multiplied by the sign of permutation. Convince yourself that this property
implies the alternating property if char k # 2.

We write Sym™(V,U) c¢ Hom(V,...,V;U) and Alt"™(V,U) C Hom(V,...,V;U) for subspaces of
symmetric and alternating multilinear maps. Everything said about the universal multilinear maps
in n°4.1.1 on p. 38 makes sense separately for the symmetric and alternating maps as well. The
universal symmetric multilinear map is denoted by

O :VXVX o XV >SW, (V,Vy,...,05) > V1V, ... Uy, (4-16)

and called the commutative multiplication of vectors. Its target space S™V is called the n th symmetric
power of V. The universal alternating multilinear map is denoted by

A:VXVX o XV o> AW, (V1,Vy,...,0n) > V3 AU A - AUy, (4-17)

and called the exterior' multiplication of vectors. Its target space A™V is called the nth exterior
power of V. The universal symmetric and alternating multilinear maps are unique up to a unique
isomorphism of the target space commuting with the universal map. The both can be constructed
for all n at once by factorizing the tensor algebra TV by appropriate two-sided ideals.

! Also known as grassmannian or super-commutative.
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4.3.1 The symmetric algebra. Write I.,,, C TV for a two-sided ideal spanned by all the
differences
UuUw-wu, uwebv. (4-18)

This ideal is obviously homogeneous in the sense that .oy, = @550 (Icom N V®”), and the degree n
component Iy, N VO™ of I, is linearly generated over k by all differences of the form

("'®U®W®"')—("'®W®U®"'), (4_19)

where the both terms are decomposable of degree n and vary only in the order of v, w. The factor
algebra SV £ TV /I, is called the symmetric algebra of V. The multiplication in SV comes from
the tensor multiplication in TV and is commutative, because of the relations uw = wu appearing
after the factorization through (4-18). The symmetric algebra is graded

sv=@Ps"v, wheres"V £ VO /(I ,, NVEM).

nzo

EXERCISE 4.9. Show that for every basis e;, e,, ..., ey C V, the monomials e]"*e;"? --- e;nd form
a basis of SV over k.

Thus, we get an isomorphism of algebras SV ~ k[e,,e,,...,e4z]. Under this isomorphism, S™V
turns to the subspace of homogeneous polynomials of degree n.

EXERCISE 4.10. Deduce from the universal property of tensor multiplication that the map
VXV X XV > SW

provided by the multiplication in SV is the universal symmetric multilinear map. Convince
yourself that SV is the free commutative k-algebra spanned by V in the sense that for every
commutative k-algebra A and k-linear map f : V — A, there exists a unique homomorphism
of k-algebras ]?: SV — Asuch that f = ¢ o1, where t : V & SV embeds V in SV as the space
of linear homogeneous polynomials. Show that the latter embedding is uniquely characterized
by the previous universal property up to a unique isomorphism commuting with ¢.

4.3.2 The exterior'algebra of a vector space V is defined as the factor algebra AV & TV /Iy,
where I,; C TV is the two-sided ideal generated by all tensor squares v @ v, v € V.

EXERCISE 4.11. Check that the space I,;; N V®? contains all sums v @ w + w @ v, v,w € V, and
is linearly generated over k by these sums if char k # 2.

The ideal I, also splits in the direct sum of homogeneous components

L= @ (L nVe").
>0

=

The degree n component I, N V®" is spanned by decomposable tensors of the form
(- VRV ), VEV.

By the Exercise 4.11, all the sums (- Q VQW® --) + (= QW Qv ® ---) belong to I,;; N V™
as well and linearly generate it over k as soon char k # 2. The multiplication in AV is called the

! Also known as the grassmannian algebra or free super-commutative algebra of V.
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exterior' multiplication and denoted by the wedge sign A. Note that for any u,w € V, the relations
uAu=0and u Aw = —w A u hold in A?V. Hence, under a permutation of factors, the exterior
product of vectors is multiplied by the sign of permutation:

Vg ESk ViIAV;A - AV =5g0(g) Vg, AVg, A =+ AUy, .

This property of a multiplication is known as the super-commutativity. Like the symmetric algebra,
the exterior algebra is graded:

AV =@ AV,  where A"V € VO /(1 N VE™).

nzo

EXERCISE 4.12. Deduce from the universal property of tensor multiplication that the map
VXV X XV > A"

provided by the exterior multiplication in AV is the universal alternating multilinear map.
Convince yourself that AV is the free super-commutative k-algebra spanned by V in the sense that
for every super-commutative k-algebra A and k-linear map f : V — A, there exists a unique
homomorphism of k-algebras j?: SV — A such that f = @ o, where ¢ : V & SV embeds V in
AV as the subspace AV = V®, Show that the latter embedding is uniquely characterized by
the previous universal property up to a unique isomorphism commuting with t.

PROPOSITION 4.1

For every basis ey, e,, ..., €4 in V the grassmannian monomials e; £ e;, Aey, A -+ Ae; , numbered
by strictly increasing multi-indexes I = (i, i5,...,iy), 1 < i; < i, < -+ < iy < d, form a basis of
A"V,

PROOF. Write U for the vector space of dimension (g) with the basis formed by symbols &;, where

I = (iy, i,, ..., Iy) runs through all strictly increasing sequences of length nin 1, 2, ... ,d. Consider
the multilinear map @ : VXV X --- XV — U that takes an arbitrary collection e; , e;,, ..., ej of
the basis vectors from V to a(e; ,ej,,...,ej, ) = sgn(o) - &1, where I = (jy1), Jo2)s -+ » Jo(n)) 18
the strictly increasing permutation of the indexes ji, j,, ..., j, and we put a(e; ,ej,,...,ej ) =0

when some of j,’s coincide. For any alternating multilinear map ¢ : VXV X - XV — W, there
exists a unique linear operator F : U — W such that ¢ = F o a: the action F on the basis of U
has to be F(§(, i,.....i,)) = P(ei,,€;,, ..., e; ). Thus, a is the universal alternating multilinear map.
Hence, there exists an isomorphism U = A™V sending &; — e;, A€, A -+ Ae; = ey. O

COROLLARY 4.1
dimA™V = (%), where d = dimV. In particular, A"V = 0 for n > d, and dim AV = 2%

EXERCISE 4.13. Check that @ A B = (=1)*? 8 A «a for any a € A%V, B € APV, and describe the
centre? Z (AV).

lor grassmannian, or super-commutative
2That is, all elements commuting with every element of the algebra.
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4.3.3 Grassmannian polynomials. It follows from the Proposition 4.1 that every choice of
basis e,, e,, ..., 4 in a vector space V assigns the isomorphism of k-algebras

AV > k<leq,e,,....e4) ,

where k<eq,e,, ..., ey stays for the algebra of grassmannian polynomials, i.e., polynomials with
coefficients from k in the variables e; satisfying the relations e; Ae; = 0 and e; A ej = —ej Ae;.
When work with the grassmannian polynomials, we always write I = (iy, i5, ..., i,) for a strictly
increasing collection of indexes, I= (fl, fz, ,fd_n) = {1,2,...,d} ~ I for the complementary
strictly increasing collection, and #I ¥ n for the length of I. The sum |I| ¥ Y., iy is called the weight
of I.

EXERCISE 4.14. Check that e, A e; = (—=1)/1#2H+D o e, A oo Ay,

EXAMPLE 4.3 (LINEAR SUBSTITUTION OF VARIABLES)
Let the variables e, e,, ..., e, be linearly expressed through the variables &,,¢,, ..., &, as

e =) ;i (4-20)
j

for some n X m matrix A = (ai ]-). Then the grassmannian monomials e; are expressed through &;
as

=l Nl A Al = (Z Gisjy Eh) A (Z i, j, s‘jz) A A (Z A jy fjn) =
J1 Ja Jn
= Sgn(a)ailja(naizjg(z) ainja(n)fh /\Ej2 A e /\f]-n = Zal]fj’
1<j1<jp<<jp<n 0€S, 7

where J runs through increasing collections of length n and a;; denotes the n X n minor of A
situated in the rows iy, i,, ..., I, and columns j;, j,, ..., ju.

EXAMPLE 4.4 (MULTIROW COFACTOR EXPANSIONS OF DETERMINANT)
Let us perform the substitution (4-20) in the identity from the Exercise 4.14 using a square d X d
matrix A. The left hand side of the identity turns to

La1(1+#1 K
(Z aleK) A ( Z aiLEL) = (—1)z*O+#D Z(—l)l la”(an?f1 ANEZNA - Néq.
K: L: K:
#K=#] #L=(d—#I) #K=H]

The right hand side becomes (—1)%#1(”#’)(—1)“| det(a;j)-§1 A2 A -+ Aéq. Thus, for every collection

I = (i, 13, ..., i) of rows in a square matrix A = (a;;), the following relation holds
K|+
Y (1)Kl a;n = det(ay)) (4-21)
K:
#K=H#I
where the summation goes over all n X n minors a;x situated in the rows (i, i, ..., in).

If we replace [ by another collection / complementary to the other J # I, then we get in the
right hand side e; A e; = 0. Thus, for every J # 1,

Y (—)Killg ae =0, (4-22)
#KI’(::#I
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The identities (4-21) and (4-22) are known as the Laplace relations. They generalize the cofactor
expansions of determinants. If we organize n Xn minors of A and their complements in two (z)x(g)
matrices A, = (a,]) and Ay, = (a}’]), where! a,vj = (—1)|I|+|]|aﬁ, then all the Laplace relations
can be combined in the one matrix identity A, - Ay, =det A - E.

EXERCISE 4.15. Write the Laplace relations for multicolumn cofactor expansions and prove that
A, - Ay, =det A-E as well.

EXAMPLE 4.5 (REDUCTION OF GRASSMANNIAN QUADRATIC FORM)
Certainly, a grassmannian quadratic form can not be reduced to a «sum of squares» like in the
Proposition 2.1 on p. 16. However, every homogeneous grassmannian polynomial of degree two
over an arbitrary field k takes in appropriate coordinates the form

E1NE+ 83N+ - + &0 1 Ao, (4-23)

called the Darboux normal form. To achieve it for a given w € A%V, we renumber the initial basis
e1,€,,...,ey of Vinsuch a way that w = e; A(aze, + - +ane,) +e; A(Bzes+ -+ + fnen) +
(terms without ey, e,), where @, # 0. Then we pass to the new basis {e;, {5, e, ... , e, } which has
&, =a,e, + - + ayey,. The substitution e, = (52 — fies — - — ,Bnen)/az in w leads to

w=e; AN+ & A(yze; + - +Ynpep) + (terms without &,) =
=(eq —y3€3 — - —¥Ynen) A&, + (terms without ey, &,).
Now we pass to the basis {&;,¢,,e3, ... ,e,}, where &, = e; — y3e;3 — -+ — Ynen,. In this basis,
w = &; A&, + (terms without &4, &,)

and we can continue by induction.

CONVENTION 4.1. In the rest of §4 we assume on default that char(k) = 0.

4.4 Symmetric and alternating tensors. The symmetric group S,, acts on V®" by permutations
of factors in decomposable tensors: for g € S, we put

gW1 @V @ = @ Vn) =Vg) ®Vg2) ® = ® Vyn)- (4-24)

Since the right hand side is multilinear in v;, v,, ..., v, this formula assigns the well defined linear
map g : VO - vy,

DEFINITION 4.3

A tensor t € V®" is called symmetric, if g(t) = t for all g € S,,. A tensor t € V®" is called
alternating, if g(t) = sgn(g) - t for all g € S,,. We write Sym"V = {t € V®*|Vg € S,, a(t) =t}
and Alt"V = {t € V®"| Vg € S, g(t) = sgn(g)} for the space of symmetric and alternating
tensors respectively. Note that both are the subspaces in V®", and they should not be confused
with the quotient spaces S™V, A™V of V®",

!Note that I, J swap places.



48 84 Tensor Guide

4.4.1 Standard bases. For every basis e,, €5, ..., e4 in V, a basis of Sym™ V is formed by the
complete symmetric tensors

et the sum of all tensor monomials containing
€[m,.m,....mql = (4-25)
m, factors e;, m, factors e,, ..., my factors e, ,

because all the summands appear in the expansion of every symmetric tensor t with equal coeffi-
cients. The tensors (4-25) are indexed by the collections of non-negative integers (m,,m,, ... ,my)
such that ), m, =n.

EXERCISE 4.16. Make it sure that the sum (4-25) consists of ——"— terms.
myImy!--mg!

Similarly, a basis of Alt™ V is formed by the complete alternating tensors

Cliripin) £ D sEN(G) - €1, B 1y, ® - ey, (4-26)
gESH

numbered by increasing sequences 1 < i; < i, < - <i, <d.

4.5 Polarization of commutative polynomials. The quotient map V®" - S™V sends every
summand of (4-25) to the same commutative monomial e *e; " - e;nd. Thus, this map sends
€im,.m,....my] tO W:md' ceftel ... egld. Over the ground field of zero characteristic, we
conclude that for every n, the factorization through the commutativity relations assigns the iso-

morphism Sym™ V = S™V. The inverse isomorphism is denoted by
pl: SV = Sym™V, f f,

and called the complete polarization of polynomials. For the dual space V*, the complete polar-
ization map pl: S™V* = Sym™V* sends every monomial f = xi'xy? - x:lnd to the tensor

f = ml':”;—',md' * X[m,m,,...my) € Sym" V*, which can be viewed as the symmetric multilin-
earmap f: VXV X ... XV — k acting on a collection of vectors v, v,, ..., v, EV XV - XV via

the complete contraction with v; Q v, ® -+ Q@ v,,.

EXERCISE 4.17. Verify that for every v € V, the complete contraction of v®™" with

my! my! - my!
n! x[mbmz ----- mgy]
: : : my ,.Mm; mgq
is equal to the result of evaluation of monomial x; *x,? --- x;¢ € k[xy,x;,...,x,] on the

coordinates of v.

We conclude that the polynomial function f : A(V) — k attached to a homogeneous polynomial
f € S™V in n°1.1.2 on p. 3 is described in coordinate-free terms as f(v) = f(v, v,...,V), where
f~ € Sym™ V* C v*®" is the unique symmetric tensor mapped to f under factorization through the
commutativity relations and considered as a symmetric multilinear map V XV X --- XV — k. For
n = 2, we get the polarization of quadratic forms considered in n°2.1.1 on p. 16.

Since the value f(vl, v,,...,V,) does not depend on the order of arguments, we write

~( k k k
f(wll,wzz,...,wss)
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when the collection (v,,v,, ..., v,) consists of k; vectors w,, k, vectors w,, ... , kg vectors wy.

EXERCISE 4.18. For any polynomial f € S™V* and vectors vy, v,, ..., V) € V, show that

(v +v,+ - +vy) =17((v1 +V, 4 +vk)n) =

n! ~ (4-27)
Z ﬁ'f(v;nl’vglz’“wv;cnk) ’
mym,...my ml. mz. b mk
where the summation goes over all integer m,, m,, ... ,my such that m; + my+ - + my =n

and 0 < m,, < n for all v.

PROPOSITION 4.2
The complete polarization of a homogeneous polynomial f € S™V* on a vector space! V over a
field of zero characteristic can be computed by the formula

n!'f(vl?v27‘-‘7vn)= Z (_1)#If<zvi)7 (4'28)
1¢(1,...,n} il
where the left summation goes over all proper subsets I C {1, 2, ..., n}, including I = @, for

which we put #@ = 0.

EXAMPLE 4.6
For homogeneous quadratic and cubic polynomials g € S2V*, f € S3V*, we get

2q(u,w) = qu+w) —qu) — qw),
6f(u,v,w) =fu+v+w)—fu+v)—flu+w)—fw+w)+ fw)+ f)+ f(w).

PROOF OF THE PROPOSITION 4.2. In the expansion (4-27) for
f@i+ v+ +vn)=f (01 402+ = +v)")

there is just one term containing all the vectors v;,v,, ..., V,, namely n! ~f(v1, v,,...,V,). Fora
proper subset I ¢ {1, 2, ... , n}, every summand which contains no v; with i € I appears in (4-27)
with the same coefficient as in the expansion (4-27) written for f (Ziﬂ v;), because the latter is
obtained from f(v; + v, + --+ +v,) by setting v; = 0 for all i € I. Removal of these summands via
the standard combinatorial inclusion-exclusion procedure leads to the required formula

N f s o) = F(D ) = D F (D v) + D F(D v) - Z}f( 3 )+

(i} v# {i.j}  v#Lj (i.jk} v#Ljk

!Not necessary finite dimensional.
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4.5.1 Duality. For a vector space V of finite dimensuon over a field of zero characteristic,
the complete contraction between V®™ and V*®™ provides the spaces S™V and S™V* with the
perfect pairing that couples polynomials f € S™V and g € S™V* to the complete contraction of
their complete polarizations f € V®™ and § € V*®™.

EXERCISE 4.19. For a pair of dual bases e, €,,...,eq €V, x1,X;, ..., xq € V*, verify that all the
non-zero couplings between the basis monomials are exhausted by

my m, myim,! - my!

(ef'r ey «egt, xytxy? e xyd) = (4-29)

n!

Note that the monomials constructed from the dual basis vectors become the dual bases of the
polynomial rings only after rescaling by appropriate combinatorial factors.

4.5.2 Derivative of a polynomial along a vector. Associated with every vector v € V is the
linear map i, : p@n _, pr®n-1) @ +— i,¢, provided by the inner multiplication! of n-linear
forms on V by v, which takes an n-linear form ¢ € V*®" to the (n — 1)-linear form

iv(p(vl’v29 ’vn—l) = (p('l], 171,172, ’vn—l)'

Composing this map with preceded complete polarizationS™V* = Sym™ V* C v*®™ and subsequent
factorization o : V*®™ ™V o, gn-ly through the commutativity relations?, assigns the linear map

pl, : S™V* - STIV* f(x) e pl,f(X) € f(v, x, x, ..., X), (4-30)

which depends linearly on v € V. This map fits in the commutative diagram

V*®n 5 Symn v* Ly V*®(n—1) (4_31)
psz io
pl,

SWH ———— snlp*,

The polynomial pl, f (x)]?(v, X,...x) € S 1(V*) is called the polar of v with respect to f. For
n = 2, the polar of a vector v with respect to a quadratic worm f € S2V* is the linear form
w f(v, w) considered® in n° 2.2.1 on p- 18.

In terms of dual bases e;, e,,...,e4 €V, x1,X,,...,X4 € V¥, the contraction of the first tensor
factor in V*®"
either to the complete symmetric tensor containing the (m; — 1) factors x; or to zero for m; = 0.

my .M, mg _ m; My M1, Mi=1, My mg _ 1 9 ,my, M Mg g
Hence, ple,xy "x3* == xg® = 2% " ... X 7 %; X X O = g X1 X2 xg “. Since

with the basis vector e; € V maps the complete symmetric tensor Xm, m,....m,]

i i+1
pl,f is linear in both v, f, we conclude that for every v = ) a;e;, the polar polynomial of v with
respect to f is nothing but the derivative of the polynomial f along the vector v divided by deg f,
ie.,

d

1 1 of
1 = 61, = i A -
Pt = Geay 7 = deatp) 2 % o,

!See the Example 4.2 on p. 42.

2Which is the linear map corresponding to the commutative multiplication of covectors from for-
mula (4-16) on p. 43 by the universal property of tensor product.

3Recall that the zero set of this form in P(V) is the hyperplane intersecting the quadric V(f) C P(V) along
its apparent contour viewed from v.
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Note that this forces the right hand side to be independent on the choice of dual bases in V and V*. It

follows from the definition of polar map that the derivatives along vectors commute, d,,d,, = 9,0,

and for all u,w € V, f € S"V*, 0 < m < n, the following relation holds:
am an—mf

m! —=w) =n! f @™, w") =n-m)! PR

S W), (4-32)

EXERCISE 4.20. Prove the Leibniz rule d,(fg) = 0,(f) - g + f - 9,(g) and show that

1
—0,,0y, ... 0y f -

fw, vy, ...,0,) = '
n!

EXAMPLE 4.7 (TAYLOR’S EXPANSION)
For k = 2, the expansion (4-27) from the Exercise 4.18 turns to the identity

fu+w) =f(u+w, u+w, ..., u+w)= Z (:1) -f(um,w"‘m),

m=0

where n = deg f. It holds for any polynomial f € S™V* and all vectors u,w € V. The relations
(4-32) allow us to rewrite this identity as the Taylor expansion for f at u:

deg f 1
futw)= Y —0pfw), (4-33)

m=0 '
which is an exact equality in the polynomial ring SV*.

4.5.3 Polars and tangents. Given a hypersurface S = V(f) C P(V) of degree n and a line
? = (pq) C P(V), the intersection NS consists of all points Ap +uq such that (A : u) € P; = P(k?)
is a root of the homogeneous polynomial f,4(4, i) 9 f(Ap + uq) € k[A, u]. Over an algebraically
closed field k, this polynomial is either zero or a product of n non-zero homogeneous linear forms

in A4, u, possibly coinciding:

) (A !
fA,w = H(al{/,l - alfﬂ)sl = Hdetsl <# Z’l’> , (4-34)
i i

i

where a; = (] : af) are some mutually distinct points on P; and );s; = n. If f,q = 0, then
¢ CS. If fpq # 0, then the intersection £ N S consists of the points a; = a;p + & q. The exponent
s; of the linear form a u — a;A in the factorization (4-34) is called the intersection multiplicity of
the hypersurface S with the line £ at the point a;, and is denoted by (S, ;- If (S, Ve, = 1, the
intersection point a; is called simple or transversal. Otherwise, the intersection of £ and S at q;
is called a multiple. The total number of intersections counted with their multiplicities equals the
degree of S.

Aline ¢ = (pq) passing through p € S is called tangent to S at p if either £ C S or (S,¥), > 2.
In other words, the line ¢ is tangent to S at p if the polynomial f(p + tq) € k[t] either is the zero
polynomial or has a multiple root at zero. The Taylor expansion! for f(p + tq) at p starts with

dy ~ dy ~
fo+tay =¢ () Forta+e () For e+ -

1See 4-33 on p. 51.
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Therefore the line £ = (pq) is tangent to S at p if and only if f(p"‘l, q) = 0. This is the straight-
forward generalization of the Proposition 2.2 on p. 17.

If f(p™ 1, x) does not vanish identically as a linear form in x, the point p is called a smooth
point of S. The hypersurface S C P(V) is called smooth if every point p € S is smooth. For a smooth
p € S the linear equation F(p™ 1,x) = 0 on x € V defines a hyperplane in P(V) filled by the
lines (pq) tangent to S at p. This hyperplane is called the tangent space to S at p and denoted by
Tp = {x € P(V)| f(p™ ", %) = 0},

If f(p™1,x) is the zero linear form in x, the hypersurface S is called singular at p, and the
point p is called a singular point of S. Since the coefficients of polynomial f(pn‘l, x) = d,.f(p),
considered as a linear form in x, are equal to the partial derivatives of f evaluated at the point p
by (4-32), the singularity of p € S = V(f) is expressed by the equations

af .
G_xi(p) =0 foralli,
in which case any line ¢ passing through p has (S,?), > 2, i.e., is tangent to S at p. Thus, the
tangent lines to S at a singular point of S fill the whole ambient space P(V).
If q is either a smooth point on S or a point outside S, then the polar polynomial

plf(x) = f(q.x™)
does not vanish identically as a homogeneous polynomial of degree n — 1 in x, because otherwise,
all partial derivatives of plq f(x) = f(q,x™ 1) in x would also vanish, and in particular,

n-2

~ B
@™ x) = aqrzPld/ () =0

identically in x, meaning that q is a singular point of S, in contradiction with our choice of q. The
zero set of the polar polynomial pl, f € S™1y* is denoted by

plgS EV(plyf) = {x € P(WV)| f(q,x™1) = 0} (4-35)

and called the polar hypersurface of the point g with respect to S. If S is a quadric, then pl S is
exactly the polar hyperplane of g considered in n°2.3.1 on p. 19. As in the Corollary 2.2 on p. 17,
for a hypersurface S of arbitrary degree, the intersection SNpl,S coincides with the apparent contour
of S viewed from the point q, that is, with the locus of all points p € S such that the line (pq) is
tangent to S at p.

More generally, for an arbitrary point g € P(V) the locus of points

plp s ¥ {x e P(V)| f(@" . x") =0}

is called the rth degree polar of the point q with respect to S or the rth degree polar of S at q for
q € S. If the polynomial f(q"‘r, x") vanishes identically in x, we say that the rth degree polar is
degenerate. Otherwise, the rth degree polar is a projective hypersurface of degree r. The linear!
polar of S at a smooth point g € S is simply the tangent hyperplane to S at g: plZ‘ls =TyS. The
quadratic polar plg_zS is the quadric passing through g and having the same tangent hyperplane
at q as S. The cubic polar plg'3S is the cubic hypersurface passing through g and having the same
quadratic polar at g as S, etc. The rth degree polar plZ‘ZS at a smooth point g € S passes through g
and has plg_kplg_rs = plg_kS forall 1 < k <r — 1, because

Pl pIl " F(x) = plp 7 f(q" 7%, xK) = F(q T, g™k, xK) = F(q" K, xF) = pI F f(x).
!That is, of the first degree.
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4.5.4 Linear support of a homogeneous polynomial. For a polynomial f € S"V*, we write
Supp f for the minimal® vector subspace W C V* such that f € S*W, and call it the linear support
of f. Over a field of zero characteristic, Supp f = Supp ]?, where F € Sym™V* C v*®" is the
complete polarization of f. By the Theorem 4.1, Supp f is linearly generated by the images of the
(n — 1)-tuple contraction maps

Ve Ly bt D g )

jlaj2:»-~vjn—1

coupling all the (n — 1) factors of V®™=1 with some n — 1 factors of £ € V*®" in order indicated
by the sequence J = (j;,J,,...,Jn_1)- For the symmetric tensor £, such a contraction does not
depend on J and maps every decomposable tensor v; ® v, ® -+ ® V,,_; to the linear form on V
proportional to the derivative 0, 0y, ... 0, f € V*. Thus, Supp(f) is linearly generated by all
(n — 1)-tuple partial derivatives

oM M2 mqg

— s
0x;, " 0xy 2 dxy

f(x), where Z m,=n-1. (4-36)

The coefficient of x; in the linear form (4-36) depends only on the coefficients of monomial

P . 1 .
Xy X e
in f. If we write the polynomial f as
n! ViV v,
f= Z ———— Ay, . v, X1 X2 e X (4-37)
vilv,! o vyl 1v2 d
Vite+vg=n 1-V2- d-
the linear form (4-36) turns to
d
n!- Z Am,..mi_ (m+1)mi, .. mgXi - (4-38)
i=1

Totally, we get (”;f;z) such the linear forms staying in bijection with the nonnegative integer

solutions my, m,, ..., my of the equation m; + m, + .-+ my=n—1.

PROPOSITION 4.3

Let k be a field of zero characteristic, V a finite dimensional vector space over k, and f € S"V* a
polynomial written in the form (4-37) in some basis of V*. If f = ¢™ for some linear form ¢ € V*,
then the d X ("Zf;z) matrix built from the coefficients of linear forms (4-38) has rank 1. In this case,
there are at most n linear forms ¢ € V* such that ¢™ = f, and they differ from one another by
multiplications by the nth roots of unity laying in k. For algebraically closed field k, the converse
is also true: if all the linear forms (4-38) are proportional, then f = ¢™ for some linear form ¢
proportional to the forms (4-38).

PROOF. The equality f = ¢™ means that Supp(f) C V* is the 1-dimensional subspace spanned
by ¢. In this case, all linear forms (4-38) are proportional to ¢. Such a form ) = Ap has Y™ = f
if and only if A™ = 1 in k. Conversely, let all the linear forms (4-38) be proportional, and 1 # 0 be
one of them. Then, Supp(f) = k- is the 1-dimensional subspace spanned by 1. Hence, f = AYp™
for some A € k, and therefore, f = @™ for? ¢ = nﬁ 1. Il

1With respect to inclusions.
2Here we use that k is algebraically closed.
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4.5.5 The Veronese varieties V(n, k). The Veronese map
Vin: P(V*) S P(S™V), Y=Y, (4-39)

for dimV = k + 1 embeds P, into Py, where N = (anfk) — 1. The image of map (4-39) is called the
Veronese variety and denoted by V(k,n) C P(S™V*). It consists of perfect n th powers ¢ of linear
forms ¢ € V* considered up to proportionality. It follows from the Proposition 4.3 that V(n, k) is
indeed an algebraic projective variety described by a system of quadratic equations asserting the
vanishing of all 2 X 2-minors in d X ("25;2) matrix formed by the coefficients of the linear forms
(4-38). For example, a homogeneous polynomial in two variables f(xq,x;) = Z:o ak(ﬁ)x{}‘kx’f
has

an—lf
————— =n!-(a;xy + aj;1x1).
X 1axl iXo i+1%X1
Hence, the image of the Veronese embedding v, ,, : P; < P, is described by the condition
a, a; ... Qpu_
I'k( 0 1 n 1> =1 ,
a, a, ... ap

which agrees with the Example 1.4 on p. 11 and is equivalent to a system of quadratic equations

a; a;
det< ' ] > =0
Aiv1 Qjiq

on the coefficients a; of the polynomial f. A polynomial f satisfies these equations if and only if
f = @™ for some linear form ¢ = ayx, + a;X;, and in this case (@, : @) = (a; : a;;,) for all i.

4.6 Polarization of grassmannian polynomials. The quotient map V®" - A™V sends every
summand of the basis alternating tensor (4-26)

Cliriyei) 2 ) sENG) €5, R, ® @€y,
ges,

to the same grassmannian monomial e; = e; A e;, A -+ A e; . Thus, this map sends e; i, . i)
to n! e;, and therefore, over a field of zero characteristic, the factorization through the alternating
relations assigns the isomorphism Alt" V = A™V. By analogy with the usual commutative polyno-
mials, the inverse isomorphism is denoted by pl: A™V = Alt"V, w — ®, and called the complete
polarization of grassmannian polynomials.

4.6.1 Duality. For a finite dimensional vector space V over a field of zero characteristic, there
is the perfect pairing between the spaces A™V and A™V* coupling T € A™V and w € A™V* to the
complete contraction of their complete polarizations ¥ € V®" and w € yen,

EXERCISE 4.21. Convince yourself that the non zero couplings between the basis monomials
e; € A"V and x; € A"V* are exhausted by (e;, x;) =1/n!.

4.6.2 Partial derivatives in the exterior algebra. Given a covector 1 € V*, we write
ply: A"V — ATV

for the composition of inner multiplication iy, : ven - y®@ -1 by 1) with preceding complete
polarization pl: A™V = Alt"V and subsequent factorization a : V®™ 1 - A"~1y through the
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alternating relations®. Thus, pl,, fits in the commutative diagram

i
VO™ 5 Skew™ V* —bs p*®MD

pl Tz la (4-40)
ply

Anv* 5 An—l V*
similar to the diagram from formula (4-31) on p. 50. By analogy with n° 4.5.2, the polynomial
dyw & degw - ply,w

is called the derivative of homogeneous grassmannian polynomial w € A™V in direction of covector
Y € V*. Since pl,w is linear in v, the derivation along ¥ = D aix; splitsas 0y, = ), ; 0y,. If
does not depend on e;, then d,,w = 0. Therefore, a nonzero contribution to dye; is given only by
the derivations 0, for i € I.
EXERCISE 4.22. Check that axil e, ANej, N ANej =e,, Aei A ... Ne; for every collection of
indexes iy, i,, ..., i,, NOt necessary increasing.

It follows from the Exercise 4.22 that

- — k_l . . . . .
axikel-1 Aep, A ANep = axl.k( D" ey Aeg Ao Ney  Neg .. €

n
=110, e; Aei A... ey  Ae e;
Xip, “lke 2 le—1 letr "0 Uln

— k-1, ) ) )
=" e, A Aey A€y, - €

.
In other words, the derivation of a monomial along the basis covector dual to the kth variable from
the left in the monomial behaves as (—1)¥"*9/a ei,» where the grassmannian partial derivative 0 /0e;
takes e; to 1 and annihilates all e; with j # i, exactly as in the symmetric case. However, the sign
(—=1)¥ in the previous formula forces the grassmannian partial derivatives to satisfy the grassmannian
Leibniz rule, which differs from the usual one by an extra sign.

EXERCISE 4.23 (THE GRASSMANNIAN LEIBNIZ RULE). For any homogeneous grassmannian poly-

nomials w, T € AV and a covector P € V, prove that

Oy(w AT) = 0y(@) AT + (1) W A By (7). (4-41)

Since the grassmannian polynomials are linear in each variable, afpw =0forallyp eV, w € AV.
The relation af;, = 0 forces the grassmannian derivatives to be super-commutative, that is,

V,E €V 0,0 = —0:0y.

4.6.3 Linear support of a homogeneous grassmannian polynomial. The linear support
Supp w of a homogeneous grassmannian polynomial w of degree n is defined to be the minimal?
vector subspace W C V such that w € A™W. It coincides with the linear support of the complete
polarization & € Skew™ V, and is linearly generated by all (n — 1)-tuple partial derivatives®

, 0 0 9
T ® T Bej deg, " Be,

def
ojw = axh asz . w,

!Which is the linear map corresponding to the alternating multiplication of covectors from formula (4-17)
on p. 43 by the universal property of tensor product.

2Wwith respect to inclusions.

3Compare with n° 4.5.4 on p. 53.
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where J = j;ij, ... jn—, runs through all sequences of n — 1 different indexes taken from the set
{1, 2, ...,d},d =dimV. Up to a sign, the order of indexes in J is not essential, and we will not
assume the indexes to be increasing, because this simplifies the notations in what follows.
Let us expand w as a sum of basis monomials
w = Z ae; = Z Qii,..i,€i, N€i, N ANej, (4-42)
1

i1iy... 0,

where I = i,i, ... i, also runs through the n-tuples of different but non necessary increasing in-
dexes, and the coefficients @; ;, . ;, € kare alternating in i;i, ... i,. Nonzero contributions to 9;w
are given only by the monomials a;e; with I O J. Therefore, up to a common sign,

W =% ), il (4-43)
i¢]

PROPOSITION 4.4
The following conditions on a grassmannian polynomial w € A™V written in the form (4-42) are
equivalent:

1) w=u Au, A -+ Auy, for some Uy, Uy, ..., U, EV
2) uAw =0 for all u € Supp(w)

3) for any two collections i,i, ... i;nyq and jqij, ... jm_1 consisting of n+1 and n — 1 different
indexes, the following Pliicker relation holds

m+1
V-1 —
DD, iy i = 0 (4-44)
v=1
where the hat in a ;. i, means that the index i, should be removed.

PROOF. Condition (1) holds if and only if w belongs to the top homogeneous component of its linear

span, w € AY™MSUPP(@) Supp(w). Condition (2) means the same because of the following exercise.
EXERCISE 4.24. Show that w € AU is homogeneous of degree dim U if and only if u A w = 0 for

ueUu.

The Pliicker relation (4-44) asserts the vanishing of the coefficient of e, Nej, N ANey in the

product (6 e ]-m_lw) A w. In other words, (4-44) is the coordinate form of condition (2) written for

vector u = d;, j  w from the formula (4-43). Since these vectors linearly generate the subspace

Supp(w), the whole set of the Pliicker relations is equivalent to the condition (2). U

EXAMPLE 4.8 (THE PLUCKER QUADRIC)

Let n = 2, dimV = 4, and e, e,, e;, e, be a basis of V. Then the expansion (4-42) for w € A*V
looks like w = Zi’ jaijei A ej, where the coefficients a;; form the alternating 4 X 4 matrix. The
Pliicker relation corresponding to (i, I,,i3) =(2,3,4)and j; =1 s

Q12034 — Q13034 + Q14073 = 0. (4-45)
All other choices of (i, i,,13) and j; & {i;,1,, i3} lead to exactly the same relation.

EXERCISE 4.25. Check this.

For j, € {i;, i,, i3} we get the trivial equality 0 = 0. Thus, for dimV = 4, the set of decomposable
grassmannian quadratic forms w € A2V is described by just one quadratic equation (5-2).
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EXERCISE 4.26. Convince yourself that the equation (5-2) on w = ); jaijei e is equivalent to
the condition w A w = 0.

4.6.4 The Grassmannian varieties and Pliicker embeddins. For a vector space V of dimen-
sion d, the set of all vector subspaces U C V of dimension m is denoted by Gr(m, V) and called
the grassmannian. When the origin of V is not essential or V = k¢, we write Gr(m, d) instead
of Gr(m,V). Thus, Gr(1,V) = P(V), Gr(dimV — 1,V) = P(V*). The grassmannian Gr(m,V) is
embedded into the projective space PP(A™V) by means of the Pliicker map

Pm - Gr(m,V) - P(A™V), U A™U C A™V (4-46)

sending every subspace U C V of dimension m to its highest exterior power A™U, which is a sub-
space of dimension 1 in A™V. If U is spanned by vectors u;, U,, ... , Uy, then up to proportionality,
PmU)=U AUy A = AlUpy,.

EXERCISE 4.27. Check that the Pliicker map is injective.

The image of map (4-46) consists of all grassmannian polynomials w € A™V completely factorisable
into a product of m vectors. Such polynomials are called decomposable. By the Proposition 4.4 they
form a projective algebraic variety described by the system of quadratic equations (4-44) on the
coefficients of expansion (4-42).

REMARK 4.1. From the algebraic viewpoint, the grassmannian variety Gr(k,m) C P(A™V) is a
super-commutative version of the Veronese variety V(k, m) C P(S™V). Both consist of most de-
generated non-zero homogeneous polynomials of degree m in the sense that the linear support of
polynomial has the minimal possible dimension which equals 1 for a commutative polynomial, and
equals m for a grassmannian polynomial of degree m.

EXAMPLE 4.9 (THE GRASSMANNIANS Gr(2,V))
The Pliicker embedding identifies the grassmannian Gr(2, V) with the set of decomposable grass-
mannian quadratic forms w € A%V, that is, w = u A w for some u,w € V. Note that every such w
has w Aw =u AW AuUAW = 0. For an arbitrary w € A2V, there exists a basis &;,&,,...,&;in V
such that! w = & A&, + &3 A&, + . If this sum contains more than one term, then the monomial
&1 NE, NE3 ANE, appears in w A w with the coefficient 2 and therefore, w A w # 0. Thus, such w
is not decomposable. We conclude that w € A%V is decomposable if and only if w A w = 0.

For dimV = 4, the squares of forms w € A2V lie in the space A*V of dimension 1. In this case,
the condition w A w = 0 for w = Zi’ ;jaijei A ej is expressed by just one quadratic equation

Q12034 — Q13034 + Q14053 =0, (4-47)

which agrees with the equation (5-2) from the Example 4.8 on p. 56. We conclude that the Pliicker
embedding identifies the grassmannian Gr(2, 4) = Gr(2, V) with the quadric (4-47) in Ps = P(A2%V).
This quadric is called the Pliicker quadric.

EXAMPLE 4.10 (THE SEGRE VARIETIES REVISITEDZ)
letW =V, @V, ® - @V, be a direct sum of finite dimensional vector spaces V;. For every
collection of non-negative integers m;,m,, ..., my such that m; < dimV;, put k = ) m, and

1See the Example 4.5 on p. 47.
2See n°4.1.2 on p. 39.
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denote by Wy, m, ..m, C A*W the linear span of all products w; A w, A --- A wy, formed by m,
vectors taken from V,, m, vectors taken from V,, etc.

EXERCISE 4.28. Show that the well defined isomorphism of vector spaces

AV @A™V, @ - @ ATV = Win im, . .m

n

is assigned by prescription w; @ W, ® -+ @ W, = W, A W, A -+ A Wy, and verify that

Akw = @ Wi, m,,...om, = @ A™MV; @A™V, @ - @ ATV,
mn

mq,my,..., my;,my,....My

We conclude that the tensor product V; ® V, ® -+ ® V,, can be identified with the component

1....1 € A™W. Under this identification, the decomposable tensors v; @ v, ® - ® v,, go to the
decomposable grassmannian monomials v; AV, A -+ AV,,. Therefore, the Segre variety from n° 4.1.2
on p. 39 is the intersection of the grassmannian variety Gr(n, W) C P(A"W) with the projective

.....

.....
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EXRC. 4.3. The first statement is verified by the same arguments as in ?? on p. ?? and n°2.5.1.
To prove the second, chose some dual bases u,,u,,...,u, € U, uj,us,...,u;;, € U* and a basis
Wi, Way, ..., Wy € W. Then mn decomposable tensors u; ® w;j form a basis in U * ® V. The matrix
of operator

wj fork =1

0 otherwise

* .
ui®wj.uk»—>{

has 1 in the crossing of j th row with i th column and zeros elsewhere. Thus, these operators span
Hom(U, W).

EXRC. 4.4. For any linear mapping f : V — A the multiplication
VXV X XV oA,

which takes (v, v,, ..., v,) to their product ¢(v,) - @(v,) - +++ - @(v,) € A, is multilinear. Hence,
for each n € N there exists a unique linear mapping V®" — A taking tensor multiplication to
multiplication in A. Add them all together and get required algebra homomorphism TV — A
extending f. Since any algebra homomorphism TV — A that extends f has to take v; @ v, ® - ®
vy P @) - y) - - - (vy), it coincides with the extension just constructed. Uniqueness of
free algebra is proved exactly like the Lemma 4.1 on p. 39.

EXRC. 4.5. Since the decomposable tensors span V*®™ and the equality

LW, Wa, ... ,Wy_1) = @V, Wi, W5, ... ,Wn_q)

is bilinear in v, ¢, it is enough to check it for the decomposable p =&, @ &, ® - ® &,,.

EXRC. 4.6. Fix abasis ey, ..., ey, Uy, ..., Ug, Wy, ... , Wy, Vg, ..., Vg in V such that e; form a basis
in UNW, u; and wy, extend it to some bases in U, W, and v,, complete everything to a basis in V.
Then expand t through the standard monomial basis of TV built from this basis of V.

EXRcC. 4.8. Fo all v,w € V we have
0=¢C.., v+w), ...,v+w), ..)=0C..,v, ... , W, .)+@(.., W, ...,V ...).
Vice versa, if char k # 2, then (... , v, ..., v, ...) = —@(... , v, ... , v, ...) forces
oC..,v,...,v,...)=0.

EXRC. 4.9. See, e.g., the Proposition 11.2 on p. 260 in the sec. 11.2.2 of the book: A. L. Gorodentsev,
Algebra I. Textbook for Students of Mathematics., Springer, 2016.

EXRC. 4.10. Every multilinear map ¢ : VXV X -+ XV — W is uniquely decomposed as ¢ = F o T,
where F : V®" — W is linear. Such F is factorized through the projection V®" - S™V if and only
if

F(... RUVRWR .):F(. QWRKVR ...)'
The latter is equivalent to @(... ,v,w, ...) = @(... ,w,v, ...). This proves the universality of
the multiplication in SV. Every linear map f: V — A induces the symmetric multilinear map
VXV X XV > A, (V1,V;,...,0,) = [[ ;) for any n € N. The latter gives the linear map

70
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S™V — A. All together these maps extend f to the homomorphism of k-algebras SV — A. Vice
versa, every homomorphism of k-algebras SV — A, which extends f, takes [[v; — [] ¢(v;) and
coincides with the previous extension. The uniqueness of extension is verified as in the Lemma 4.1
on p. 39.

EXRC. 4.11. The first follows from 0 = W+ w)@ W+ w) = v @® w + w ® v, the second from
VQU+v UV =0.
EXRC. 4.12. Similar to ?? on p. ??.

EXRC. 4.13. IfdimV =d, then Z (AV) = AdV+@k A%kV . For even d, the first summand is contained
in the second, for odd d the sum is direct.

EXRC. 4.15. Use that det A = det A%, and transpose everything.

EXRC. 4.16. The summands form one S,-orbit. The stabilizer of an element in this orbit consists of

m,! m,! --- my! independent permutations of coinciding factors. Hence, the length of orbit equals

n!
my!m,!---my!”°

EXRC. 4.17. For v = ¥ a;e;, the complete contraction of v®" with f = wx[ml,mz,m,md]

is the sum of n!/m,!-m,! --- my!) mutually equal products

my!-m,! - my! m m m my!-my! - myg! o om my
' .xl(v) 1‘x2(17) 2.....xd(v) d — .allazz...ad .
n! n!
Thus, it coincides with the result of substitution (x4, x5, ..., x,,) = (@4, &3, ..., @) in the monomial
n! m, m; mg
T, g Y1 X2 X

EXRC. 4.18. Use the same arguments as in the proof of multinomial expansion formula

V1 + U+ - +vp)"t = Z __n A DA
My My my!m,! .- my!

EXRC. 4.20. Since the Leibniz rule is linear in v, f, g, it is enough to check it for v = ¢e;, f =
X x;nd, g = xlfl de. In this case it follows directly from the definition of polar map. The
formula for fN(vl, V,,...,Vy) follows from the equality fN(vl, X,.o,X) = % + 0y, f(x) by induction
inn=degf.

EXRC. 4.23. Similar to the Exercise 4.20.

EXRC. 4.24. Llet eq,e,,...,e, be a basis in U. If w ¢ A™U, then the expansion of w as a linear
combination of basis monomials e; contains a monomial whose index I differs from the whole
1,2,...,m. Let k & I. Then ey A w # 0, because the basis monomial e, ; appears in ex A @
with a nonzero coefficient. Conversely, if w € A™U,thenw =A-e; Ae; A - Aep,and e; Aw =0
for all i.

EXRC. 4.26. See the Example 4.9 on p. 57.
EXRC. 4.27. Let U # W be two subspaces of dimension m. Chose a basis

€1,€5, ..., U, Uy, o s U, Wi, Wos ooo s Wi, V1, Vg, oo, Vgyrom €V

such that e, e,, ..., e, is a basis of UNW, vectors u;,U,, ..., Uy,_ and Wy, W, ..., W;,_, complete
it to bases in U and W respectively, and the remaining vectors are complementary to U + W. The
Pliicker embedding (??) sends U and V to the different basis monomials

VIAAVAULA AUy FUVLAAVREAWL A s AWp_pr

in AMV.
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