Final Written Exam

The problems may be solved in any order. The complete solution of each problem is worth 10 points. Only an answer without its explanation gives 0 points irrespective of its correctness. To get the 100% result it is enough to collect 50 points in sum, e.g., solve completely any 5 of the 7 problems.

By default, the ground field is assumed to be algebraically closed of zero characteristic.

- **Problem 1 (10 points).** Let $C_3 \subset \mathbb{P}_3$ be a rational normal cubic¹. Is it true or not that for every point $p \in \mathbb{P}_3 \setminus C_3$, there exists a line $\ell \subset \mathbb{P}_3$ passing through p and intersecting C_3 in at least two (possibly coinciding) points? If such a line exists for some p, should it be unique?
- **Problem 2 (10 points).** Let C_1 , C_3 , C_3 be the three split conics in a simple pencil *L* of conics on \mathbb{P}_2 and *a*, *b*, *c*, *d* the four base points of *L*. For an arbitrary conic $C \in L$, compare the cross-ratios $[C_1, C_2, C_3, C]$ on *L* and [a, b, c, d] on *C*.
- **Problem 3 (10 points).** Given two quadrics $G, Q \subset \mathbb{P}_n$, not necessary smooth, show that the pencil of quadrics spanned by them contains exactly (n + 1) distinct singular quadrics if and only if G and Q are transversal, that is, $\dim(T_pG \cap T_pQ) = n 2$ for all $p \in G \cap Q$.
- **Problem 4 (10 points).** Write *M* for the projective space of nonzero $m \times n$ matrices considered up to proportionality. Use appropriate incidence variety $\Gamma = \{(L, F) \mid L \subset \ker F\}$, where *L* is a subspace and *F* is a matrix, to show that matrices of rank at most *k* form an irreducible projective subvariety $M_k \subset M$, and find dim M_k .
- **Problem 5 (10 points).** Show that the lines laying on a smoth quadric in \mathbb{P}_4 form a closed irreducible subvariety in the Grassmannian of all lines in \mathbb{P}_4 , and find the dimension of this subvariety.
- **Problem 6 (10 points).** Given two projective algebraic varieties $X, Y \subset \mathbb{P}(V)$, write $\mathcal{J}(X, Y) \subset \text{Gr}(2, V)$ for the Zariski closure of the set of lines² (*xy*) joining distinct points $x \in X$, $y \in Y$, and $J(X, Y) \subset \mathbb{P}(V)$ for the union of lines $\ell \subset \mathbb{P}(V)$, $\ell \in \mathcal{J}(X, Y)$. Show that J(X, Y) is Zariski closed. May J(X, Y) be reducible for irreducible *X*, *Y*? Find dim J(X, Y) for irreducible non-intersecting *X*, *Y* of given dimensions.
- **Problem 7 (10 points).** Given six points $p_1, p_2, ..., p_6 \in \mathbb{P}_2 = \mathbb{P}(V)$ any three of which are noncollinear and all the six do not lie on a common conic, let $W \subset \mathbb{P}(S^3V^*)$ be the projective space of all cubic curves on \mathbb{P}_2 passing through the given points. Consider the map $\mathbb{P}_2 \setminus \{p_1, p_2, ..., p_6\} \to W^{\times}$ that sends a point p to the hyperplane in W formed by all cubics passing through p. Write $S \subset W^{\times}$ for the closure of the image of this map. Show that $S \subset W^{\times}$ is a smooth cubic surface in \mathbb{P}_3 and describe the 27 pencils of cubic curves passing through $\{p_1, p_2, ..., p_6\}$ dual to the 27 lines laying on S.

¹That is, a curve congruent to the Veronese cubic modulo linear projective automorphisms of \mathbb{P}_3 .

²Considered as the points of the Grassmannian Gr(2, V) of all lines in $\mathbb{P}(V)$.