Аффинные алгебраические многообразия.

- **АГ5** \diamond **1.** Пусть $S = \{w \in \mathbb{C}^2 \mid ||w|| = 1\}$ единичная сфера стандартной эрмитовой структуры на \mathbb{C}^2 . Найдите замыкание \overline{S} в топологии Зарисского на аффинной плоскости \mathbb{C}^2 .
- **АГ5\diamond2.** При каком условии на вектор $v=(\alpha_1,\ldots,\alpha_{n-1},1)$ параллельная проекция гиперповерхности $V(f)\subset\mathbb{A}^n$, где $f\in \Bbbk[x_1,\ldots,x_n]$ и $\deg f>0$, на гиперплоскость $x_n=0$ в направлении вектора v является: а) доминантной б) конечной в) сюрьективной?
- **АГ5\diamond3.** Докажите, что проекция аффинной гиперповерхности $V(f) \subset \mathbb{A}^n$ из любой точки $p \notin V(f)$ на любую гиперплоскость $H \not\ni p$ доминантна.
- **АГ5 «4.** Покажите, что образ доминантного морфизма содержит открытое плотное множество.
- **АГ5** \diamond **5 (лемма Нётер о нормализации).** Покажите, что любая гиперповерхность $V(f) \subset \mathbb{A}^n$ допускает конечную сюрьекцию на некоторую гиперплоскость $\mathbb{A}^{n-1} \subset \mathbb{A}^n$.
- **АГ5 6.** Покажите, что открытое подмножество U аффинного многообразия X является его аффинным подмногообразием 1 , если и только если для некоторых $f_1, \ldots, f_m \in \mathbb{k}[U]$, порождающих единичный идеал в кольце $\mathbb{k}[U]$, каждое из главных открытых подмножеств $U_i = \mathcal{D}\left(f_i\right)$ является аффинным многообразием с координатным кольцом $\mathbb{k}[U_i]$.
- **АГ5<7** (рациональные функции). Кольцо частных $Q_{\Bbbk[X]}$ координатной алгебры $\Bbbk[X]$ аффинного многообразия X называется алгеброй рациональных функций на X и обозначается $\Bbbk(X)$. Множество $D_f = \{x \in X \mid \exists p, q \in \Bbbk[X] : q(x) \neq 0 \& f = p/q \}$ называется областью определения рациональной функции $f \in \Bbbk(X)$. Покажите, что: **a)** если $x \in D_f$, то значение $f(x) = p(x)/q(x) \in \Bbbk$ не зависит от способа записи f = p/q с $p, q \in \Bbbk[X]$ и $q(x) \neq 0$ **6)** D_f открыто и плотно в X **B)** отображение $f : D_f \to \Bbbk$, $x \mapsto f(x)$, непрерывно в топологии Зарисского \mathbf{r}) идеал $I_f = \{q \in \Bbbk[X] \mid qf \in \Bbbk[X]\}$ порождается содержащимися в нём неделителями нуля \mathbf{g}) $D_f = X \setminus V(I_f)$ **e)** если $\mathcal{D}(h) \subset D_f$, где $h \in \Bbbk[X]$, то $f = g/h^m$ для некоторых $g \in \Bbbk[X]$ и $m \in \mathbb{Z}_{\geqslant 0}$ ж) если $X = X_1 \cup \ldots \cup X_m$ разложение на неприводимые компоненты, то имеется изоморфизм 3 : $\Bbbk(X) \Rightarrow \Bbbk(X_1) \times \ldots \times \Bbbk(X_m)$, $f \mapsto \Big(f|_{X_1}, \ldots, f|_{X_m}\Big)$.
- **АГ5 8.** Найдите D_f для **a)** f=(1-y)/x на $V(x^2+y^2-1)\subset \mathbb{A}^2$ **б)** f=y/x на $V(x^3+x^2-y^2)\subset \mathbb{A}^2$ **в)** $f=x_1/x_3$ на $X=V(x_1x_4-x_2x_4)\subset \mathbb{A}^4$ и выясните, лежит ли f в $\Bbbk[X]$.
- АГ5•9 (фактор по конечной группе). Пусть конечная группа G действует регулярными автоморфизмами на аффинном алгебраическом многообразии X над алгебраически замкнутым полем характеристики нуль. Обозначим через $R = \Bbbk[X]^G \subset \Bbbk[X]$ подалгебру инвариантов. Покажите, что а) \Bbbk -линейный оператор $\natural : \Bbbk[X] \twoheadrightarrow R$, переводящий функцию $f \in \Bbbk[X]$ в центр тяжести $f^{\natural} \stackrel{\text{def}}{=} \sum_{\sigma \in G} \sigma f / |G|$ её G-орбиты, обладает для всех $f \in \Bbbk[X]$ и $h \in R$ свойствами $f^{\natural} \in R$, $h^{\natural} = h$ и $(fh)^{\natural} = f^{\natural}h$, б) алгебра R конечно порождена и не имеет нильпотентов. в) Постройте такие аффинное алгебраическое многообразие X/G и конечную регулярную сюрьекцию $\pi : X \twoheadrightarrow X/G$, что слои π это в точности G-орбиты и для любого регулярного морфизма аффинных многообразий $\varphi : X \to Y$, такого что $\forall \sigma \in G$ и $\forall x \in X \ \varphi(\sigma x) = \varphi(x)$, существует единственный такой регулярный морфизм $\psi : X/G \to Y$, что $\psi \circ \pi = \varphi$. г) Опишите явными уравнениями в подходящем аффинном пространстве фактор \mathbb{C}^2/G , где $G = \mathbb{Z}/(n)$ действует на \mathbb{C}^2 по правилу $[k]_n : (x,y) \mapsto (e^{2\pi i k/n}x, e^{2\pi i k/n}y)$.

 $^{^{1}}$ Т. е. существуют аффинное многообразие Y и регулярный морфизм $Y \hookrightarrow X$, гомеоморфно отображающий Y на U.

 $^{^{2}}$ Т. е. локализация со знаменателями в мультипликативной системе всех неделителей нуля.

 $^{^3}$ Через $f|_{X_i}$ обозначен образ f при гомоморфизме $\Bbbk(X) \to \Bbbk(X_i)$, который канонически продолжает гомоморфизм подъёма $\varphi_i^* : \Bbbk[X] \twoheadrightarrow \Bbbk[X_i]$ замкнутого вложения $\varphi_i : X_i \hookrightarrow X$.

(напишите свои имя, отчество и фамилию)

№	дата	кто принял	подпись
1			
2a			
б			
В			
3			
4			
5			
6			
7a			
б			
В			
Г			
Д			
е			
8a			
б			
В			
9a			
б			
В			
Г			