Проективные квадрики

- **АГ2<a>1.** Покажите, что поляры данной точки $a \in \mathbb{P}_2$ относительно всех гладких коник произвольного невырожденного пучка пересекаются в одной точке.
- **АГ2\diamond2** (инволюция Дезарга). Пусть невырожденный пучок коник $L \subset \mathbb{P}(S^2V^*)$ на $\mathbb{P}_2 = \mathbb{P}(V)$ не содержит двойной прямой, а прямая $\ell \subset \mathbb{P}_2$ не проходит через его базисные точки. Покажите, что на ℓ имеется инволютивная гомография $\sigma_L : \ell \simeq \ell$, переставляющая точки $s,t \in \ell$ если и только если $\exists \ C \in L : \ C \cap \ell = \{s,t\}$, и выведите отсюда, что над алгебраически замкнутым полем в пучке L есть ровно две коники, касающиеся прямой ℓ .
- **АГ2<3.** Из скольких точек состоят над девятиэлементным полем¹ **a)** коника $x_0^2 + x_1^2 + x_2^2 = 0$ на \mathbb{P}_2 **6)** квадрика $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ в \mathbb{P}_3 .
- **АГ2<4.** Сколько прямых пересекают 4 данные попарно скрещивающиеся прямые в пространствах **а)** $\mathbb{P}_3(\mathbb{C})$ **б)** $\mathbb{A}^3(\mathbb{C})$ **в)** $\mathbb{P}_3(\mathbb{R})$ **г)** $\mathbb{A}^3(\mathbb{R})$? Найдите все возможные ответы и выясните, какие из них устойчивы к малым шевелениям четырёх данных прямых.
- **АГ2⋄5.** Пусть $\beta: V \times V \to \mathbb{k}$ невырожденная симметричная билинейная форма. Покажите, что существует единственная билинейная форма $\Lambda^2 \beta: \Lambda^2 V \times \Lambda^2 V \to \mathbb{k}$, значение которой на разложимых тензорах равно $\Lambda^2 \beta(v_1 \wedge v_2, w_1 \wedge w_2) \stackrel{\text{def}}{=} \det \begin{pmatrix} \beta(v_1, w_1) & \beta(v_1, w_2) \\ \beta(v_2, w_1) & \beta(v_2, w_2) \end{pmatrix}$. Вырождена ли она? Симметрична ли?
- **АГ2 6.** Пусть в зад. АГ2 **6.** $V = \operatorname{End}(U)$, где $U = \mathbb{k}^2$ со стандартным базисом $e_1, e_2 \in U$, а форма β является поляризацией квадратичной формы $\det : \operatorname{End}(U) \to \mathbb{k}$. Рассмотрим двойственный базис $x_1, x_2 \in U^*$ и базис $v_{ij} = e_i \otimes x_j$ в V. Покажите, что **a)** формула $\omega \wedge \eta = \alpha(\omega, \eta) \, v_{11} \wedge v_{12} \wedge v_{21} \wedge v_{22}$ задаёт невырожденную симметричную билинейную форму $\alpha : \Lambda^2 V \times \Lambda^2 V \to \mathbb{k}$ **6)** для каждого $\omega \in \Lambda^2 V$ существует единственное такое $\omega^* \in \Lambda^2 V$, что $\alpha(\eta, \omega^*) = \Lambda^2 \beta(\eta, \omega)$ для всех $\eta \in \Lambda^2 V$ **в)** правило $\omega \mapsto \omega^*$ задаёт линейную проективную инволюцию на пространстве $\mathbb{P}(\Lambda^2 V)$ **г)** $\Lambda^2 V = (S^2 U \otimes \Lambda^2 U^*) \oplus (\Lambda^2 U \otimes S^2 U^*)$, и слагаемые этого разложения суть собственные подпространства оператора *. д) Напишите матрицу оператора * и матрицы Грама форм α и $\Lambda^2 \beta$ в базисе $v_{ij} \wedge v_{k\ell}$. **e)** Насколько зависят форма α и оператор * от выбора двойственных базисов в U и U^* ?
- **АГ2** \diamond **7.** В условиях зад. АГ2 \diamond 6 положим $\mathbb{P}_3 = \mathbb{P}(V)$, $\mathbb{P}_5 = \mathbb{P}(\Lambda^2 V)$, обозначим через P и Q квадрики, задаваемые квадратичными формами α и $\Lambda^2 \beta$ в \mathbb{P}_5 , а через $L_{\pm} \subset \mathbb{P}_5$ двумерные плоскости, состоящие из неподвижных точек инволюции *. Покажите, что **a**) сопоставляя прямой $(ab) \subset \mathbb{P}_3$ точку $a \land b \in \mathbb{P}_5$, получим биекцию между прямыми в \mathbb{P}_3 и точками квадрики P **6**) два семейства прямых на квадрике Сегре $V(\det) \subset \mathbb{P}_3$ перейдут при этом в две гладкие коники $P \cap L_{\pm}$ **в**) множество всех касательных прямых к квадрике Сегре перейдёт в линейное соединение этих двух коник, совпадающее с $P \cap Q$. Иными словами, имеется коммутативная диаграмма 2 :

$$\begin{array}{c|c} \mathbb{P}(U)_{\longleftarrow} & \to \mathbb{P}(S^2U) \simeq L_+ \\ \hline \pi & & & \\ \mathbb{P}_1^+ \times \mathbb{P}_1^- & \xrightarrow{\text{Сегре}} & V(\det) \subset \mathbb{P} \operatorname{End}(U) - \xrightarrow{\Pi, \text{поккер}} & \to P \subset \mathbb{P} \begin{pmatrix} S^2U \otimes \Lambda^2U^* \\ \oplus \\ \Lambda^2U \otimes S^2U^* \end{pmatrix} \\ \hline \mathbb{P}(U^*)^{\longleftarrow} & \to \mathbb{P}(S^2U^*) \simeq L_- \end{array}$$

¹Поле $\mathbb{F}_9 \simeq \mathbb{Z}[x]/(3, x^2 + 1) \simeq \{a + bi \mid a, b \in \mathbb{Z}/(3), i^2 = -1 \in \mathbb{Z}/(3)\}.$

²Плюккер пунктирный, поскольку отображает прямые в точки.

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1			
2			
3a			
б			
4a			
б			
В			
Г			
5			
6a			
б			
В			
Г			
Д			
e			
7a			
б			
В			