Касательные и кокасательные расслоения

АГ8•1. Обозначим через $\mathcal{O}(-1) = \mathcal{O}_{\mathbb{P}_n}(-1)$ линейное расслоение на $\mathbb{P}_n = \mathbb{P}(V)$, слой которого над точкой v равен одномерному подпространству в V, натянутому на v. Положим $\mathcal{O}(1) \stackrel{\text{def}}{=} \mathcal{O}(-1)^*$ и $\mathcal{O}(d) \stackrel{\text{def}}{=} \mathcal{O}(1)^{\otimes d}$, $\mathcal{O}(-d) \stackrel{\text{def}}{=} \mathcal{O}(-1)^{\otimes d}$ при $d \in \mathbb{N}$. Покажите, что пространство регулярных сечений расслоения $\mathcal{O}(d)$ над открытым множеством $U \subset \mathbb{P}_n$ изоморфно подпространству поля частных $\mathbb{k}(x_0,x_1,\ldots,x_n)$, состоящему из дробей, допускающих для каждой точки $v \in U$ запись p/q, где $p,q \in \mathbb{k}[x_0,x_1,\ldots,x_n]$ однородны с $\deg p - \deg q = d$ и $q(v) \neq 0$, и является локально свободным модулем ранга 1 над алгеброй локальных регулярных функций на U, которая в свою очередь изоморфна подалгебре поля частных $\mathbb{k}(x_0,x_1,\ldots,x_n)$, возникающей при d=0.

АГ8 \diamond 2. Пусть $X = \operatorname{Gr}(k,V)$ — грассманиан k-мерных подпространств в $V, E = V \times X$ — тривиальное расслоение со слоем $V, S \subset E$ — тавтологическое подрасслоение, и Q = E/S. Всякое \mathbbm{k} -линейное дифференцирование $\xi: \mathcal{O}_X \to \mathcal{O}_X$ локальных регулярных функций на X продолжается до дифференцирования $1 \otimes \xi: V \otimes \mathcal{O}_X \to V \otimes \mathcal{O}_X$ локальных регулярных сечений расслоения E правилом $1 \otimes \xi(v \otimes f) \stackrel{\text{def}}{=} v \otimes \xi(f)$, и вторая фундаментальная форма сопоставляет (локальному) векторному полю ξ на X (локальное) отображение $\tilde{\xi}: S \to Q$ из пучка S (локальных) сечений расслоения S в пучок S (локальных) сечений расслоения S в пучок S (локальных) сечений расслоения S поравите. Что отображение S является S поравите сечение $S \in S \subset V \otimes \mathcal{O}_X$ в $S \in S$ поравите, что отображение $S \in S$ поравите $S \in S$ поравите. Что отображение $S \in S$ поравите $S \in S$ поравите. Что отображение $S \in S$ поравите $S \in S$ поравите. Что отображение $S \in S$ поравите $S \in S$ поравите. Что отображение $S \in S$ поравите $S \in S$ поравите. Что отображение $S \in S$ поравите. Поравите $S \in S$ поравите $S \in S$ поравите. Поравите $S \in S$ поравите $S \in S$ поравите.

АГ8 \diamond 3 (точная последовательность Эйлера). Покажите, что пучки сечений касательного и кокасательного расслоений на $\mathbb{P}_n = \mathbb{P}(V)$ включаются в точные последовательности $\mathcal{O}_{\mathbb{P}_n}$ -модулей:

$$0 \to \mathcal{O}_{\mathbb{P}_n} \to V \otimes \mathcal{O}_{\mathbb{P}_n}(1) \to \mathcal{T}_{\mathbb{P}_n} \to 0 \quad \text{ if } \quad 0 \to \varOmega^1_{\mathbb{P}_n} \to V^* \otimes \mathcal{O}_{\mathbb{P}_n}(-1) \to \mathcal{O}_{\mathbb{P}_n} \to 0\,,$$

в которых стрелки $\mathcal{O} \to V \otimes \mathcal{O}(1)$ и $V^* \otimes \mathcal{O}(-1) \to \mathcal{O}$ задаются тем же тензором из пространства

$$\operatorname{Hom}_{\mathcal{O}}\left(\mathcal{O},V\otimes\mathcal{O}(1)\right)\simeq V\otimes\operatorname{Hom}_{\mathcal{O}}\left(\mathcal{O},\mathcal{O}(1)\right)\simeq V\otimes V^{*}\simeq V\otimes\operatorname{Hom}_{\mathcal{O}}\left(\mathcal{O}(-1),\mathcal{O}\right)\simeq\operatorname{Hom}_{\mathcal{O}}\left(V^{*}\otimes\mathcal{O}(-1),\mathcal{O}\right)$$

что и тождественное отображение $\mathrm{Id}_V \in V \otimes V^* \simeq \mathrm{Hom}_{\Bbbk}(V,V).$

АГ8 \diamond 4. Покажите, что пучки поливекторных полей на $\mathbb{P}_n = \mathbb{P}(V)$ включаются в точные последовательности \mathcal{O} -модулей $0 \to \Lambda^{k-1}\mathcal{T} \to \Lambda^k V \otimes \mathcal{O}(k) \to \Lambda^k \mathcal{T} \to 0$, где $\Lambda^k V \simeq \operatorname{Hom}\left(\mathcal{O}(k), \Lambda^k \mathcal{T}\right) \simeq \operatorname{Hom}^*\left(\Lambda^{k-1}\mathcal{T}, \mathcal{O}(k+1)\right)$, которые организуются в одну длинную точную последовательность $\mathcal{O}_{\mathbb{P}_n}$ -модулей $0 \to \mathcal{O} \to V \otimes \mathcal{O}(1) \to \Lambda^2 V \otimes \mathcal{O}(2) \to \cdots \to \Lambda^n V \otimes \mathcal{O}(n) \to \mathcal{O}(n+1) \to 0$, где стрелки суть однородные компоненты оператора умножения на сечение $s: \mathcal{O} \to V \otimes \mathcal{O}(1)$ из зад. АГ8 \diamond 3 во внешней алгебре $\Lambda^*\left(V \otimes \mathcal{O}(1)\right) = \bigoplus_{k=0}^{n+1} \Lambda^k V \otimes \mathcal{O}(k)$ пучка сечений расслоения $V \otimes \mathcal{O}(1)$.

АГ8 \diamond 5. Пусть k+m < n. Покажите, что многообразие пересекающихся k- и m-мерных плоскостей в $\mathbb{P}_n = \mathbb{P}(V) \colon \Omega(k,m,n) \stackrel{\text{def}}{=} \{(K,M) \mid K \cap M \neq \emptyset\} \subset \operatorname{Gr}(k+1,V) \times \operatorname{Gr}(m+1,V)$ гладко в точке $(K,M) = (\mathbb{P}(U),\mathbb{P}(W))$ тогда и только тогда, когда dim $U \cap W = 1$ и в этом случае

$$T_{(K,M)}\Omega(k,m,n) = \{(\varphi,\psi) \in \operatorname{Hom}(U,V/U) \times \operatorname{Hom}(W,V/W) \mid \varphi|_{U \cap W} \equiv \psi|_{U \cap W} \pmod{U+W} \}.$$

АГ8•6. Для замкнутого m-мерного подмногообразия $X \subset \operatorname{Gr}(k+1,V)$ покажите, что: а) объединение $\Pi_X = \bigcup_{\Pi \in X} \Pi \subset \mathbb{P}_n = \mathbb{P}(V)$ является замкнутым многообразием 6) если точка $p \in \Pi_X$ лежит на единственной плоскости $\Pi = \mathbb{P}(U) \in X$, причём X гладко в Π и для любого ненулевого касательного к X вектора $\varphi \in T_\Pi \operatorname{Gr}(k+1,V) = \operatorname{Hom}(U,V/U)$ значение $\varphi(p) \neq 0$, то Π_X гладко в p, $\dim_p \Pi_X = k + m$ и $T_p \Pi_X$ как подпространство в \mathbb{P}_n представляет собой проективизацию полного прообраза при факторизации $V \twoheadrightarrow V/U$ векторного подпространства в V/U, порождённого векторами $\varphi(p)$ со всевозможными $\varphi(p)$ со всевозможными $\varphi(p)$.

 $^{^{} ext{ iny 1}}$ т. е. сечений внешних степеней $arLambda^k \mathcal{T}_{\mathbb{P}_n}$ касательного расслоения

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1			
2			
3			
4			
5			
6a			
б			