Аффинные алгебраические многообразия.

АГ5 \diamond 1. Пусть $f \in \mathbb{k}[x_1, x_2, \dots, x_n]$, $\deg f > 0$. При каком условии на вектор $v = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, 1)$ параллельная проекция гиперповерхности $V(f) \subset \mathbb{A}^n$ в направлении v на гиперплоскость $x_n = 0$ является: a) доминантной б) конечной в) сюрьективной?

АГ₅ \diamond 2. Докажите, что проекция аффинной гиперповерхности $V(f) \subset \mathbb{A}^n$ из любой точки $p \notin V(f)$ на любую гиперплоскость $H \not\ni p$ доминантна.

АГ5♦3. Покажите, что образ доминантного морфизма содержит открытое плотное множество.

 $A\Gamma_5 \diamond 4$ (лемма Нётер о нормализации). Покажите, что любая гиперповерхность $V(f) \subset \mathbb{A}^n$ допускает конечную сюрьекцию на некоторую гиперплоскость $\mathbb{A}^{n-1} \subset \mathbb{A}^n$.

АГ5 \diamond 5. Покажите, что открытое подмножество U аффинного многообразия X является его аффинным подмногообразием 1 тогда и только тогда, когда для некоторых $f_1, f_2, \ldots, f_m \in \mathbb{k}[U]$, порождающих единичный идеал в кольце $\mathbb{k}[U]$, каждое из главных открытых подмножеств $U_i = \mathcal{D}\left(f_i\right)$ является аффинным многообразием с координатным кольцом $\mathbb{k}[U_i]$.

АГ5 \diamond 6 (рациональные функции). Кольцо частных $^2Q_{\Bbbk[X]}$ координатной алгебры $\Bbbk[X]$ аффинного многообразия X называется алгеброй рациональных функций на X и обозначается $\Bbbk(X)$. Множество $D_f = \{x \in X \mid \exists p, q \in \Bbbk[X] : q(x) \neq 0 \ \& \ f = p \ / \ q \}$ называется областью определения рациональной функции $f \in \Bbbk(X)$. Покажите, что: а) если $x \in D_f$, то значение $f(x) = p(x) \ / \ q(x) \in \Bbbk$ не зависит от способа записи $f = p \ / \ q$ с $p, q \in \Bbbk[X]$ и $q(x) \neq 0$ б) D_f открыто и плотно в X в) отображение $f : D_f \to \Bbbk$, $x \mapsto f(x)$, непрерывно $g \in \Bbbk[X]$ порождается содержащимися в нём неделителями нуля $g \in \Bbbk[X]$ и $g \in \Bbbk[X]$ если $g \in \Bbbk[X]$ го $g \in \Bbbk[X]$, то $g \in \Bbbk[X]$ и $g \in \Bbbk[X]$ отображение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$ и $g \in \Bbbk[X]$ отобразение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$ на правлежение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$ на правлежение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$ на правлежение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$ на правлежение на неприводимые компоненты, то имеется изоморфизм $g \in \Bbbk[X]$

$$\Bbbk(X) \cong \Bbbk(X_1) \times \Bbbk(X_2) \times \cdots \times \Bbbk(X_m), \quad f \mapsto (f|_{X_1}, f|_{X_2}, \dots, f|_{X_m}).$$

АГ5 \diamond 7. Найдите D_f для a) f=(1-y)/x на $V(x^2+y^2-1)\subset \mathbb{A}^2$ б) f=y/x на $V(x^3+x^2-y^2)\subset \mathbb{A}^2$ в) $f=x_1/x_3$ на $X=V(x_1x_4-x_2x_4)\subset \mathbb{A}^4$ и выясните, лежит ли f в $\Bbbk[X]$.

АГ5 \diamond 8 (фактор по конечной группе). Пусть конечная группа $\mathfrak G$ действует регулярными автоморфизмами на аффинном алгебраическом многообразии X над алгебраически замкнутым полем характеристики нуль. Обозначим через $R = \Bbbk[X]^{\mathfrak G} \subset \Bbbk[X]$ подалгебру инвариантов. Покажите, что а) \Bbbk -линейный оператор \natural : $\Bbbk[X] \twoheadrightarrow R$, переводящий функцию $f \in \Bbbk[X]$ в центр тяжести её $\mathfrak G$ -орбиты $f^{\natural} \stackrel{\text{def}}{=} \frac{1}{|\mathfrak G|} \sum_{\sigma \in \mathfrak G} \sigma f$, обладает для всех $f \in \Bbbk[X]$ и $h \in R$ свойствами:

$$f^{\natural} \in R$$
, $h^{\natural} = h$, $(fh)^{\natural} = f^{\natural}h$

- 6) алгебра R конечно порождена и не имеет нильпотентов.
- в) Постройте такие аффинное алгебраическое многообразие X / \mathfrak{G} и конечную регулярную сюрьекцию $\pi : X \twoheadrightarrow X/\mathfrak{G}$, что слои π это в точности \mathfrak{G} -орбиты и для любого регулярного морфизма аффинных многообразий $\varphi : X \to Y$, такого что $\forall \sigma \in \mathfrak{G}$ и $\forall x \in X \ \varphi(\sigma x) = \varphi(x)$, существует единственный регулярный морфизм $\psi : X/\mathfrak{G} \to Y$, такой что $\psi \circ \pi = \varphi$.
- г) Опишите явными уравнениями в подходящем аффинном пространстве фактор \mathbb{C}^2 / \mathfrak{G} , где $\mathfrak{G}=\mathbb{Z}/(n)$ действует на \mathbb{C}^2 по правилу $[k]_n:(x,y)\mapsto (e^{2\pi i k/n}x,e^{2\pi i k/n}y)$.

 $^{^{1}}$ Т. е. существует аффинное многообразие Y и регулярный морфизм $Y \hookrightarrow X$ гомеоморфно отображающий Y на U.

²Т. е. локализация со знаменателями в мультипликативной системе всех неделителей нуля.

³В топологии Зарисского.

 $^{^4}$ Через $f|_{X_i}$ обозначен образ f при гомоморфизме $\Bbbk(X) \to \Bbbk(X_i)$, продолжающем гомоморфизм $\varphi_i^*: \Bbbk[X] \twoheadrightarrow \Bbbk[X_i]$, отвечающий замкнутому вложению $\varphi_i: X_i \hookrightarrow X$.

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1a		-	
б			
В			
2			
3			
4			
5			-
6a		-	
б			
В			
Г			
Д			
e			
Ж			<u> </u>
7a			
б			
В		[<u> </u>
8a			
б			
В Г			