Грассманианы

АГ3<1. Можно ли обратимой линейной заменой переменных преобразовать многочлен

$$9x^3 - 15yx^2 - 6zx^2 + 9xy^2 + 18z^2x - 2y^3 + 3zy^2 - 15z^2y + 7z^3$$

в многочлен от ≤ 2 переменных?

АГ3◊2. Покажите, что следующие три условия на грассманов многочлен

$$\omega = \sum_{i_1 i_2 \dots i_n} \alpha_{i_1 i_2 \dots i_n} e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_n}$$

(коэффициенты $\alpha_{i_1i_2...i_n}$ кососимметричны по индексам $i_1,i_2,...,i_n$) эквивалентны друг другу:

- а) $\omega = u_1 \wedge u_2 \wedge \cdots \wedge u_n$ для некоторых $u_1, u_2, \dots, u_n \in V$
- б) $u \wedge \omega = 0 \ \forall u \in \text{Supp}(\omega)$, где $\text{Supp}(\omega)$ это наименьшее подпространство $U \subset V : \omega \in \Lambda^n U$
- в) для любых двух наборов неповторяющихся индексов i_1,i_2,\dots,i_{m+1} и j_1,j_2,\dots,j_{m-1} выполнено соотношение Плюккера $\sum_{v=1}^{m+1} (-1)^{v-1} a_{j_1\dots j_{m-1}i_v} a_{i_1\dots \hat{i}_v\dots i_{m+1}} = 0$.

АГ3 \diamond 3. Вложим грассманиан $\mathrm{Gr}(k,V)$ по Плюккеру в $\mathbb{P}_N=\mathbb{P}(\Lambda^k V)$. Покажите, что

- а) всякая лежащая на нём прямая изображает семейство k-мерных подпространств, содержащихся в некотором общем для всех (k+1)-мерном подпространстве и содержащих некоторое общее для всех (k-1)-мерное подпространство
- 6) всякое максимальное по включению проективное подпространство $\Pi \subset \operatorname{Gr}(k,V)$ изображает семейство всех k-мерных подпространств, содержащих некоторое фиксированное подпространство в V или семейство всех k-мерных подпространств, содержащихся в некотором фиксированном подпространстве в V.
- АГ3 \diamond 4. Пусть dim U=2, dim V=k+1 и $W=U\otimes V$. Сопоставим точке $\alpha\in\mathbb{P}_1=\mathbb{P}(U)$ точку $s(\alpha)\in\operatorname{Gr}(k+1,W)$, отвечающую подпространству $\alpha\otimes V\subset W$, и вложим $\operatorname{Gr}(k+1,W)$ в $\mathbb{P}_N=\mathbb{P}(\Lambda^{k+1}W)$ по Плюккеру. Покажите, что точки $s(\alpha)$ нарисуют в образе грассманиана рациональную нормальную кривую степени k, лежащую в некоем $\mathbb{P}_k\subset\mathbb{P}_N$.
- **АГ**3 \diamond 5. Докажите, что для любого проективного многообразия $X \subset \mathbb{P}(V)$ множество k-мерных проективных подпространств $L \subset \mathbb{P}(V)$, которые пересекают X, составляет замкнутое подмногообразие в грассманиане Gr(k+1,V).
- **АГ**3 \diamond 6. В условиях предыдущей задачи напишите явные уравнения, задающие на квадрике Плюккера $Gr(2,4)\subset \mathbb{P}_5=\mathbb{P}(\Lambda^2V)$ множество всех прямых в $\mathbb{P}_3=\mathbb{P}(V)$, пересекающих
 - a) конику $x_3 = x_0 x_2 x_1^2 = 0$
 - 6) скрученную кубику $x_1^2 x_0 x_2 = x_2^2 x_1 x_3 = x_0 x_3 x_1 x_2 = 0$.
- **А**Г3 \diamond 7. На четырёхмерном пространстве *V* задана невырожденная билинейная кососимметричная форма $\Omega: V \times V \to \mathbb{R}$ и ненулевой 4-вектор $\delta \in \Lambda^4 V$. Покажите, что:
 - а) существует единственный такой бивектор $\omega \in \Lambda^2 V$, что $\omega \wedge a \wedge b = \Omega(a,b) \cdot \delta$ для всех $a,b \in V$
 - б) ортогональная к ω относительно плюккеровой квадратичной формы на $\Lambda^2 V$ гиперплоскость в $\mathbb{P}(\omega^\perp) \subset \mathbb{P}(\Lambda^2 V)$ пересекает $\mathrm{Gr}(2,4) \subset \mathbb{P}(\Lambda^2 V)$ по гладкой квадрике, которая является плюккеровым образом лагранжева грассманиана

$$LGr(2, V) = \{ U \subset V \mid \dim U = 2 \& \Omega|_{U} \equiv 0 \}$$

в) множество прямых на LGr(2, V) естественно параметризуется точками пространства $\mathbb{P}_3 = \mathbb{P}(V)$.

 $^{^{\}scriptscriptstyle 1}$ «крышка» в $a_{i_1\dots\hat{i}_{\scriptstyle \nu}\dots i_{\scriptstyle m+1}}$ означает, что индекс $i_{\scriptstyle
u}$ следует пропустить

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1		,	
2a			
б			
В			
3a			
б			
4			
5			
6a			
б			
7a			
б			
В			