Гомографии и проекции

Терминология. Биекции между проективными прямыми $\mathbb{P}(U)$ и $\mathbb{P}(W)$, задаваемые линейными изоморфизмами $U \cong W$, называются *гомографиями*. Группа гомографий $\mathbb{P}(\mathbb{k}^2) \cong \mathbb{P}(\mathbb{k}^2)$ обозначается $\mathrm{PGL}_2(\mathbb{k})$. Образ точки $d \in \mathbb{P}_1 = \mathbb{P}(\mathbb{k}^2) = \mathbb{k} \sqcup \infty$ при (единственной) гомографии $\mathbb{P}_1 \cong \mathbb{P}_1$, переводящей три различные точки $a,b,c \in \mathbb{P}_1$, соответственно, в ∞ , 0, 1, обозначается [a,b,c,d] и называется d войным отношением этих точек. Для дополнительных друг к другу подпространств $L,H \subset \mathbb{P}_n$ проекция из L на H сопоставляет каждой точке $p \in \mathbb{P}_n \setminus L$ точку $\ell \cap H$, где ℓ — это (единственная) проходящая через p прямая, пересекающая и L, и H, а каждую точку пространства T оставляет на месте. Подпространство L называется p0 называется p1 называется p2 и p3 называется p3 и p4 называется p5 называется p6 называется p6 называется p8 называется p9 называе

ГС5 \diamond **1.** Убедитесь, что в однородных координатах и в любой аффинной карте на $\mathbb{P}(\mathbb{k}^2)$

$$[p_1,\,p_2,\,p_3,\,p_4] = \frac{\det(p_1,p_3)\det(p_2,p_4)}{\det(p_1,p_4)\det(p_2,p_3)} = \frac{(p_1-p_3)(p_2-p_4)}{(p_1-p_4)(p_2-p_3)}$$

не зависит ни от выбора базиса в \mathbb{k}^2 , ни от аффинной карты¹, и что две упорядоченные четвёрки точек на \mathbb{P}_1 тогда и только тогда переводятся одна в другую некоторой гомографией, когда их двойные отношения одинаковы.

- ГС5 \diamond 2. Опишите все такие преобразования из PGL₂, что **a)** $\infty \mapsto \infty$ **б)** $(\infty,0) \mapsto (\infty,0)$ **в)** $(\infty,0,1) \mapsto (0,\infty,1)$ г) $(\infty,0,1) \mapsto (1,0,\infty)$ д) $(\infty,0,1) \mapsto (\infty,1,0)$ и без вычислений получите из этих описаний равенства $[p_2,p_1,p_3,p_4]=[p_1,p_2,p_3,p_4]^{-1}$, $[p_1,p_3,p_2,p_4]=1-[p_1,p_2,p_3,p_4]$, $[p_1,p_4,p_3,p_2]=([p_1,p_2,p_3,p_4]-1)/[p_1,p_2,p_3,p_4]$.
- **ГС5** \diamond **3.** Пусть $[p_1, p_2, p_3, p_4] = \vartheta$. Найдите $[p_{\sigma(1)}, p_{\sigma(2)}, p_{\sigma(3)}, p_{\sigma(4)}]$ для всех 24 перестановок $\sigma \in S_4$ и опишите все ϑ , орбита которых под действием S_4 короче, чем у общего ϑ . Подсказка: действие S_4 пропускается через эпиморфизм $S_4 \twoheadrightarrow S_3$, задаваемый действием группы перестановок вершин плоского четырёхвершинника на вершинах ассоциированного с ним треугольника.
- **ГС5<4.** Нетождественная гомография $\sigma: \mathbb{P}_1 \to \mathbb{P}_1$ называется *инволюцией*, если $\sigma^2 = \mathrm{Id}$. Покажите, что над алгебраически замкнутым полем каждая инволюция на \mathbb{P}_1
 - а) имеет ровно две различных неподвижных точки
 - б) в подходящей аффинной карте выглядит как центральная симметрия.
 - **в)** Если $\sigma(p) = p$ и $\sigma(q) = q$, то $\sigma(x) = y \iff [x, y, p, q] = -1$.
- **ГС5 5.** Постройте инволюцию без неподвижных точек на вещественной проективной прямой. Может ли инволюция вещественной проективной прямой иметь ровно одну неподвижную точку?
- **ГС5** \diamond **6.** Постройте рациональную параметризацию коники $x_0^2 = x_1^2 + x_2^2$, спроектировав её из точки (1:1:0) на прямую $x_1=0$, и перечислите все пифагоровы тройки 2 .
- **ГС5∘7 (обязательная задача на дом).** Постройте рациональную параметризацию коник³:
 - а) $3x_0^2 + 5x_1^2 + 34x_2^2 + 4x_0x_1 + 12x_0x_2 = 10x_1x_2$ (подсказка: точка (-7:5:2) изотропна)
 - **6)** $x_1^2 + 11x_2^2 + 2x_0x_2 = 10x_1x_2$
- **ГС5** \diamond 8. Рассмотрим комплексную проективную плоскость $\mathbb{P}_2 = \mathbb{P}_2(S^2U)$ как множество неупорядоченных пар точек $ab = \{a,b\}$ на $\mathbb{P}_1 = \mathbb{P}_1(U)$ и обозначим через $\mathcal{C} \subset \mathbb{P}_2$ конику Веронезе, образованную всеми парами $a^2 = \{a,a\}$ совпадающих точек.
 - а) Из каких пар xy состоят касательные, опущенные на C из точки $ab \in \mathbb{P}_2 \setminus C$?
 - **б)** Покажите, что отображение $\sigma_{ab}: \mathbb{P}_1 \to \mathbb{P}_1$, переводящее точку $x \in \mathbb{P}_1$ в такую точку

 $^{^{1}}$ При условии, что она содержит все четыре точки.

 $^{^{2}}$ Т. е. натуральные решения уравнения Пифагора $c^{2} = a^{2} + b^{2}$.

 $^{^3}$ Ср. с контрольной работой № 1

- $y \in \mathbb{P}_1$, что три пары точек x^2 , ab, y^2 коллинеарны на \mathbb{P}_2 , является инволютивной гомографией, и найдите её неподвижные точки.
- в) Докажите, что каждая инволюция на \mathbb{P}_1 представляется в таком виде, и выведите отсюда зад. Γ C5 \diamond 4, см. рис. $1\diamond$ 1.

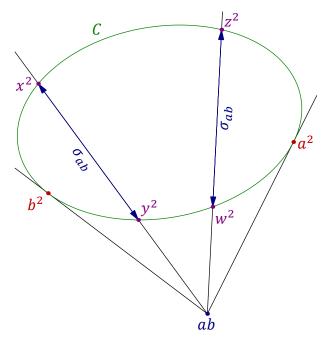


Рис. 1⋄**1.** Инволюция на конике.

- **ГС59.** Покажите, что две разных инволюции комплексной проективной прямой всегда одинаково действуют ровно на одну пару точек этой прямой.
- Γ C5 \diamond 10 * . В условиях зад. Γ C5 \diamond 8 рассмотрим для произвольной гомографии $\gamma: \mathbb{P}_1 \cong \mathbb{P}_1$ биекцию $\gamma_C: C \cong C, a^2 \mapsto \gamma(a)^2$. Покажите, что она продолжается до единственного линейного проективного преобразования $\mathbb{P}_2 \cong \mathbb{P}_2$, и найдутся такие точки $p_1, p_2 \in C$ и прямая ℓ , что проекция каждой точки $x \in C$ на прямую ℓ из точки p_2 совпадает с проекцией точки $\gamma_C(x)$ на ℓ из p_1 , см. рис. 1 \diamond 2.

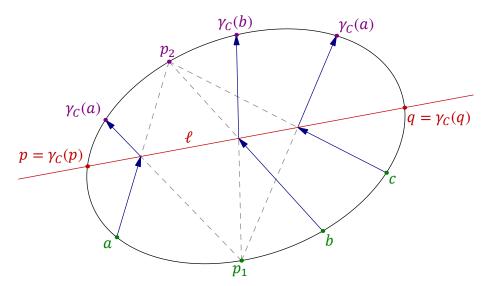


Рис. 1 > 2. Перекрёстная ось гомографии на конике.

ГС5 \diamond **11***. Пусть для заданных точек $a,b,c\in\mathcal{C}$ известны их образы при преобразовании $\gamma_{\mathcal{C}}$. Одной линейкой постройте удовлетворяющие условию предыдущей задачи прямую ℓ и точки $p_1,p_2\in\mathcal{C}$, а также неподвижные точки преобразования $\gamma_{\mathcal{C}}$. Сколько их может быть?