Словарик «Линейная алгебра - Проективная геометрия»

Терминология и обозначения. Точками проективного пространства $\mathbb{P}(V)$ являются одномерные векторные подпространства в V. Мы полагаем $\mathbb{P}_n = \mathbb{P}_n(\mathbb{k}) \stackrel{\text{def}}{=} \mathbb{P}(\mathbb{k}^{n+1})$ и $\dim \mathbb{P}(V) \stackrel{\text{def}}{=} \dim V - 1$. Для ненулевого ковектора $\xi \in V^*$ множество одномерных подпространств, порождённых такими векторами $v \in V$, что $\xi(v) \neq 0$, является аффинным пространством над векторным подпространством $\operatorname{Ann} \xi \subset V$. Оно обозначается U_ξ и называется аффинной картой. Проективное подпространство $\mathbb{P}(\operatorname{Ann} \xi) \subset \mathbb{P}(V)$ называется бесконечной гиперплоскостью аффинной карты U_ξ . Если n+1 ковекторов $\xi, \xi_1, \ldots, \xi_n$ образуют базис в V^* , функции $t_i = \xi_i/\xi : U_\xi \to \mathbb{k}$ называются локальными аффинными координатами в карте U_ξ относительно этого базиса. Аффинные карты $U_i \stackrel{\text{def}}{=} U_{x_i}$, где x_0, x_1, \ldots, x_n — стандартные координать на x_0, x_1, \ldots, x_n называются стандартными аффинными картами на x_0, x_1, \ldots, x_n в качестве стандартных аффинных координать на x_0, x_1, \ldots, x_n называется однородными координатами на x_0, x_1, \ldots, x_n на пространстве x_0, x_1, \ldots, x_n называется однородными координатами на x_0, x_1, \ldots, x_n на пространстве $x_0, x_1,$

- **ГС4** \diamond **1.** Сколько k-мерных проективных подпространств в \mathbb{P}_n над полем из q элементов?
- **ГС4** \diamond **2.** Напишите уравнение кривой $x_0^2 + x_1^2 = x_2^2$ на \mathbb{P}_2 в каких-нибудь локальных аффинных координатах на картах **a)** $U_2 = U_{x_2}$ **6)** $U_1 = U_{x_1}$ **в)** $U_{x_2-x_1}$.
- **ГС4** \diamond **3.** При каком условии на три прямые ℓ_0 , ℓ_1 , ℓ_2 на проективной плоскости $\mathbb{P}_2 = \mathbb{P}(V)$ в векторном пространстве V^* можно выбрать такой базис x_0, x_1, x_2 , что каждая прямая ℓ_i является бесконечно удалённой для стандартной аффинной карты $U_i = \{v \in V \mid x_i(v) \neq 0\}$?
- **ГС4** \diamond **4.** Укажите три точки $A, B, C \in \mathbb{P}_2$ так, чтобы точки A' = (1:0:0), B' = (0:1:0) и C' = (0:0:1) лежали, соответственно, на прямых (BC), (CA) и (AB), а прямые (AA'), (BB') и (CC') пересекались в точке (1:1:1).
- **ГС4** \diamond **5.** Рассмотрим в $\mathbb{P}_n = \mathbb{P}(V)$ аффинную карту $U_{\xi} = \{v \in V \mid \xi(v) \neq 0\}$, отвечающую ненулевому ковектору $\xi \in V^*$, и k-мерное проективное подпространство $K = \mathbb{P}(W) \subset \mathbb{P}_n$, ассоциированное с (k+1)-мерным векторным подпространством $W \subset V$. Убедитесь, что либо $K \cap U_{\xi} = \emptyset$, либо $K \cap U_{\xi}$ наблюдается в аффинном пространстве U_{ξ} как k-мерное аффинное подпространство.
- **ГС4** \diamond 6. Пусть сумма размерностей двух непересекающихся проективных подпространств L_1 и L_2 в \mathbb{P}_n равна n-1. Покажите, что для любой точки $p \in \mathbb{P}_n \setminus (L_1 \sqcup L_2)$ существует единственная прямая $\ell \ni p$, пересекающая как L_1 , так и L_2 .
- **ГС4\diamond7.** Кубика Веронезе C_3 в проективизации \mathbb{P}_3 векторного пространства однородных кубических многочленов от двух переменных t_0 , t_1 с коэффициентами в поле \mathbb{C} состоит из ненулевых многочленов, являющихся полными кубами¹. Опишите проекцию кривой C_3
 - а) из точки t_0^3 на плоскость $\left(3\,t_0^2t_1,\,3\,t_0t_1^2,\,t_1^3\right)$
 - **б)** из точки 3 $t_0^2t_1$ на плоскость $\left(t_0^3,\, 3\,t_0t_1^2,\, t_1^3\right)$
 - **в)** из точки $3t_0t_1(t_0+t_1)$ на плоскость $\left(t_0^3,\,3\,t_0^2t_1,\,t_1^3\right)$.

А именно, напишите параметрическое уравнение кривой-образа в однородных координатах на плоскости проекции, а также (непараметрическое) аффинное уравнение кривой-образа в каждой из трёх стандартных аффинных карт и нарисуйте все девять аффинных кривых, задаваемых этими аффинными уравнениями над полем $\mathbb R$. Убедитесь, что кривая в (б) имеет остриё, а кривая в (в) — самопересечение (над $\mathbb C$).

ГС4 \diamond **8***. Постройте гомеоморфизмы **a)** между $\mathbb{P}_2(\mathbb{R})$ и лентой Мёбиуса с заклеенной диском границей **б)** между $\mathbb{P}_3(\mathbb{R})$ и $SO_3(\mathbb{R})$.

¹Т. е. представимых в виде $(\alpha_0 t_0 + \alpha_1 t_1)^3$, где $(\alpha_0 : \alpha_1)$ пробегает \mathbb{P}_1 .