Кососимметричные формы и грассмановы многочлены

Терминология и обозначения. Базис 2n-мерного пространства V с невырожденной кососимметричной формой ω называется cumnnekmuчeckum, если его матрица Грама имеет вид $\begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}$, где E—единичная матрица размера $n \times n$. Изотропные подпространства половинной размерности в V называются naepahжевыми. Группа изометрий формы ω обозначается $\mathrm{Sp}_{\omega}(V)$ или просто $\mathrm{Sp}(V)$ и называется $\mathrm{cumnnekmuvecko\"{u}}$ $\mathrm{cpynno\~u}$. Через $\mathrm{Sp}_{2n}(\Bbbk)$ обозначается $\mathrm{cumnnekmuvecko\~u}$ $\mathrm{rpynno\~u}$. Через $\mathrm{Sp}_{2n}(\Bbbk)$ обозначается $\mathrm{cumnnekmuvecka\~u}$ $\mathrm{rpynno\~u}$. Через $\mathrm{Sp}_{2n}(\Bbbk)$ обозначается $\mathrm{cumnnekmuvecka\~u}$ $\mathrm{rpynno\~u}$ на $\mathrm{rpynno\~u}$ $\mathrm{rpynno\~u}$ на $\mathrm{rpynno\~u}$ $\mathrm{rpynno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm{rpyno<math>\mathrm$

ГСЗ\diamond1. Постройте какой-нибудь симплектический базис для формы на \mathbb{Q}^4 с матрицей Грама

a)
$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}$$
 6) $\begin{pmatrix} 0 & 1 & 0 & 2 \\ -1 & 0 & 3 & 0 \\ 0 & -3 & 0 & -2 \\ -2 & 0 & 2 & 0 \end{pmatrix}$ в стандартном базисе.

- **ГСЗ\diamond2.** Докажите, что любой симплектический оператор $f \in \operatorname{Sp}_{2n}(\mathbbm{k})$ имеет возвратный характеристический многочлен: $\chi_f(t) = t^{2n} \chi_f\left(t^{-1}\right)$ и единичный определитель $\det f = 1$.
- **ГСЗ** \diamond **3.** Покажите, что симплектическая группа состоит из операторов, матрицы которых в симплектическом базисе имеют вид $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, где $n \times n$ -блоки A, B, C, D удовлетворяют соотношениям $C^tA = A^tC$, $D^tB = B^tD$, $E + C^tB = A^tD$.
- **ГСЗ** \diamond **4.** Покажите, что для каждого лагранжева подпространства $U \subset V$: **a)** $U = U^{\perp}$ **6)** есть такое лагранжево подпространство U', что $V = U \oplus U'$ **в)** любой базис в U однозначно дополняется базисом в U' до симплектического базиса в V **г)** полная линейная группа GL(U) гомоморфно вкладывается в симплектическую группу Sp(V) по правилу $G \mapsto \begin{pmatrix} G & 0 \\ 0 & G^{t-1} \end{pmatrix}$.
- **ГСЗ** \diamond **5***. Покажите, что симплектическая группа Sp(V) транзитивно действует на лагранжевых подпространствах $U \subset V$.
- **ГСЗ\diamond7.** Для $n \times n$ матрицы $A = (a_{ij})$ над кольцом многочленов от n^2 коммутирующих переменных a_{ij} вычислите все частные производные $\frac{\partial^k \det(A)}{\partial a_{i_1j_1}\partial a_{i_2j_2}...\partial a_{i_kj_k}}$. Если общий случай вызывает затруднения, начните с k=1,2,3.
- **ГСЗ** $\diamond 8^*$. Пусть AB = E. Докажите соотношение $a_{IJ} = (-1)^{|I|+|J|} b_{\overline{J}\overline{I}}$ на дополнительные миноры матриц A и B.
- **ГСЗ** \diamond **9.** Покажите, что однородный грассманов многочлен ω степени два тогда и только тогда является произведением двух линейных, когда $\omega \wedge \omega = 0$.
- **ГСЗ** \diamond **10***. Покажите, что шесть чисел A_{ij} , $1 \leq i < j \leq 4$, тогда и только тогда являются 2×2 -минорами 2×4 -матрицы 2 A, когда $A_{12}A_{34} A_{13}A_{24} + A_{14}A_{23} = 0$, и выясните, существует ли комплексная 2×4 -матрица с 2×2 -минорами 3 **a)** $\{2, 3, 4, 5, 6, 7\}$ **6)** $\{3, 4, 5, 6, 7, 8\}$. Если да, приведите явный пример такой матрицы.

 $^{^{1}}$ Т. е. такими, что $\omega(fu_{1},u_{2})=-\omega(u_{1},fu_{2})$ для всех $u_{1},u_{2}\in U.$

 $^{^{2}}$ Так что минор A_{ij} образован i-м и j-м столбцами матрицы A.

³Написанными в случайном порядке.