§1. Пространство с билинейной формой

1.1. Соглашения и обозначения. Мы рассматриваем конечномерное векторное пространство V над произвольным полем \mathbbm{k} . Наборы $\mathbf{v}=(v_1,v_2,\ldots,v_k)$ из векторов $v_j\in V$ удобно воспринимать как матрицы-строки, элементами которых являются векторы. Если векторы из набора $\mathbf{u}=(u_1,u_2,\ldots,u_n)$ линейно выражаются через векторы из набора $\mathbf{w}=(w_1,w_2,\ldots,w_m)$ по формулам $u_j=\sum_i w_i c_{ij}=w_1 c_{1j}+w_2 c_{2j}+\cdots+w_m c_{mj}$, где $c_{ij}\in \mathbbm{k}$, то мы записываем это в виде матричного равенства $\mathbf{u}=\mathbf{w}\,C_{\mathbf{w}\mathbf{u}}$, где $C_{\mathbf{w}\mathbf{u}}\in \mathrm{Mat}_{m\times n}(\mathbbm{k})$ — матрица высоты m и ширины k, в j-том столбце которой стоят коэффициенты разложения вектора u_j векторам \mathbf{w} . Мы называем матрицу $C_{\mathbf{w}\mathbf{u}}$ матрицей перехода от векторов \mathbf{u} к векторам \mathbf{w} .

Упражнение і.і. Убедитесь, что если набор векторов w выражается через набор векторов v по формуле $w=v\,C_{vw}$, а набор v выражается через набор u по формуле $v=u\,C_{uv}$, то $C_{uw}=C_{uv}C_{vw}$.

Если задано линейное отображение $f:U\to W$ между векторными пространствами U и W, и векторы $\mathbf{u}=(u_1,u_2,\ldots,u_n)$ образуют базис в U, а векторы $\mathbf{w}=(w_1,w_2,\ldots,w_m)$ — базис в W, то матрица перехода от векторов $f(\mathbf{u})=\left(f(u_1),f(u_1),\ldots,f(u_n)\right)$ к векторам \mathbf{w} называется матрицей отображения f в базисах \mathbf{u} , \mathbf{w} и обозначается $F_{\mathbf{w}\mathbf{u}}$. Её j-тый столбец состоит из координат вектора $f(u_j)$ в базисе \mathbf{w} . Таким образом, $f(\mathbf{u})=\mathbf{w}\,F_{\mathbf{w}\mathbf{u}}$. Вектор $v=\mathbf{u}x$ со столбцом координат x в базисе \mathbf{u} переводится отображением f в вектор

$$f(v) = f(ux) = f(u) x = w F_{wu} x$$

со столбцом координат $F_{wu} x$ в базисе w.

Двойственное к V пространство линейных функций $\varphi: V \to \mathbb{k}$ обозначается через V^* . Элементы этого пространства также называются ковекторами, линейными формами или линейными функционалами на V. Каждому базису $\mathbf{e} = (e_1, e_2, \ldots, e_n)$ пространства V отвечает d обиственный базис $\mathbf{e}^* = (e_1^*, e_2^*, \ldots, e_n^*)$ пространства V^* . Линейная функция $e_i^*: V \to \mathbb{k}$ сопоставляет вектору $v \in V$ его i-тую координату в базисе \mathbf{e} и действует на базисные векторы e_j по правилу

$$e_i^*(e_j) = \delta_{ij} \stackrel{ ext{def}}{=} \left\{ egin{array}{ll} 1 & ext{при } j=i \ 0 & ext{при } j
eq i \, . \end{array}
ight.$$

Упражнение 1.2. Убедитесь, i-тая координата произвольной линейной функции $\varphi: V \to \mathbb{k}$ в базисе e^* равна значению этой функции на базисном векторе e_i , т. е. $\varphi = \sum_i e_i^* \cdot \varphi(e_i)$.

Линейное отображение $V \to V^{**}$, $v \mapsto \text{ev}_v$, сопоставляющее вектору $v \in V$ функционал вычисления $\text{ev}_v \colon V^* \to \mathbb{K}$, $\varphi \mapsto \varphi(v)$, переводит любой базис e пространства V в двойственный к базису e^* в V^* базис пространства V^{**} и, стало быть, является изоморфизмом.

Для подпространств $U\subset V$ и $W\subset V^*$ мы обозначаем через $\operatorname{Ann} U\subset V^*$ и $\operatorname{Ann} W\subset V$ их аннуляторы $\operatorname{Ann} U\stackrel{\text{def}}{=} \{\varphi\in V^*\mid \forall u\in U\ \varphi(u)=0\}$ и $\operatorname{Ann} W\stackrel{\text{def}}{=} \{v\in V\mid \forall \psi\in W\ \varphi(v)=0\}$. Соответствие $U\mapsto \operatorname{Ann} U$ является инволютивной биекцией между векторными подпространствами размерности k в V и векторными подпространствами размерности $\dim V-k$ в V^* . Эта

 $^{^{1}}$ Т. е. обратной самой себе. Это означает, что Ann Ann U=U для любого векторного подпространства U как в V, так и в V^{*} .

биекция переводит суммы векторных подпространств в пересечения, а пересечения — в суммы 1 .

1.2. Билинейные формы. Отображение $\beta: V \times V \to \mathbb{R}$ называется билинейной формой на пространстве V, если оно линейно по каждому из двух своих аргументов при фиксированном другом, т. е. удовлетворяет равенству

$$\beta(x_1u_1 + x_2u_2, y_1w_1 + y_2w_2) = \sum_{i,j=1}^{2} x_iy_j\beta(u_i, w_j)$$
 (1-1)

при всех $u_1, u_2, w_1, w_2 \in V$ и $x_1, x_2, y_1, y_2 \in \mathbb{k}$.

Упражнение 1.3. Убедитесь, что билинейные формы образуют векторное подпространство в пространстве всех функций $V \times V \to \mathbb{k}$.

Если форма β на пространстве V зафиксирована, то её значение $\beta(u,w) \in \mathbb{K}$ на паре векторов $u,w \in V$ иногда бывает удобно записывать в виде *скалярного произведения* $u \cdot w$, принимающего значения в поле \mathbb{K} и, вообще говоря, некоммутативного. Формула (1-1) утверждает, что это произведение дистрибутивно по отношению к линейным комбинациям векторов, т. е. подчиняется стандартным правилам раскрытия скобок.

1.2.1. Матрицы Грама. С любыми двумя наборами векторов

$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 и $\mathbf{w} = (w_1, w_2, \dots, w_m)$, где $u_i, w_i \in V$,

связана матрица их попарных скалярных произведений $B_{uw} \stackrel{\text{def}}{=} u^t \cdot w \in \operatorname{Mat}_{n \times m}(\mathbb{k})$ с элементами $b_{ij} = v_i \cdot w_j = \beta(u_i, w_j)$. Она называется матрицей Грама наборов u, w и формы β . Когда наборы совпадают: u = w, мы пишем просто B_u вместо B_{uu} . В этом случае $\det B_u \in \mathbb{k}$ называется определителем Грама формы β и набора векторов u.

Если наборы векторов u и w линейно выражаются через наборы e и f по формулам u=e C_{eu} и w=f C_{fw} , то $B_{uw}=u^tw=\left(eC_{eu}\right)^t\left(fC_{fw}\right)=C_{eu}^te^tfC_{fw}=C_{eu}^tB_{ef}C_{fw}$. В частности, если u=w C_{wu} , то

$$B_{\boldsymbol{u}} = C_{\boldsymbol{w}\boldsymbol{u}}^{t} B_{\boldsymbol{w}} C_{\boldsymbol{w}\boldsymbol{u}} \,. \tag{1-2}$$

Если векторы $e=(e_1,e_2,\ldots,e_n)$ образуют базис в V, то скалярное произведение $\beta(u,w)$ любых двух векторов u=e x и w=e y однозначно выражается через столбцы x, y их координат в базисе e по формуле

$$u \cdot w = u^t \cdot w = x^t e^t \cdot e y = x^t B_e y. \tag{1-3}$$

Поскольку любая квадратная матрица $B_e \in \operatorname{Mat}_n(\Bbbk)$ задаёт по этой формуле билинейную форму на пространстве V, сопоставление билинейной форме её матрицы Грама в произвольно зафиксированном базисе устанавливает биекцию между пространством билинейных форм на n-мерном векторном пространстве V и пространством матриц размера $n \times n$.

Упражнение 1.4. Убедитесь, что эта биекция линейна.

¹Доказательство всех этих фактов см. в лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/ 1617/lec 04.pdf, раздел 4.4.3, стр. 64.

1.2.2. Корреляции. Задание билинейной формы $\beta: V \times V \to \mathbb{k}$ эквивалентно заданию линейного отображения

$$\beta^{\wedge} : V \to V^*, \quad v \mapsto \beta(*, v),$$
 (1-4)

переводящего вектор $v \in V$ в линейную форму $u \mapsto \beta(u,v)$ на пространстве V, задаваемую правым скалярным умножением векторов из V на v. Линейное отображение (1-4) называется правой корреляцией билинейной формы β . Форма β однозначно восстанавливается из корреляции по формуле $\beta(u,w) = \beta^{\wedge}(w)u$. Если зафиксировать в пространствах V и V^* двойственные базисы $\mathbf{e} = (e_1,e_2,\ldots,e_n)$ и $\mathbf{e}^* = (e_1^*,e_2^*,\ldots,e_n^*)$, то матрица отображения β^{\wedge} в этих базисах совпадёт с матрицей Грама формы β в базисе $\mathbf{e} \colon B_{\mathbf{e}^*\mathbf{e}}^{\wedge} = B_{\mathbf{e}}$.

Упражнение 1.5. Убедитесь в этом!

Таким образом, сопоставление билинейной форме β её правой корреляции β^\wedge устанавливает изоморфизм пространства билинейных форм на V с пространством линейных отображений из V в V^* . Симметричным образом, задание билинейной формы $\beta: V \times V \to \mathbb{R}$ эквивалентно заданию левой корреляции

$$^{\wedge}\beta: V \to V^*, \quad v \mapsto \beta(v, *), \tag{1-5}$$

переводящей вектор $v \in V$ в линейную форму левого скалярного умножения векторов из V на $v \colon u \mapsto v \cdot u = \beta(u, v)$.

Упражнение і.6. Убедитесь в том, что матрица левой корреляции в двойственных базисах e и e^* пространств V и V^* равна B_e^t , и что левая корреляция билинейной формы β является правой корреляцией mpaнсmpancm

1.2.3. Ядра, ранг и коранг. Векторные пространства

$$V^{\perp} = \ker \beta^{\wedge} = \{ u \in V \mid \forall v \in V \ \beta(v, u) = 0 \}$$

$${}^{\perp}V = \ker^{\wedge}\beta = \{ u \in V \mid \forall v \in V \ \beta(u, v) = 0 \}$$
(1-6)

называются, соответственно, *правым* и *левым* ядром билинейной формы β . Вообще говоря, $V^{\perp} \neq {}^{\perp}V$, если форма β не является симметричной или кососимметричной. Однако

$$\dim V^{\perp} = \dim^{\perp} V.$$

В самом деле, $\dim\ker\beta^\wedge=\dim V-\dim\min\beta^\wedge$, $\dim\ker^\wedge\beta=\dim V-\dim\min^\wedge\beta$, и размерности образов операторов β^\wedge , $^\wedge\beta$ равны рангам их матриц в каких-либо двойственных друг другу базисах e, e^* пространств V и V^* . Так как эти матрицы транспонированы друг другу по упр. 1.6, они имеют одинаковый ранг, равный рангу матрицы Грама B_e базиса e по упр. 1.5. Итак, оба пространства в (1-6) имеют размерность $\dim V$ — $\operatorname{rk} B_e$. Это число называется корангом билинейной формы β и обозначается $\operatorname{cork}\beta$. Ранг матрицы Грама, равный размерности образа каждой из корреляций, не зависит от выбора базиса и называется pahrom билинейной формы β и обозначается $\operatorname{rk}\beta$.

1.2.4. Изометрии. Линейное отображение $f:V_1\to V_2$ между векторными пространствами V_1 и V_2 , на которых заданы билинейные формы β_1 и β_2 , называется изометрическим , если для любых векторов $u,w\in V_1$ выполняется равенство $\beta_1(u,w)=\beta_2\big(f(v),f(w)\big)$. Билинейные формы β_1 и β_2 называются изоморфными, если между пространствами V_1 и V_2 имеется изометрический линейный изоморфизм.

 $^{^{1}}$ Или гомоморфизмом пространств с билинейными формами.

1.3. Невырожденные формы. Билинейная форма β называется *невырожденной* ¹, если она удовлетворяет условиям следующего ниже предл. 1.1. Формы, не удовлетворяющие этим условиям, называются вырожденными или особыми.

Предложение і.і (критерии невырожденности)

Следующие свойства билинейной формы β на конечномерном векторном пространстве V равносильны друг другу:

- 1) в V существует базис с ненулевым определителем Грама
- 2) любой базис в V имеет ненулевой определитель Грама
- 3) левая корреляция ${}^{\wedge}\beta: V \xrightarrow{\sim} V^*$ является изоморфизмом
- 4) правая корреляция $\beta^{\wedge} \colon V \xrightarrow{\sim} V^*$ является изоморфизмом
- 5) для любого ненулевого вектора $v \in V$ существует такой вектор $u \in V$, что $\beta(v,u) \neq 0$
- 6) для любого ненулевого вектора $v \in V$ существует такой вектор $u \in V$, что $\beta(u,v) \neq 0$
- 7) для любой линейной функции $\varphi: V \to \mathbb{k}$ существует такой вектор $v \in V$, что $\varphi(u) = \beta(v,u)$ для всех $u \in V$
- 8) для любой линейной функции $\varphi:V\to \Bbbk$ существует такой вектор $v\in V$, что $\varphi(u)==\beta(u,v)$ для всех $u\in V$

причём при выполнении этих условий вектор v в последних двух пунктах определяется формой ϕ однозначно.

Доказательство. Поскольку $\dim V = \dim V^*$, биективность, инъективность и сюрьективность линейного отображения $V \to V^*$ равносильны друг другу и тому, что это отображение задаётся невырожденной матрицей в каких-нибудь базисах. Поэтому условия (3), (5), (7) и условия (4), (6), (8), утверждающие, соответственно, биективность, обращение в нуль ядра и сюрьективность для операторов $^{\wedge}\beta$ и β^{\wedge} , равносильны между собой и условию (1), означающему, что транспонированные друг другу матрицы этих операторов обратимы. Условие (1) равносильно условию (2) в силу форм. (1-2) на стр. 4, из которой вытекает, что определители Грама двух базисов e и f связаны друг с другом по формуле $\det B_e = \det_f \cdot \det^2 C_{fe}$, где C_{fe} — матрица перехода 2 от базиса e к базису f.

Пример і.і (евклидова форма)

Симметричная билинейная форма на координатном пространстсве \mathbb{k}^n с единичной матрицей Грама E в стандартном базисе называется eвклидовой. Над полем $\mathbb{k}=\mathbb{R}$ она задаёт евклидову структуру на пространстве \mathbb{R}^n . Евклидова форма невырождена. Однако над отличными от \mathbb{R} полями её свойства могут отличаться от интуитивно привычных свойств евклидовой структуры. Например, над полем \mathbb{C} ненулевой вектор $e_1-ie_2\in\mathbb{C}^2$ имеет нулевой скалярный квадрат.

Упражнение 1.7. Приведите пример n-мерного подпространства в \mathbb{C}^{2n} , на которое евклидова форма ограничивается в тождественно нулевую форму.

 $^{^{1}}$ А также неособой или регулярной.

²См. n° 1.1 на стр. 3.

Базисы, в которых матрица Грама евклидовой формы равна E называются *ортонормальными*. Ниже 1 мы увидим, что над алгебраически замкнутым полем \mathbbm{k} характеристики char $\mathbbm{k} \neq 2$ любая невырожденная симметричная билинейная форма изометрически изоморфна евклидовой.

Пример 1.2 (гиперболическая форма)

Симметричная билинейная форма h на чётномерном координатном пространстве \mathbb{k}^{2n} , матрица Грама которой в стандартном базисе равна

$$H = \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix} \,, \tag{1-7}$$

где E — единичная матрица размера $n \times n$, называется *гиперболической*. Она невырождена и над алгебраически замкнутым полем изометрически изоморфна евклидовой форме: ортонормальный базис гиперболической формы состоит из векторов

$$\varepsilon_{2\nu-1} = \left(e_{\nu} - e_{n+\nu}\right)/\sqrt{-2}$$
 и $\varepsilon_{2\nu} = \left(e_{\nu} + e_{n+\nu}\right)/\sqrt{2}$, $1 \leqslant \nu \leqslant n$.

Над полями $\mathbb R$ и $\mathbb Q$ гиперболическая форма не изоморфна евклидовой, поскольку евклидовы скалярные квадраты всех ненулевых векторов положительны, тогда как ограничение гиперболической формы на линейную оболочку первых n базисных векторов тождественно нулевое. Базис, в котором матрица Грама гиперболической формы имеет вид (1-7), называется гиперболическим базисом.

Пример 1.3 (СИМПЛЕКТИЧЕСКАЯ ФОРМА)

Кососимметричная форма на чётномерном координатном пространстве \mathbb{k}^{2n} , матрица Грама которой в стандартном базисе равна

$$J = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}, \tag{1-8}$$

где E — единичная матрица размера $n \times n$, называется симплектической. Матрица J вида (3-1) называется симплектической единицей. Она имеет $J^2 = -E$ и det J = 1. Таким образом, симплектическая форма невырождена. Базис, в котором матрица Грама кососимметричной формы равна J, называется симплектическим базисом. Ниже мы покажем, что над любым полем k характеристики char $k \neq 2$ всякая невырожденная симметричная билинейная форма изометрически изоморфна симплектической. Это означает, в частности, что размерность пространства с невырожденной кососимметричной формой обязательно чётна.

Упражнение г.8. Убедитесь в том, что все кососимметричные квадратные матрицы нечётного размера вырождены.

1.3.1. Левый и правый двойственный базис. Если билинейная форма β на пространстве V невырождена, то у любого базиса $\boldsymbol{e}=(e_1,e_2,\ldots,e_n)$ в V есть p есть p в p есть p есть p в p есть p

$$\beta\left(e_{i}, e_{j}^{\vee}\right) = \beta\left(^{\vee}e_{i}, e_{j}\right) = \delta_{ij}, \tag{1-9}$$

¹См. сл. 1.1 на стр. 12.

²См. теор. 1.2 на стр. 12.

которые на матричном языке имеют вид $B_{ee^{\vee}}=B_{\vee ee}=E$. Так как по формулам из n° 1.2.1

$$E = B_{ee^{\vee}} = B_e C_{e^{\vee}e}$$
 и $E = B_{ee} = C_{e^{\vee}e}^t B_e$,

матрицы перехода от базисов e^{\vee} и $^{\vee}e$ к базису e обратны, соответственно, матрице Грама базиса e и транспонированной к ней матрице: $e^{\vee}=e\,B_e^{-1}$ и $^{\vee}e=e\,B_e^{-1}^t$.

Знание двойственных к $m{e}$ базисов позволяет раскладывать произвольный вектор $m{v} \in V$ по базису $m{e}$ в виде

$$v = \sum_{i} \beta \left({}^{\vee} e_{i}, v \right) e_{\nu} = \sum_{i} \beta \left(v, e_{i}^{\vee} \right) e_{\nu}. \tag{1-10}$$

Упражнение і. 9. Убедитесь в этом!

1.3.2. Изотропные подпространства. Подпространство $U \subset V$ называется изотропным для билинейной формы β , если эта форма ограничивается на него в тождественно нулевую форму, т. е. когда $\beta(u,w)=0$ для всех $u,w\in U$. Например, каждое одномерное подпространство является изотропным для любой кососимметричной формы, а линейные оболочки первых n и последних n базисных векторов пространства \mathbb{k}^{2n} изотропны для гиперболической формы из прим. 1.2 и симплектической формы из прим. 1.3.

Предложение 1.2

Размерность изотропного подпространства невырожденной билинейной формы на пространстве V не превосходит $\dim V/2$.

Доказательство. Изотропность подпространства $U \subset V$ означает, что корреляция $\beta^{\wedge}: V \hookrightarrow V^*$ отображает U внутрь Ann $U \subset V^*$. Так как корреляция невырожденной формы инъективна, $\dim U \leqslant \dim \operatorname{Ann} U = \dim V - \dim U$, откуда $2 \dim V$.

Замечание г.т. Примеры гиперболической и симплектической форм показывают, что оценка из предл. 1.2 в общем случае неулучшаема.

1.3.3. Группа изометрий. Линейный оператор $f: V \to V$ является изометрией билинейной формы β если и только если для произвольного базиса e в V набор векторов $f(e) = e F_e$ имеет ту же матрицу Грама $B_{f(e)} = f(e)^t \cdot e$, что и базис e, т. е.

$$F_e^t B_e F_e = B_e . (1-11)$$

Если форма β невырождена, то беря определители обеих частей, получаем $\det^2 F_e = 1$, откуда $\det^2 F_e = \pm 1$. Поэтому любая изометрия конечномерного пространства с невырожденной билинейной формой обратима. Так как композиция изометрий и обратное к изометрии отображение тоже являются изометриями, изометрические преобразования пространства V образуют группу. Она обозначается $O_{\beta}(V)$ и называется *группой изометрий* невырожденной билинейной формы β . Изометрии определителя 1 называются *специальными* и образуют в группе всех изометрий подгруппу, обозначаемую $SO_{\beta}(V)$.

Из равенства (1-11) вытекает, что обратная к изометрии f изометрия имеет матрицу

$$F_{\rho}^{-1} = B_{\rho}^{-1} F_{\rho}^{t} B_{\rho}. \tag{1-12}$$

¹См. n° 1.2.4 на стр. 5.

 $^{^{2}}$ A также ортогональной группой или группой автоморфизмов.

Пример 1.4 (изометрии вещественной гиперболической плоскости)

Оператор $f: H_2 \to H_2$, имеющий в стандартном гиперболическом базисе $e_1, e_2 \in H_2$ матрицу

$$F = \begin{pmatrix} a & b \\ c & d \end{pmatrix} ,$$

является изометрическим тогда и только тогда, когда

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ,$$

что равносильно уравнениям ac = bd = 0 и ad + bc = 1, имеющим два семейства решений:

$$F_{\lambda} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 и $\tilde{F}_{\lambda} = \begin{pmatrix} 0 & \lambda \\ \lambda^{-1} & 0 \end{pmatrix}$, где $\lambda \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$. (1-13)

Над полем $\mathbb R$ оператор F_λ является собственным, и при $\lambda>0$ называется гиперболическим поворотом, т. к. каждый вектор v=(x,y), обе координаты которого ненулевые, движется при действии на него операторов F_λ с $\lambda\in(0,\infty)$ по гиперболе $xy=\mathrm{const.}$ Если положить $\lambda=e^t$ и перейти к ортогональному базису из векторов $p=(e_1+e_2)/\sqrt{2}, q=(e_1-e_2)/\sqrt{2}$, то оператор F_λ запишется в нём матрицей, похожей на матрицу евклидова поворота

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \cdot \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} \operatorname{ch} t & \operatorname{sh} t \\ \operatorname{sh} t & \operatorname{ch} t \end{pmatrix} ,$$

где ch $t \stackrel{\text{def}}{=} (e^t + e^{-t})/2$ и sh $t \stackrel{\text{def}}{=} (e^t - e^{-t})/2$ называются гиперболическими косинусом и синусом вещественного числа t. Оператор F_{λ} с $\lambda < 0$ является композицией гиперболического поворота и центральной симметрии. Несобственный оператор \widetilde{F}_{λ} является композицией гиперболического поворота с отражением относительно пересекающей ветви оси гиперболы.

1.3.4. Биекция между формами и операторами. На пространстве V с билинейной формой $\beta: V \times V \to \mathbb{k}$ каждому линейному оператору $f: V \to V$ можно сопоставить билинейную форму $\beta_f(u,w) \stackrel{\text{def}}{=} \beta(u,fw)$ с матрицей Грама $e^t \cdot f(e) = e^t \cdot e \, F_e = B_e F_e$ в произвольно выбранном базисе e пространства V. Поскольку на языке матриц отображение $f \mapsto \beta_f$ заключается в левом умножении матрицы оператора на матрицу Грама: $F_e \mapsto B_e F_e$, оно линейно и обратимо, если форма β невырождена. Обратное отображение задаётся умножением матрицы оператора слева на обратную к матрице Грама матрицу. Поэтому каждая билинейная форма $\chi: V \times V \to \mathbb{k}$ на конечномерном векторном пространстве V с фиксированной невырожденной билинейной формой β имеет вид $\chi(u,w) = \beta(u,f_{\chi}w)$ для некоторого линейного оператора $f_{\chi}: V \to V$, однозначно определяемого формой χ . Матрица F_e оператора f_{χ} в произвольном базисе e пространства V выражается через матрицы Грама B_e и X_e форм β и χ в том же базисе по формуле $F_e = B_e^{-1} X_e$.

Пример 1.5 (канонический оператор)

Биекция между формами и операторами сопоставляет транспонированной к β билинейной форме $\beta^t(u,w) \stackrel{\text{def}}{=} \beta(w,u)$ оператор $\kappa: V \to V$, который называется *каноническим оператором* невырожденной билинейной формы β . Он однозначно характеризуется свойством

$$\forall u, w \in V \quad \beta(w, u) = \beta(u, \varkappa w), \tag{1-14}$$

а его матрица K_e в произвольном базисе e пространства V выражается через матрицу Грама B_e формы β по формуле $K_e = B_e^{-1} B_e^t$.

Упражнение і.іо. Убедитесь, что при замене матрицы Грама по правилу $B\mapsto C^tBC$, где $C\in \mathrm{GL}_n(\mathbbm{k})$, матрица $K=B^{-1}B^t$ меняется по правилу $K\mapsto C^{-1}KC$, т. е. канонические операторы изоморфных билинейных форм подобны.

Так как $\beta(u,w)=\beta(w,\varkappa u)=\beta(\varkappa u,\varkappa w)$ для всех $u,w\in V$, канонический оператор является изометрическим.

1.4. Ортогоналы и ортогональные проекции. С каждым подпространством U векторного пространства V с билинейной формой $\beta: V \times V \to \mathbb{k}$ связаны левый и правый ортогоналы

$${}^{\perp}U = \{ v \in V \mid \forall u \in U \ \beta(v, u) = 0 \},$$

$$U^{\perp} = \{ v \in V \mid \forall u \in U \ \beta(u, v) = 0 \}.$$
(1-15)

Вообще говоря, это два разных подпространства в V.

Предложение 1.3

Если билинейная форма β на конечномерном пространстве V невырождена, то для всех подпространств $U \subset V$ выполняются равенства

$$\dim^{\perp} U = \dim V - \dim U = \dim U^{\perp} \quad \text{if} \quad (^{\perp}U)^{\perp} = U = ^{\perp}(U^{\perp}).$$

Доказательство. Первые два равенства верны, так как ортогоналы (1-15) суть прообразы подпространства Ann $U \subset V^*$ при изоморфизмах ${}^{\wedge}\beta$, $\beta^{\wedge} \colon V \cong V^*$, и dim Ann $U = \dim V - \dim U$. Вторые два равенства вытекают из первых, поскольку оба подпространства $({}^{\perp}U)^{\perp}$ и ${}^{\perp}(U^{\perp})$ содержат U и имеют размерность dim U.

Предложение 1.4

Пусть билинейная форма β на произвольном 1 векторном пространстве V ограничивается на конечномерное подпространство $U\subset V$ в невырожденную на этом подпространстве форму. Тогда $V=U\oplus U^\perp$, и проекция $v_U\in U$ каждого вектора $v\in V$ на подпространство U вдоль U^\perp однозначно определяется тем, что $\beta(u,v)=\beta(u,v_U)$ для всех $u\in U$. Вектор v_U выражается через произвольный базис $u=(u_1,u_2,\ldots,u_n)$ пространства U по формуле

$$v_U = \sum_{i=1}^n \beta \left({}^{\vee} u_i, v \right) u_i, \qquad (1-16)$$

где ${}^{\vee}\pmb{u}=({}^{\vee}u_1,{}^{\vee}u_2,\ldots,{}^{\vee}u_n)$ — левый двойственный к \pmb{u} относительно формы $\pmb{\beta}$ базис в $\pmb{U}.$

Доказательство. Так как ограничение формы β на U невырождено, для любого вектора $v \in V$ существует единственный такой вектор $v_U \in U$, что линейная функция $u \mapsto \beta(u,v)$ на пространстве U задаётся правым скалярным умножением векторов из U на этот вектор v_U , т. е. для всех $u \in U$ выполняется равенство $\beta(u,v) = \beta(u,v_U)$. Поэтому разность $v-v_U \in U^\perp$. Таким образом, каждый вектор $v \in V$ представляется в виде суммы $v = v_U + (v-v_U)$ с $v \in U$ и $v-v_U \in U^\perp$. Поскольку в любом разложения $v=v_U'+w$ с $v_U'\in U$ и $v\in U^\perp$ для всех $v\in U$ выполняется равенство $v_U'=v_U$ 0, имеем равенство $v_U'=v_U$ 1, а значит и равенство

¹Возможно даже бесконечномерном.

 $w=v-v_U'=v-v_U$, что доказывает первые два утверждения предложения. Последнее утверждение вытекает из форм. (1-10) на стр. 8: $v_U=\sum_i \beta({}^{\lor}u_i,v_U)u_i=\sum_i \beta({}^{\lor}u_i,v)u_i$.

Упражнение 1.11. Докажите симметричное утверждение: $V = {}^{\perp}U \oplus U$, где проекция ${}_{U}v$ каждого вектора $v \in V$ на U вдоль ${}^{\perp}U$ находится по формуле ${}_{U}v = \sum \beta \left(v, u_i^{\vee}\right) u_i$ и однозначно определяется тем, что $\beta(v, u) = \beta({}_{U}v, u)$ для всех $u \in U$.

1.5. Симметричные и кососимметричные формы. Билинейная форма β называется *симметричной*, если $\beta(u,w)=\beta(w,u)$ для всех $u,w\in V$, и *кососимметричной* — если $\beta(v,v)=0$ для всех $v\in V$. В последнем случае для любых $u,w\in V$ выполняется равенство

$$0 = \beta(u + w, u + w) = \beta(u, w) + \beta(w, u),$$

откуда $\beta(u, w) = -\beta(w, u)$.

Упражнение 1.12. Убедитесь, что над полем характеристики char $\mathbb{k} \neq 2$ равенство $\beta(u,w) = -\beta(w,u)$ всех $u,w \in V$ равносильно равенству $\beta(v,v) = 0$ для всех $v \in V$. Убедитесь также, что формы $\beta(u,w)$ и $\beta^t(u,w) = \beta(w,u)$ пропорциональны ровно в двух случаях: когда $\beta^t = \pm \beta$.

Если char k=2, каждая кососимметричная форма автоматически симметрична, но не наоборот. Если char $k\neq 2$, пространства симметричных и кососимметричных билинейных форм имеют нулевое пересечение, и каждая билинейная форма β однозначно раскладывается в сумму

$$\beta = \beta_+ + \beta_-$$

симметричной и кососимметричной форм

$$\beta_+(v,w) = \frac{\beta(v,w) + \beta(w,v)}{2} \quad \text{if} \quad \beta_-(v,w) = \frac{\beta(v,w) - \beta(w,v)}{2} \,.$$

Левая и правая корреляции симметричной билинейной формы совпадают друг с другом, и мы будем обозначать этот оператор через $\hat{\beta} \stackrel{\text{def}}{=} \beta^{\wedge} = {}^{\wedge}\beta$: $V \to V^*$ и называть просто *корреляцией*. Напомню, корреляция переводит вектор $v \in V$, в линейную функцию

$$\hat{\beta}(v): V \to \mathbb{R}, \quad u \mapsto \beta(u, v) = \beta(v, u).$$

Для кососимметричной формы $oldsymbol{eta}$ мы полагаем $\widehat{oldsymbol{eta}} \stackrel{ ext{def}}{=} oldsymbol{eta}^\wedge = -^\wedge oldsymbol{eta}.$

1.5.1. Ортогоналы и проекции. Если форма β на пространстве V (косо) симметрична, то левый и правый ортогоналы к любому подпространству $U \subset V$ совпадают друг с другом и обозначаются через U^{\perp} . Если (косо) симметричная форма β ограничивается на подпространство $U \subset V$ в невырожденную на этом подпространстве форму, то $V = U \oplus U^{\perp}$ по предл. 1.4. В этом случае подпространство U^{\perp} называется ортогональным дополнением к подпространству U. Проекция v_U вектора $v \in V$ на U вдоль U^{\perp} называется ортогональной проекцией на U относительно формы β . Вектор v_U однозначно характеризуется тем, что его левое и правое скалярное произведение со всеми векторами из U такие же, как и у вектора v.

Если форма β невырождена на всём пространстве V, то dim $U^{\perp} = \dim V - \dim U$ и $U^{\perp \perp} = U$ для всех подпространств $U \subset V$ по предл. 1.4. В этом случае ограничение формы β на подпространство $U \subset V$ невырождено тогда и только тогда, когда невырождено её ограничение на U^{\perp} .

Теорема і.і (теорема Лагранжа)

Каждое конечномерное векторное пространство с симметричной билинейной формой β над любым полем k характеристики char $k \neq 2$ обладает базисом с диагональной матрицей Грама¹.

¹Такие базисы называются *ортогональными*.

Доказательство. Если $\dim V=1$ или форма β нулевая, то матрица Грама любого базиса диагональна. Если форма β ненулевая, то найдётся вектор $e\in V$ с $\beta(e,e)\neq 0$, ибо в противном случае $2\beta(u,w)=\beta(u+w,u+w)-\beta(u,u)-\beta(w,w))=0$ для всех $u,w\in V$. Возьмём такой вектор e в качестве первого вектора искомого базиса. Поскольку ограничение формы β на одномерное подпространство $U=\Bbbk\cdot e$ невырождено, пространство V распадается в прямую ортогональную сумму $U\oplus U^\perp$. По индукции, в U^\perp есть базис с диагональной матрицей Грама. Добавляя к нему e, получаем искомый базис в V.

Пример 1.6 (ОРТОГОНАЛЬНЫЙ БАЗИС ГИПЕРБОЛИЧЕСКОГО ПРОСТРАНСТВА)

В гиперболическом пространстве 1 \mathbb{k}^{2n} с гиперболическим базисом $(e_1,\ldots,e_n,e_{n+1},\ldots,e_{2n})$ над произвольным полем \mathbb{k} характеристики $\mathrm{char}(\mathbb{k}) \neq 2$ в качестве ортогонального базиса можно, например, взять векторы $p_i = e_i + e_{n+i}$ и $q_i = e_i - e_{n+i}$ со скалярными квадратами $h(p_i,p_i) = 2$ и $h(q_i,q_i) = -2$.

Следствие і.і

Над алгебраически замкнутым полем \Bbbk характеристики char(\Bbbk) $\neq 2$ две симметричных билинейных формы изометрически изоморфны если и только если их матрицы Грама имеют одинаковый ранг.

Доказательство. Над алгебраически замкнутым полем каждый ненулевой диагональный элемент матрицы Грама ортогонального базиса можно сделать единичным, заменив соответствующий ему базисный вектор e_i на $e_i / \sqrt{\beta(e_i,e_i)}$.

Теорема і.2 (теорема Дарбу)

Над произвольным полем \mathbbm{k} любой характеристики всякое конечномерное векторное пространство V с невырожденной кососимметричной билинейной формой ω изометрически изоморфно симплектическому пространству 2 . В частности, размерность пространства V чётна.

Доказательство. Для начала построим в V базис, матрица Грама которого состоит из расположенных на главной диагонали 2×2 -блоков вида

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} . \tag{1-17}$$

В качестве первого базисного вектора возьмём произвольный ненулевой вектор $e_1 \in V$. Так как форма ω невырождена, найдётся такой вектор $w \in V$, что $\omega(e_1,w) = a \neq 0$. Положим $e_2 = w/a$. Поскольку $\omega(e_1,e_1) = 0$, векторы e_1 и e_2 не пропорциональны и порождают двумерное подпространство $U \subset V$. Матрица Грама ограничения формы ω на это подпространство в базисе (e_1,e_2) имеет вид (1-17). Так как ограничение формы ω на U невырождено, $V = U \oplus U^\perp$ и ограничение формы ω на U^\perp тоже невырождено. Индукция по $\dim V$ позволяет считать, что в подпространстве U^\perp требуемый базис уже имеется. Добавляя к нему e_1,e_2 , получаем искомый базис $e_1,e_2,\ldots,e_{2k-1},e_{2k}$ в $V=U \oplus U^\perp$. Симплектический базис формы ω получается из построенного перестановкой векторов: сначала надо написать подряд все векторы с нечётными номерами, а потом — с чётными.

¹См. прим. 1.2 на стр. 7.

²См. прим. 1.3 на стр. 7.

1.5.2. Ядро. Левое и правое ядро (косо)симметричной формы β совпадают друг с другом и называются просто *ядром* этой формы. Мы обозначаем это пространство через

$$\ker \beta \stackrel{\text{def}}{=} \ker \widehat{\beta} = \ker \beta^{\wedge} = \ker^{\wedge} \beta = \{ w \in V \mid \forall v \in V \ \beta(v, w) = 0 \}.$$

Предложение 1.5

Ограничение (косо) симметричной формы β на любое дополнительное к ядру $\ker \beta$ подпространство $U \subset V$ невырождено.

Доказательство. Пусть подпространство $U \subset V$ таково, что $V = \ker \beta \oplus U$, а вектор $w \in U$ удовлетворяет для всех $u \in U$ соотношению $\beta(u,w) = 0$. Записывая произвольный вектор $v \in V$ в виде v = e + u, где $e \in \ker \beta$ и $u \in U$, получаем $\beta(v,w) = \beta(e,w) + \beta(u,w) = 0$, откуда $w \in U \cap \ker \beta = 0$.

Предостережение і.і. Для произвольной билинейной формы, которая не является симметричной или кососимметричной, предл. 1.5, вообще говоря, неверно.

Ответы и указания к некоторым упражнениям

- Упр. 1.5. В клетке (i,j) матрицы $B_{e^*,e}^{\wedge}$ отображения β^{\wedge} : $e_j \mapsto \beta(*,e_j)$ стоит i-тая координата линейной функции $u \mapsto \beta(u,e_j)$ в базисе e^* , равная значению этой функции на базисном векторе e_i , т. е. скалярному произведению $\beta(e_i,e_j)$.
- Упр.
 1.7. Линейная оболочка векторов $e_{\nu}+ie_{n+\nu}$ с
 $1\leqslant \nu\leqslant n.$
- Упр. 1.8. Если матрица $B\in \operatorname{Mat}_n(\Bbbk)$ кососимметрична, то $\det B=\det B^t=\det (-B)=(-1)^n\det B$.
- Упр. 1.9. Пусть $v = \sum x_i e_i$. Скалярно умножая v слева на ${}^{\vee}e_i$, получаем $\beta({}^{\vee}e_i,v) = x_i$. Скалярно умножая v справа на e_i^{\vee} , получаем $\beta(v,e_i^{\vee}) = x_i$.