Проективные пространства

- $\Gamma 9 \diamond 1^{\circ}$ (двойное отношение¹). Покажите, что для любой упорядоченной четвёрки различных точек на \mathbb{P}_1 двойное отношение $[p_1,\,p_2;\,p_3,\,p_4] \stackrel{\mathrm{def}}{=} (\det(p_1,p_3)\cdot\det(p_2,p_4)): (\det(p_1,p_4)\cdot\det(p_2,p_3))$ корректно определено и не зависит от выбора координат, и что две четвёрки точек проективно эквивалентны тогда и только тогда, когда их двойные отношения одинаковы.
- Γ 9 \diamond 2 $^{\circ}$. Пусть $[p_1,\,p_2;\,p_3,\,p_4]=\vartheta$. Найдите $[p_{\sigma(1)},\,p_{\sigma(2)};\,p_{\sigma(3)},\,p_{\sigma(4)}]$ для всех перестановок $\sigma\in\mathfrak{S}_4\,$ и опишите все ϑ , для которых число различных ответов будет меньше, чем для общего ϑ .
- $\Gamma 9 \diamond 3^{\circ}$ (четырёхвершинник). На \mathbb{P}_2 произвольно заданы 4 разных точки, никакие 3 из которых не коллинеарны. Шесть прямых, соединяющих всевозможные пары из них, попарно пересекаются ещё в трёх точках x, y, z, которые соединяются между собою ещё тремя прямыми. Покажите, что все три четвёрки прямых, выделенных таким образом в пучках прямых с центрами в x, y, z, являются гармоническими².
- **Г9** \diamond 4. В стандартной карте $U_0 \subset \mathbb{P}_2$ даны кривые **a)** $y = x^2$ **6)** $y = x^3$ **в)** $y^2 + (x-1)^2 = 1$ г) $y^2 = x^2(x+1)$. Напишите их уравнения в картах U_1 и U_2 и нарисуйте все эти 12 кривых.
- Γ 9 \diamond 5. Вложим евклидову плоскость \mathbb{R}^2 в \mathbb{CP}_2 в качестве действительной части стандартной аффинной карты U_0 . а) Найдите в \mathbb{CP}_2 две точки, лежащие на всех кривых степени 2, видных в \mathbb{R}^2 как окружности. 6) Всякая ли коника, проходящая через эти две точки и имеющая хотя бы 3 неколлинеарные точки в \mathbb{R}^2 , видна в \mathbb{R}^2 как окружность?
- Γ 9 \diamond 6 (рациональная нормальная кривая). Рассмотрим 2-мерное векторное пространство U линейных форм $\alpha_0 t_0 + \alpha_1 t_1$ от переменных (t_0, t_1) с однородной координатой $(\alpha_0 : \alpha_1)$ на $\mathbb{P}_1 = \mathbb{P}(U)$ и пространство S^dU однородных многочленов $\sum\limits_{n=0}^d \binom{d}{n} a_n t_0^n t_1^{d-n}$ степени d от (t_0,t_1) с однородными координатами $(a_0\colon a_1\colon \ldots\colon a_n)$ на $\mathbb{P}_d=\mathbb{P}(S^dU)$. Покажите, что все описанные ниже кривые $C\subset \mathbb{P}_d$ переводятся друг в друга подходящими линейными проективными автоморфизмами.

 - $\subset \mathbb{P}_d$ переводятся друг в друга подходящими липения. $C_d: \mathbb{P}(U) \subset \xrightarrow{\psi \mapsto \psi^d} \mathbb{P}(S^dU)$.

 6) $C \subset \mathbb{P}(S^dU)$ задаётся системой квадратных уравнений rk $\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{d-1} \\ a_1 & a_2 & a_3 & \dots & a_d \end{pmatrix} = 1$
 - в) C образ любого отображения $\mathbb{P}(U) \stackrel{F}{\longrightarrow} \mathbb{P}(S^dU)$ заданного в однородных координатах формулой $t=(lpha_0:lpha_1)\longmapsto (f_0(lpha):f_1(lpha):\ldots:f_d(lpha))$, где $f_m(lpha)$ — линейно независимые однородные многочлены степени d от $\alpha = (\alpha_0, \alpha_1)$.
 - r) C образ отображения $\varphi_{p_0,p_1,\dots,p_d}:\mathbb{P}_1\longrightarrow\mathbb{P}_d$ заданного в однородных координатах формулой $x=(x_0:x_1)\longmapsto (1/\det(p_0,x):1/\det(p_1,x):\cdots:1/\det(p_d,x))$, где $p_{\nu}=(\alpha_{\nu}:\beta_{\nu})\in$ \mathbb{P}_1 — попарно разные точки, и $\det(p_{\nu}, x) = \alpha_{\nu} x_1 - \beta_{\nu} x_0$.
 - д) Зафиксируем n+3 точки $p_1,p_2,\ldots,p_n,\ a,\ b,\ c\in\mathbb{P}_n$, никакие (n+1) из которых не лежат в одной гиперплоскости, обозначим через $\ell_i \simeq \mathbb{P}_1$ пучок гиперплоскостей, проходящий через все точки p_{ν} , кроме p_i , и зададим проективные изоморфизмы $\psi_{ij}:\ell_i\stackrel{\sim}{\longrightarrow}\ell_i$ так, чтобы 3 гиперплоскости пучка ℓ_j , проходящие через точки $a,\,\bar{b},\,\bar{c}$, переходили в аналогичные 3 гиперплоскости пучка ℓ_i ; кривая $C=\bigcup\limits_{H\in\ell_1} H\cap\psi_{21}(H)\cap\ldots\cap\psi_{n1}(H)$.
- **Г9** \diamond 7. Любые ли n+3 точки в \mathbb{P}_n , никакие n+1 из которых линейно не зависимы, лежат на рациональной нормальной кривой C_n ?
- $\Gamma 9 \diamond 8^{\circ}$. Любые ли m разных точек кривой C_n линейно независимы при $3 \leqslant m \leqslant n+1$?
- $\Gamma 9 \diamond 9^{\star}$. Покажите, что два упорядоченных набора из n+3 линейно общих точек на \mathbb{P}_n тогда и только тогда проективно эквивалентны, когда на проведённых через эти наборы рациональных нормальных кривых совпадают двойные отношения любых четвёрок соответственных точек.

¹по-английски cross-ratio

 $^{^{2}}$ точки $p_{1},\,p_{2},\,p_{3},\,p_{4}\in\mathbb{P}_{1}$ называются *гармоническими*, если $[p_{1},\,p_{2};\,p_{3},\,p_{4}]=-1$