§10. Расширения коммутативных колец

10.1. Целые элементы. Всюду этом параграфе слово «кольцо» по умолчанию означает коммутативное кольцо с единицей, а все гомоморфизмы колец предполагаются отображающими единицу в единицу. В частности, расширением колец $A \subset B$ мы называем ситуацию, когда коммутативное кольцо A является подкольцом коммутативного кольца B, и у этих колец общая единица. В этой ситуации элемент $b \in B$ называется целым над A, если он удовлетворяет условиям идущей ниже леммы.

Лемма іо.і (определяющие свойства целых элементов) Следующие три свойства элемента $b \in B$ попарно эквивалентны:

- (1) $\,b^m=a_1\,b^{m-1}+\,\cdots\,+a_{m-1}\,b+a_m$ для некоторых $m\in\mathbb{N}$ и $a_1,a_2,\ldots,a_m\in A$
- (2) A-линейная оболочка всех целых неотрицательных степеней b^m линейно порождается над A конечным числом элементов
- (3) существует конечно порожденный A-подмодуль $M \subset B$, такой что $bM \subset M$ и для каждого $b' \in B$ из b'M = 0 вытекает, что b' = 0.

Доказательство. Импликации $(1)\Rightarrow (2)\Rightarrow (3)$ очевидны. Чтобы вывести (1) из (3), допустим, что e_1,e_2,\ldots,e_m порождают M над A и что A-линейный оператор умножения на $b:M\to M, m\mapsto bm$, представляется в этих образующих матрицей $Y\in \mathrm{Mat}_m(A)$, т. е. действует по правилу

$$(be_1, be_2, \dots, be_m) = (e_1, e_2, \dots, e_m) \cdot Y.$$
 (10-1)

Из матричного тождества $\det X \cdot E = X \cdot X^{\vee}$, где X — произвольная квадратная матрица, E — единичная матрица того же размера, а X^{\vee} — присоединённая к X матрица 2 , вытекает, что образ оператора умножения на $\det X$ содержится в линейной оболочке столбцов матрицы X. Поэтому умножение элементов модуля M на число $\det(bE-Y) \in B$ посылает их в линейную оболочку векторов $(e_1,e_2,\ldots,e_m)\cdot(bE-Y)$, нулевую согласно (10-1). В силу B-точности модуля M обнуление $\det(bE-Y)\cdot M$ влечёт равенство $\det(bE-Y)=0$. Поскольку все элементы матрицы Y лежат в A, это равенство имеет такой вид, как в условии (1).

Определение 10.1

Множество всех $b \in B$, целых над данным подкольцом $A \subset B$, называется *целым замыканием* A в B. Если оно не содержит ничего, кроме элементов самого A, то A называется *целозамкнутым* в B. Наоборот, если все $b \in B$ целы над A, то B называется *целым расширением* кольца A или *целой* A-алгеброй.

 $^{^1}$ модуль M со свойством $\forall\,b'\in B\quad b'M=0\Rightarrow b'=0$ называется точным (по-английски faithful) над B

 $^{^2}$ состоящая из алгебраических дополнений к элементам матрицы X^t

Пример іо.і (целозамкнутость \mathbb{Z} в \mathbb{Q})

Покажем, что кольцо $\mathbb Z$ целозамкнуто в поле $\mathbb Q \supset \mathbb Z$. Если дробь p/q с взаимно простыми $p,q \in \mathbb Z$ такова, что

$$\frac{p^m}{q^m} = a_1 \frac{p^{m-1}}{q^{m-1}} + \dots + a_{m-1} \frac{p}{q} + a_m$$

с $a_i \in \mathbb{Z}$, то $p^m = a_1 q p^{m-1} + \cdots + a_{m-1} q^{m-1} p + a_m q^m$ делится на q, что при взаимно простых p и q возможно только если $q=\pm 1$.

Пример 10.2 (инварианты действия конечной группы)

Если конечная группа G действует на кольце B кольцевыми автоморфизмами, то кольцо B цело над *подкольцом инвариантов* $B^G \stackrel{\text{def}}{=} \{a \in B \mid ga = a \ \forall \ g \in G \}$: если G-орбита элемента $b \in B$ состоит из элементов $b_1 = b, \ b_2, \ b_3, \ \dots, \ b_n$, то элемент b является корнем приведённого многочлена $B(t) = \prod (t - b_i) \in B^G[t]$.

Предложение 10.1

Целое замыкание $\overline{A}_B \subset B$ любого подкольца $A \subset B$ является подкольцом в B. Для любого кольца $C \supset B$ всякий элемент $c \in C$, целый над \overline{A}_B , цел и над A.

Доказательство. Если элементы $p,q \in B$ таковы, что

$$p^m = x_1 p^{m-1} + \dots + x_{m-1} p + x_m$$
 и $q^n = y_1 q^{n-1} + \dots + y_{n-1} q + y_n$

для некоторых $x_{\nu}, y_{\mu} \in A$, то произведения $p^i q^j$ с $0 \leqslant i < m-1$ и $0 \leqslant j < n-1$ порождают точный над B A-модуль, выдерживающий умножение и на p, и на q, а значит, и на p+q, и на pq. Аналогично, если

$$c^r = z_1 \, c^{r-1} + \, \cdots \, + z_{r-1} \, c + z_r \,, \quad \text{if} \quad z_k^{m_k} = a_{k,1} \, z^{m_k-1} + \, \cdots \, + a_{k,m_k-1} \, z_k + a_{k,m_k} \, z$$

для всех $1 \leqslant k \leqslant r$ и некоторых $a_{k,\ell} \in A$, то умножение на c сохраняет A-линейную оболочку всех произведений $c^i z_1^{j_1} z_2^{j_2} \cdots z_r^{j_r}$ с $0 \leqslant i < r-1$ и $0 \leqslant j_k < m_k-1$.

Следствие 10.1 (лемма Гаусса – Кронекера – Дедекинда)

Для любого расширения колец $A\subset B$ и произвольных приведённых многочленов $f,g\in B[x]$ положительной степени все коэффициенты произведения f(x)g(x) целы над A, если и только если все коэффициенты и у f(x) и у g(x) целы над A.

Доказательство. Если коэффициенты многочленов f и g целы над A, то коэффициенты их произведения h=fg тоже целы над A, поскольку целые элементы образуют кольцо. Чтобы показать обратное, рассмотрим какое-нибудь кольцо $C \supset B$, над которым f и g полностью разлагаются на линейные множители 2 :

$$f(x) = \prod (x - \alpha_{\nu})\,, \quad g(x) = \prod (x - \beta_{\mu})\,, \quad$$
для некоторых $\alpha_{\nu}, \beta_{\mu} \in \mathcal{C}$.

 $^{^{1}}$ напомню, что многочлен называется $npuвед\"{e}$ нным, если его старший коэффициент равен единице

 $^{^2}$ такое кольцо C можно построить индукцией по deg h: если $h \neq 1$, то B вкладывается в фактор кольцо F = B[x]/(h) как подкольцо классов констант, и поскольку класс $u = x \pmod{h} \in F$ является корнем h, то $h(x) = (x - u) \cdot h_1(x)$ в F[x], и либо $h_1 = 1$, либо по индукции $h_1 = \prod (x - c_v)$ над некоторым кольцом $C \supset F \supset B$

Если все коэффициенты $h(x) = \prod (x-\alpha_{\nu}) \prod (x-\beta_{\mu})$ целы над A, то все корни α_{ν} и β_{μ} целы над целым замыканием A в C, а значит, и над самим A. Поскольку коэффициенты f и g являются многочленами от α_{ν} и β_{μ} , они тоже целы над A.

Предложение 10.2

Пусть кольцо B цело над подкольцом $A \subset B$. Если B — поле, то A также является полем. Наоборот, если A — поле, и в B нет делителей нуля, то B — поле.

Доказательство. Если B — поле, целое над A, то обратный к произвольному ненулевому $a \in A$ элемент $a^{-1} \in B$ удовлетворяет уравнению

$$a^{-m} = \alpha_1 a^{1-m} + \cdots + \alpha_{m-1} a^{-1} + \alpha_0$$

в котором $\alpha_{\nu} \in A.$ Умножая обе его части на a^{m-1} , получаем

$$a^{-1} = \alpha_1 + \dots + \alpha_{m-1} a^{m-2} + \alpha_0 a^{m-1} \in A$$
.

Обратно, если A — поле, и B — целая A-алгебра, то все неотрицательные целые степени b^i любого $b \in B$ порождают конечномерное векторное пространство V над A. Если $b \neq 0$, и в B нет делителей нуля, то линейный оператор $b: V \to V$, $x \mapsto bx$, не имеет ядра и, стало быть, биективен. Прообраз $1 \in V$ и есть b^{-1} .

10.1.1. Целые алгебраические числа . Пусть поле $K \supset \mathbb{Q}$ конечномерно как векторное пространство над \mathbb{Q} . Элементы таких полей называются *алгебраическими числами*. По предл. 10.1 целые над \mathbb{Z} алгебраические числа образуют в поле K подкольцо. Оно называется *кольцом целых* поля K и обозначается \mathcal{O}_K .

Упражнение 10.1. Покажите, что для любого $\xi \in K$ существует такое $n \in \mathbb{N}$, что $n\xi$ цело над \mathbb{Z} .

Из упражнения вытекает, что K является полем частных кольца \mathcal{O}_K , и для любого базиса $\{e_i\}$ поля K как векторного пространства над $\mathbb Q$ существует такое $n\in\mathbb N$, что все $ne_i\in\mathcal O_K$.

Упражнение 10.2. Покажите, что \mathcal{O}_K является свободным \mathbb{Z} -модулем ранга $\dim_{\mathbb{Q}} K$, и выведите из этого, что число $z \in K$ является целым, если и только если оператор умножения на z записывается целочисленной матрицей s каком-нибудь базисе t над t0.

Определение 10.2

Вычисленный в произвольном базисе свободного \mathbb{Z} -модуля \mathcal{O}_K определитель Грама билинейной формы следа $\mathrm{Sp}: K \times K \to \mathbb{Q}$, сопоставляющей числам $\alpha, \beta \in K$ след оператора умножения на $\alpha\beta$, называется дискриминантом поля K.

Упражнение 10.3. Убедитесь, что дискриминант является целым числом и не зависит от выбора базиса кольца целых как модуля над \mathbb{Z} .

 $^{^1}$ именно таким образом целые алгебраические числа и были впервые определены в XIX веке Дедекиндом

Пример 10.3 (целые числа Кронекера)

Покажем, что целые элементы поля $\mathbb{Q}[\omega]$, где $\omega^2 + \omega + 1 = 0$, исчерпываются целыми числами Кронекера $a + b\omega$ с $a, b \in \mathbb{Z}$. Каждое число из $\mathbb{Q}[\omega] \setminus \mathbb{Q}$ можно записать как

$$\xi = \frac{p_1 + p_2 \omega}{q} \;, \quad \text{где} \; p_1, p_2 \in \mathbb{Z}, \, q \in \mathbb{N}, \, p_2 \neq 0 \; \text{и нод}(p_1, p_2, q) = 1 \,. \tag{10-2}$$

Если оператор умножения на ξ имеет целочисленную матрицу в некотором базисе пространства K над $\mathbb Q$, то его след $\operatorname{tr}(\xi)$ и определитель $\det(\xi)$ лежат в $\mathbb Z$ и не зависят от выбора базиса. В базисе $1, \omega$ умножение на ξ записывается матрицей

$$\begin{pmatrix} p_1/q & -p_2/q \\ p_2/q & (p_1-p_2)/q \end{pmatrix}$$

Поэтому $2p_1-p_2=q\cdot {\rm tr}(\xi)$ делится на q, а $p_1^2-p_1p_2+p_2^2=q^2\cdot {\rm det}(\xi)$ делится на q^2 . Тем самым, разность $(2p_1-p_2)^2-(p_1^2-p_1p_2+p_2^2)=3p_1(p_1-p_2)$ делится на q^2 , что возможно лишь тогда, когда каждый простой делитель α числа q делит p_1 или p_1-p_2 . Если α делит p_1 , то поскольку $2p_1-p_2$ делится на q, α делит также и p_2 , что противоречит условию нод $(p_1,p_2,q)=1$. Аналогично, если α делит p_1-p_2 , то α делит и p_1 , что также невозможно. Следовательно, у q нет простых делителей, т. е. q=1.

Упражнение 10.4. Опишите кольца целых в полях $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[\sqrt{5}]$ и $\mathbb{Q}[\sqrt{-1}]$ и вычислите дискриминанты этих полей.

10.2. Приложения к теории представлений. Пусть G — конечная группа. Значение характера χ_{ϱ} любого конечномерного представления ϱ группы G на любом элементе $g \in G$ цело над \mathbb{Z} в силу того, что оператор $\varrho(g)$ аннулируется многочленом $t^{|G|}-1$, все корни которого целы над \mathbb{Z} , а $\chi_{\varrho}(g)$ это сумма некоторых из них 1 .

Теорема 10.1

Если комплексное представление $\varrho:\mathbb{C}[G]\to \operatorname{End} V$ конечной группы G неприводимо, то $\dim V$ делит индекс [G:Z(G)] центра Z(G) группы G.

Доказательство. Покажем сначала, что dim V делит |G|. Согласно прим. 10.1 для этого достаточно убедиться, что рациональное число |G| / dim V цело над \mathbb{Z} . Так как V неприводимо, скалярный квадрат характера χ_V равен единице:

$$1 = (\chi_V, \chi_V) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \varrho(g^{-1}) \cdot \operatorname{tr} \varrho(g).$$
 (10-3)

Функция $g\mapsto \operatorname{tr}\varrho(g^{-1})$ постоянна на классах сопряжённых элементов и принимает целые над $\mathbb Z$ значения. Обозначим её значение на классе $K\in\operatorname{Cl}(G)$ через $\tau(K)\in\mathbb C$ и перепишем (10-3) как

$$\frac{|G|}{\dim V} = \frac{1}{\dim V} \sum_{g \in G} \operatorname{tr} \varrho(g^{-1}) \cdot \operatorname{tr} \varrho(g) = \sum_{K \in \operatorname{Cl} G} \tau(K) \cdot \frac{1}{\dim V} \cdot \operatorname{tr} \sum_{g \in K} \varrho(g). \tag{10-4}$$

 $^{^{1}}$ напомню, что собственные числа оператора содержатся среди корней любого аннулирующего этот оператор многочлена

Остаётся проверить, что каждое из чисел

$$\frac{1}{\dim V} \cdot \operatorname{tr} \sum_{g \in K} \varrho(g) = \frac{1}{\dim V} \cdot \operatorname{tr} \, \varrho\left(\sum_{g \in K} g\right)$$

является целым над $\mathbb{Z}.$ Элемент $g_K = \sum_{g \in K} g \in \mathbb{Z}[G] \cap Z(\mathbb{C}[G])$ лежит в конечно порож-

дённом \mathbb{Z} -модуле центральных элементов групповой алгебры, являющихся целочисленными линейными комбинациями элементов группы. Неприводимое представление $\varrho:\mathbb{C}[G]\to \mathrm{End}\,V$ переводит этот \mathbb{Z} -модуль в конечно порождённый \mathbb{Z} -подмодуль алгебры $\mathrm{End}\,V$, причём все его операторы, будучи перестановочными с неприводимым действием группы, являются по лемме Шура скалярными гомотетиями. Коэффициенты этих гомотетий составляют таким образом конечно порождённый \mathbb{Z} -подмодуль в \mathbb{C} , выдерживающий умножение на каждый из коэффициентов. Следовательно, все эти коэффициенты целы над \mathbb{Z} . Но коэффициент гомотетии $\varrho(g_K)$ как раз и равен tr $\varrho(g_K)$ /dim V, что и завершает доказательство целостности |G|/dim V.

Докажем теперь утверждение теоремы, а именно установим целость над $\mathbb Z$ рационального числа $q=[G:Z(G)]/\dim V$. Для этого достаточно убедиться, что все его натуральные степени q^n лежат в конечно порождённом $\mathbb Z$ -подмодуле поля $\mathbb Q$. Рассмотрим представление группы $G^n=G\times G\times \cdots\times G$ в пространстве $W=V^{\otimes n}$, заданное правилом $(g_1,g_2,\ldots,g_n):v_1\otimes v_2\otimes \cdots\otimes v_n\mapsto \varrho(g_1)v_1\otimes \varrho(g_2)v_2\otimes \cdots \varrho(g_n)v_n$.

Упражнение 10.5. Убедитесь, что это представление неприводимо.

Подгруппа $C \subset G^n$, состоящая из элементов (c_1, c_2, \ldots, c_n) с $c_i \in Z(G)$ и $c_1c_2 \ldots c_n = 1$, содержится в ядре этого представления, поскольку по лемме Шура каждый центральный элемент c_i действует в неприводимом представлении ϱ умножением на некоторую константу, и в силу равенства $\varrho(c_1c_2 \ldots c_n) = 1$ произведение этих констант равно единице. Подгруппа C имеет порядок $|Z(G)|^{n-1}$ и нормальна, поскольку лежит в центре группы G^n . Пространство W размерности $(\dim V)^n$ является неприводимым представлением фактор группы G^n/C порядка $|G|^n/|Z(G)|^{n-1}$. По уже доказанному

$$\frac{|G|^n}{(\dim V)^n |Z(G)|^{n-1}} = |Z(G)| \cdot q^n \in \mathbb{Z}.$$

Тем самым, все степени q^n лежат в конечно порождённом \mathbb{Z} -подмодуле $|Z(G)|^{-1} \cdot \mathbb{Z}$ поля \mathbb{Q} , что и требовалось.

10.3. Алгебраические элементы. Коммутативная \Bbbk -алгебра B называется конечно порожденной, если она является фактором кольца многочленов, т. е. имеется эпиморфизм \Bbbk -алгебр π : $\Bbbk[x_1, x_2, \ldots, x_m] \twoheadrightarrow B$. В этом случае образы переменных $b_i = \pi(x_i) \in B$ называются образующими алгебры B, а ядро $\ker \pi \subset \Bbbk[x_1, x_2, \ldots, x_m]$ называется идеалом соотношений между ними. Целость элемента $b \in B$ над полем \Bbbk равносильна его алгебраичности, т. е. тому, что b удовлетворяет какому-нибудь — необязательно приведённому — уравнению f(b) = 0 с ненулевым $f \in \Bbbk[x]$. Иначе алгебраичность элемента $b \in B$ над \Bbbk можно охарактеризовать тем, что гомоморфизм вычисления

$$\operatorname{ev}_b : \mathbb{k}[x] \to B, \quad f \mapsto f(b)$$
 (10-5)

имеет ненулевое ядро. Так как все идеалы в $\Bbbk[x]$ главные, $\ker(\operatorname{ev}_b) = (\mu_b)$. Образующая $\mu_b \in \Bbbk[x]$ однозначно определяется по b как приведённый многочлен наименьшей степени, аннулирующий b. Этот многочлен называется минимальным многочленом элемента b над \Bbbk . Элемент $b \in B$, не являющийся алгебраическим, называется мрансцендентным над \Bbbk .

Мы будем обозначать через $\Bbbk[b] = \operatorname{im} \operatorname{ev}_b \subset B$ наименьшую \Bbbk -подалгебру в B, содержащую 1 и b. Если b трансцендентен, эта подалгебра изоморфна кольцу многочленов $\Bbbk[x]$. В частности, она бесконечномерна как векторное пространство над \Bbbk и не является полем. Если элемент b алгебраичен, размерность подалгебры $\Bbbk[b] = \Bbbk[x]/(\mu_b)$ как векторного пространства над \Bbbk равна $\dim_{\Bbbk} \Bbbk[b] = \deg \mu_b$, и эта подалгебра является полем, если и только если минимальный многочлен μ_b неприводим.

Упражнение 10.6. Убедитесь, что следующие три свойства алгебраического над \Bbbk элемента $b \in B$ с минимальным минимальный многочленом $\mu_b \in \Bbbk[x]$ эквивалентны друг другу: A) $\Bbbk[b]$ является полем \mathtt{b}) $\Bbbk[b]$ не имеет делителей нуля \mathtt{b}) неприводим \mathtt{b} $\Bbbk[t]$.

Теорема 10.2

Если конечно порожденная k-алгебра B является полем, то все её элементы алгебраичны над k.

Доказательство. Пусть B имеет образующие $\{b_1,b_2,\ldots,b_m\}$ и является полем. Доказывать алгебраичность B будем индукцией по m. Когда m=1, т. е. $B=\Bbbk[b]$, всё очевидно: если b трансцендентен, гомоморфизм (10-5) отождествляет B с кольцом многочленов $\Bbbk[x]$, которое не является полем. Пусть m>1. Если b_m алгебраичен над \Bbbk , то $\Bbbk[b_m]$ — поле, и по предположению индукции B алгебраично над $\Bbbk[b_m]$, а значит, по предл. 10.1 B алгебраично и над \Bbbk . Таким образом, достаточно показать, что b_m алгебраичен над \Bbbk .

Допустим, что b_m трансцендентен. Тогда гомоморфизм (10-5) продолжается до изоморфизма поля рациональных функций $\mathbb{k}(x)$ с наименьшим содержащим b_m подполем $\Bbbk(b_m) \subset B$. По предположению индукции, B алгебраично над $\Bbbk(b_m)$, т. е. каждая из образующих $b_1, b_2, \ldots, b_{m-1}$ удовлетворяет некоторому полиномиальному уравнению с коэффициентами из $k(b_m)$. Умножая эти уравнения на подходящие многочлены от b_m , мы можем добиться того, чтобы все их коэффициенты лежали в $\mathbb{k}[b_m]$, а также сделать все их старшие коэффициенты равными одному и тому же многочлену, который мы обозначим через $p(b_m) \in \mathbb{k}[b_m]$. В результате поле B оказывается целым над подалгеброй $F=\Bbbk[b_m\,,\,1/p(b_m)]\subset B,$ порожденной над \Bbbk элементами b_m и $1/p(b_m)$. По лемме предл. 10.2 эта подалгебра F должна быть полем, что невозможно, поскольку, к примеру, $1 + p(b_m)$ не обратим в F: если есть такой многочлен $g \in \Bbbk[x_1, x_2]$, что $g\left(b_m, 1/p(b_m)\right) \cdot (1+p(b_m)) = 1$, то, записывая рациональную функцию g(x, 1/p(x)) в виде $h(x)/p^k(x)$, где $h \in \mathbb{k}[x]$ не делится на p, и умножая обе части предыдущего равенства на $p^k(b_m)$, мы получим на b_m полиномиальное уравнение $h(b_m)\cdot (p(b_m)+1)=p^{k+1}(b_m)$, нетривиальное, поскольку h(x)(1+p(x)) не делится в $\mathbb{k}[x]$ на p(x).

Следствие 10.2

Всякое поле \mathbb{F} , которое конечно порождено как алгебра над своим подполем $\mathbb{k} \subset \mathbb{F}$, конечномерно как векторное пространство над \mathbb{k} .

Доказательство. Индукция по числу образующих: добавление очередной алгебраической образующей приводит к конечномерному пространству над полем, порождённым предыдущими образующими. \Box

Определение 10.3 (нормальные кольца)

Коммутативное кольцо A без делителей нуля называется *нормальным*, если оно целозамкнуто в своём поле частных Q_A . В частности, каждое поле нормально.

Пример 10.4 (факториальные кольца нормальны)

Дословно то же рассуждение, что и в прим. 10.1, показывает, что любое факториальное кольцо A нормально: многочлен $a_0t^m+a_1t^{m-1}+\cdots+a_{m-1}t+a_m\in A[t]$ аннулирует дробь $p/q\in Q_A$ с нод(p,q)=1, только если $q|a_0$ и $p|a_m$, поэтому из $a_0=1$ вытекает, что q=1. В частности, кольцо многочленов от любого числа переменных над факториальным кольцом нормально.

Предложение 10.3 (лемма Гаусса – 2)

Пусть A — нормальное кольцо с полем частных Q_A . Если многочлен $f \in A[x]$ раскладывается в $Q_A[x]$ в произведение приведённых множителей, то эти множители лежат в A[x].

ЛЕММА 10.2

Пусть $\Bbbk = Q_A$ является полем частных коммутативного кольца A без делителей нуля. Если элемент b какой-либо Q_A -алгебры B цел над A, то он алгебраичен над Q_A и все коэффициенты его минимального многочлена $\mu_b \in Q_A[x]$ целы над A.

Доказательство. Поскольку b цел над A, он удовлетворяет уравнению f(b)=0, в котором $f\in A[x]$ приведён. Тем самым, $\ker ev_b\neq 0$ и $f=\mu_b\cdot q$ в кольце $Q_A[x]$. По сл. 10.1 все коэффициенты μ_b целы над A.

Следствие 10.3

Пусть A — нормальное кольцо с полем частных Q_A , и B — произвольная Q_A -алгебра. Если элемент $b \in B$ цел над A, то его минимальный многочлен над полем Q_A лежит в A[x].

 $^{^1}$ напомним, что кольцо A называется ϕ акториальным, если в нём нет делителей нуля, и каждый необратимый элемент $a\in A$ является произведением конечного числа неприводимых, причём для любых двух разложений $a=p_1p_2\cdots p_n=q_1q_2\cdots q_m$ в произведение неприводимых множителей m=n и (после надлежащей перенумерации) $p_i=s_iq_i$ для некоторых обратимых $s_i\in A$; например, факториальными являются любое поле, любое кольцо главных идеалов (в частности, кольцо целых чисел $\mathbb Z$) и кольца многочленов $K[x_1,x_2,\ldots,x_n]$ над любым факториальным кольцом K

10.4. Базисы трансцендентности. Пусть \Bbbk -алгебра A не имеет делителей нуля. Обозначаем через Q_A её поле частных, а через $\Bbbk(a_1, a_2, \ldots, a_m) \subset Q_A$ — наименьшее подполе, содержащее заданные элементы $a_1, a_2, \ldots, a_m \in A$.

Элементы a_1,a_2,\ldots,a_m \in A называются алгебраически независимыми над \Bbbk , если между ними нет никаких полиномиальных соотношений вида $f(a_1,a_2,\ldots,a_m)=0$ с $f\in A[x_1,x_2,\ldots,x_m]$, т. е. если отображение вычисления

$$\text{ev}_{(a_1, a_2, \dots, a_m)} : \mathbb{k}[x_1, x_2, \dots, x_m] \to A, \quad f \mapsto f(a_1, a_2, \dots, a_m)$$

инъективно. В этом случае оно продолжается до изоморфизма полей

$$\mathbb{k}(x_1, x_2, \dots, x_m) \cong \mathbb{k}(a_1, a_2, \dots, a_m) \subset Q_A$$

переводящего рациональную функцию $f(x_1,x_2,\ldots,x_m)$ в её значение $f(a_1,a_2,\ldots,a_m)$ на элементах a_i .

Элементы $a_1, a_2, \ldots, a_m \in A$ называются алгебраически порождающими A над \Bbbk , если каждый элемент алгебры A алгебраичен над $\Bbbk(a_1, a_2, \ldots, a_m)$. В этом случае всё поле Q_A тоже алгебраично над $\Bbbk(a_1, a_2, \ldots, a_m)$, т. к. по предл. 10.2 целое замыкание $\Bbbk(a_1, a_2, \ldots, a_m)$ в Q_A является полем, содержащим A, а значит, и Q_A .

Алгебраически независимый набор элементов a_1, a_2, \ldots, a_m из алгебры A, алгебраически порождающий A над \Bbbk , называется базисом трансцендентности A над \Bbbk . Поскольку собственные подмножества любого базиса трансцендентности алгебраически независимы, но не являются базисами трансцендентности, базис трансцендентности можно иначе охарактеризовать либо как такой минимальный по включению набор a_1, a_2, \ldots, a_m , что алгебра A алгебраична над $\Bbbk(a_1, a_2, \ldots, a_m)$, либо как максимальный по включению алгебраически независимый набор a_1, a_2, \ldots, a_m . Доказательство того, что все базисы трансцедентности состоят из одинакового числа элементов совершенно аналогично доказательству оответствующей теоремы о базисах векторных пространств.

Лемма 10.3 (О ЗАМЕНЕ)

Если $b_1, b_2, \ldots, b_n \in A$ алгебраически независимы, а $a_1, a_2, \ldots, a_m \in A$ алгебраически порождают A над \Bbbk , то $n \leqslant m$ и элементы a_i можно перенумеровать так, что набор $b_1, \ldots, b_n, a_{n+1}, \ldots, a_m$ будет алгебраически порождать A над \Bbbk .

Доказательство. Поскольку b_1 алгебраичен над $\Bbbk(a_1,a_2,\ldots,a_m)$, имеется содержащее b_1 полиномиальное соотношение $f(b_1,\,a_1,a_2,\ldots,a_m)=0$, и т. к. b_1 трансцендентен над \Bbbk , в это соотношение входит какое-нибудь a_i . Перенумеруем a_i так, чтобы это было a_1 . Тогда a_1 , а с ним и вся алгебра A алгебраичны над $\Bbbk(b_1,\,a_2,\,\ldots,\,a_m)$. Пусть по индукции элементы $b_1,\,\ldots,\,b_k,\,a_{k+1},\,\ldots,\,a_m$ алгебраически порождают алгебру A над \Bbbk , и при этом k < n. Поскольку b_{k+1} алгебраичен над $\Bbbk\left(b_1,\,\ldots,\,b_k,\,a_{k+1},\,\ldots,\,a_m\right)$, имеется содержащее b_{k+1} полиномиальное соотношение

$$f((b_1, \ldots, b_k, b_{k+1}, a_{k+1}, \ldots, a_m)) = 0,$$

и т. к. набор b_1, b_2, \ldots, b_n алгебраически независим над над \mathbbm{k} , в это соотношение входит какое-нибудь a_i , откуда, в частности, следует что m>k. Перенумеровывая оставшиеся a_i так, чтобы это было a_{k+1} , мы как и выше заключаем, что a_{k+1} , а с ним и

вся алгебра A алгебраичны над $\mathbb{k}\left(b_1,\ldots,b_{k+1},a_{k+2},\ldots,a_m\right)$, т. е. воспроизво индуктивное предположение.	ДИМ
Следствие 10.4 (теорема о базисе)	
Все базисы трансцендентности конечно порождённой 1к-алгебры состоят из один	ако-
вого числа элементов, не превосходящего число образующих, причём любой на	абор
элементов, алгебраически порождающий A над \Bbbk , содержит в себе базис транс	цен-
дентности, а любой алгебраически независимый набор элементов можно дополн	нить
до базиса трансцендентности.	

Определение 10.4

Число элементов в базисе трансцендентности конечно порождённой алгебры A над \Bbbk называется cmeneнью mpancueнденdeнmhoсmu этой алгебры и обозначается $tr \deg_{\Bbbk} A$).

Ответы и указания к некоторым упражнениям

- Упр. 10.1. В силу конечномерности K над $\mathbb Q$ целые неотрицательные степени ξ^m линейно зависимы над $\mathbb Q$. Умножая эту линейную зависимость на общий знаменатель всех коэффициентов, получаем на ξ уравнение $a_0\xi^n + a_1\xi^{n-1} + \cdots + a_{n-1}\xi + a_n = 0$ с $a_i \in \mathbb Z$. Тогда $\zeta = a_0\xi$ цел, т. к. $\zeta^n = -a_1 \cdot \zeta^{n-1} a_0a_2 \cdot \zeta^{n-2} \cdots a_0^{n-1}a_n$.
- Упр. 10.2. Будучи подмодулем поля, модуль \mathcal{O}_K не имеет кручения, и стало быть, свободен. Его ранг не выше d, поскольку любые d+1 его векторов линейно зависимы над \mathbb{Q} , а значит, и над \mathbb{Z} . С другой стороны, подходящие натуральные кратности любых d базисных векторов пространства K дают линейно независимую над \mathbb{Q} систему векторов из \mathcal{O}_K . Поэтому ранг \mathcal{O}_K не меньше d. В базисе модуля целых оператор умножения на целое алгебраическое число записывается целочисленной матрицей.