
§7. Конечно порождённые абелевы группы

7.1. Фробениусово и жорданово представления. При 𝐾 = ℤ теорема об инвариантных мно-
жителях1 и теорема об элементарных делителях2 дают две альтернативных полных классифи-
кации конечно порождённых абелевых групп.

Теорема 7.1 (теорема об инвариантных множителях)

Всякая конечно порождённая абелева группа изоморфна прямой сумме аддитивных групп

ℤ𝑟 ⊕ ℤ
(𝑛1) ⊕ … ⊕ ℤ

(𝑛𝑔) , (7-1)

где 𝑟 — целое неотрицательное, а натуральные 𝑛1, … , 𝑛𝑔 ⩾ 2 таковы, что 𝑛𝑖 ∣ 𝑛𝑗 при 𝑖 < 𝑗. Две
такие группы

ℤ𝑟 ⊕ ℤ
(𝑛1) ⊕ … ⊕ ℤ

(𝑛𝑔) и ℤ𝑠 ⊕ ℤ
(𝑚1) ⊕ … ⊕ ℤ

(𝑚ℎ)
изоморфны если и только если 𝑟 = 𝑠, 𝑔 = ℎ и 𝑛𝑖 = 𝑚𝑖 при всех 𝑖. □

Теорема 7.2 (теорема об элементарных делителях)

Всякая конечно порождённая абелева группа изоморфна прямой сумме аддитивных групп

ℤ𝑟 ⊕ ℤ
(𝑝𝑛11 )

⊕ … ⊕ ℤ
(𝑝𝑛𝛼𝛼 )

, (7-2)

где 𝑝𝜈 ∈ ℕ — простые числа (не обязательно различные). Две такие группы

ℤ𝑟 ⊕ ℤ
(𝑝𝑛11 )

⊕ … ⊕ ℤ
(𝑝𝑛𝛼𝛼 )

и ℤ𝑠 ⊕ ℤ
(𝑞𝑚1
1 )

⊕ … ⊕ ℤ
(𝑞𝑚𝛽
𝛽 )

изоморфны если и только если 𝑟 = 𝑠, 𝛼 = 𝛽 и после надлежащей перестановки слагаемых будут
выполняться равенства 𝑛𝜈 = 𝑚𝜈 и 𝑝𝜈 = 𝑞𝜈 при всех 𝜈. □

При этом в разложениях (7-1) и (7-2) данной абелевой группы 𝐴 целые неотрицательные 𝑟 оди-
наковы, а упорядоченный набор натуральных чисел 𝑛1 ∣ … ∣ 𝑛𝑔 из разложения (7-1) и неупоря-
доченное множество возможно повторяющихся степеней 𝑝𝜈 из разложения (7-2) однозначно
определяют друг друга по лем. 6.2 на стр. 114: множество элементарных делителей является
дизъюнктным объединением степеней 𝑝𝜈𝑝(𝑛𝑖) с 𝜈𝑝(𝑚𝑖) > 0 по всем 1 ⩽ 𝑖 ⩽ 𝑔 и всем про-
стым 𝑝 ∈ ℕ, а набор инвариантных множителей 𝑛1, … , 𝑛𝑔 является прочитанным справа на-
лево набором произведений, взятых по столбцам диаграммы Юнга, в первую строку которой
выписаны в порядке нестрого убывания показателей все степени того числа 𝑝, степеней ко-
торого больше всего, во вторую — все степени следующего по общему количеству степеней
числа 𝑝 и т. д. Единственная с точностью до перестановки прямых слагаемых аддитивная груп-
па (7-2), изоморфная заданной конечно порождённой абелевой группе 𝐴, называется стан-
дартным (или жордановым) представлением группы 𝐴 или разложением группы 𝐴 в прямую
сумму неразложимых циклических подгрупп, а прямая сумма (7-1) — фробениусовым представ-
лением группы 𝐴.

1См. сл. 6.3 на стр. 117.
2См. теор. 6.4 на стр. 114.
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Пример 7.1 (абелевы группы порядка ⩽ 10)

Абелевы группы из двух, трёх, пяти, шести, семи и десяти элементов с точностью до изоморфиз-
ма единственны и их стандартные представления (7-2) имеют, соответственно, вид:

ℤ∕(2) , ℤ∕(3) , ℤ∕(5) , ℤ∕(3) ⊕ ℤ∕(2) , ℤ∕(7) , ℤ∕(5) ⊕ ℤ∕(2) .

Групп из четырёх элементов с точностью до изоморфизма две: ℤ∕(4) и ℤ∕(2) ⊕ ℤ∕(2).
Упражнение 7.1. Убедитесь явным образом, что эти две группы не изоморфны.

Групп из девяти элементов с точностью до изоморфизма тоже две: ℤ ∕ (9) и ℤ ∕ (3) ⊕ ℤ ∕ (3).
Группы из восьми элементов с точностью до изоморфизма исчерпываются тремя попарно не
изоморфными группами ℤ∕(8), ℤ∕(4) ⊕ ℤ∕(2) и ℤ∕(2) ⊕ ℤ∕(2) ⊕ ℤ∕(2).

7.1.1. Канонические и не канонические слагаемые стандартного представления. Для
каждого простого 𝑝, участвующего в жордановом представлении данной группы 𝐴, в 𝐴 имеется
единственная подгруппа, изоморфная прямой сумме всех прямых слагаемых вида ℤ∕(𝑝𝑚) в раз-
ложении (7-2) — это подгруппа 𝑝-кручения Tors𝑝(𝐴) ⊂ 𝐴, состоящая из всех таких элементов
𝑎 ∈ 𝐴, что 𝑝𝑛𝑎 = 0 для некоторого 𝑛 ∈ ℕ. Прямая сумма этих подгрупп, т. е. подгруппа круче-
ния Tors(𝐴) = ⨁𝑝 Tors𝑝(𝐴), состоит из всех таких элементов 𝑎 ∈ 𝐴, что 𝑛𝑎 = 0 для некоторого
𝑛 ∈ ℕ. В противоположность этому, дополнительная к Tors(𝐴) свободная подгруппа 𝐵 ⊂ 𝐴, изо-
морфная ℤ𝑟 ≃ 𝐴∕Tors(𝐴) может быть выбрана в𝐴 разными способами, но ранг 𝑟 этой свободной
группы не зависит от её выбора. Например, группа 𝐴 = ℤ ⊕ ℤ∕(3) иначе раскладывается как
𝐵 ⊕ ℤ∕(3), где подгруппа 𝐵 ⊂ 𝐴 порождена элементом (1, [1]3) ∈ 𝐴.

Упражнение 7.2. Убедитесь в этом и перечислите для группы 𝐴 = ℤ⊕ℤ∕(3) все изоморфные ℤ
подгруппы 𝐵 ⊂ 𝐴, дополнительные к Tors(𝐴).

Разложение подгруппы 𝑝-кручения в сумму неразложимых циклических подгрупп

Tors𝑝(𝐴) = ℤ
(𝑝𝜈1) ⊕ … ⊕ ℤ

(𝑝𝜈𝑛)

тоже не единственно: для каждого показателя 𝜈𝑖 изоморфная ℤ∕(𝑝𝜈𝑖) подгруппа в 𝐴 может вы-
бираться разными способами. Например, группа 𝐴 = ℤ∕(4) ⊕ ℤ∕(2) иначе раскладывается в
сумму 𝐵⊕𝐶 подгрупп 𝐵 ≃ ℤ∕(4) и 𝐶 ≃ ℤ∕(2), порождённых элементами ([1]4, [1]2) и ([2]4, [1]2)
соответственно. Однако цикловой тип группы 𝑝-кручения, т. е. набор (𝜈1, … , 𝜈𝑛) показателей
её 𝑝-кручения, от выбора разложения не зависит.

7.1.2. Циклические группы и минимальные наборы образующих. Пусть абелева груп-
па𝐴 порождается какℤ-модуль элементами 𝑎1, … , 𝑎𝑚. Наборы образующих с наименьшим воз-
можным 𝑚 называется минимальными. Группа (7-1)

𝐴 = ℤ𝑟 ⊕ ℤ
(𝑛1) ⊕ … ⊕ ℤ

(𝑛𝑔) ,

где 𝑛𝑖 ∣ 𝑛𝑗 при 𝑖 < 𝑗, порождается 𝑟 + 𝑔 элементами вида (0, … , 0, 1, 0, … , 0). Покажем, что это
минимальный набор образующих. Пусть 𝐴 порождается 𝑚 элементами 𝑎1, … , 𝑎𝑚. Тогда

𝐴 ≃ ℤ𝑚∕𝑅 ,

где𝑅 ⊂ ℤ𝑚 — ядро сюръективного гомоморфизмаℤ ↠ 𝐴, переводящего стандартные базисные
векторы 𝑒1, … , 𝑒𝑚 ∈ ℤ𝑚 в 𝑎1, … , 𝑎𝑚 ∈ 𝐴. Пусть векторы 𝑓1, … , 𝑓𝑚 и 𝜆1𝑓1, … , 𝜆𝑘𝑓𝑘 образуют
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взаимные базисы в ℤ𝑚 и 𝑅, и пусть 𝜆1 = … = 𝜆𝑠 = 1, а 𝜆𝑠+1 ∣ … ∣ 𝜆𝑘 строго больше 1. Тогда
фробениусово представление группы 𝐴 = ℤ𝑚∕𝑅 имеет вид

ℤ
(𝜆𝑠+1) ⊕ … ⊕ ℤ

(𝜆𝑘) ⊕ ℤ𝑚−𝑘 ,

и в силу единственности фробениусова представления 𝑟 = (𝑚 − 𝑘), 𝑔 = 𝑘 − 𝑠 и 𝑛𝑖 = 𝜆𝑠+𝑖 при
всех 𝑖 = 1, … ,𝑔. В частности 𝑟 + 𝑔 = 𝑚 − 𝑠 ⩽ 𝑚, что и утверждалось.

В терминах разложения (7-2) в прямую сумму неразложимых циклических подгрупп чис-
ло 𝑔 конечных слагаемых фробениусова разложения абелевой группы 𝐴 равно максимальному
числу элементарных делителей с одним и тем же простым основанием, т. е. длине верхней стро-
ки диаграммы Юнга, составленной из элементарных делителей группы 𝐴.

Абелевы группы, которые можно породить одним элементом, называются циклическими.
Фробениусово разложение такой группы имеет ровно одно слагаемое. Тем самым, циклические
абелевы группы исчерпываются группами ℤ и ℤ∕(𝑛). В терминах элементарных делителей абе-
лева группа 𝐴 циклическая если и только если все простые числа в слагаемых ℤ∕(𝑝𝑚) её стан-
дартного представления (7-2) попарно различны. Например, группа ℤ∕(125) ⊕ ℤ∕(9) ⊕ ℤ∕(16)
циклическая, а группа ℤ∕(2) ⊕ ℤ∕(3) ⊕ ℤ∕(4) ≃ ℤ∕(2) ⊕ ℤ∕(12) — нет.

7.1.3. Неразложимые группы. Абелева группа 𝐴 называется разложимой, если она явля-
ется прямой суммой 𝐴 = 𝐵 ⊕ 𝐶 двух ненулевых собственных подгрупп 𝐵,𝐶 ⊊ 𝐴. Из теор. 7.2
на стр. 119 вытекает, что каждая неразложимая абелева группа изоморфна ℤ или ℤ∕(𝑝𝑚), где
𝑝 ∈ ℕ — простое, причём эти неразложимые группы попарно не изоморфны, а произвольная
конечно порождённая абелева группа является прямой суммой неразложимых.

7.1.4. Простые и полупростые группы. Абелева группа 𝐴 называется простой1, если в ней
нет ненулевых собственных подгрупп. Каждая простая группа автоматически неразложима. Об-
ратное неверно: группы ℤ и ℤ∕(𝑝𝑚), где𝑚 ⩾ 2 неразложимы, но не просты, поскольку содержат
ненулевые собственные подгруппы.

Упражнение 7.3. Опишите все ненулевые собственные подгруппы в ℤ и в ℤ∕(𝑝𝑚), где 𝑚 ⩾ 2.

Поскольку порядок любой подгруппы в конечной группе 𝐴 делит порядок 𝐴, все конечные груп-
пы простого порядка просты. Мы заключаем, что конечно порождённые простые абелевы груп-
пы с точностью до изоморфизма исчерпываются группами ℤ∕(𝑝), где 𝑝 ∈ ℕ — простое, и при
разных 𝑝 такие группы не изоморфны.

Абелева группа называется полупростой, если она является прямой суммой простых под-
групп. Таким образом, конечно порождённые полупростые абелевы группы исчерпываются ко-
нечными прямыми суммами групп вида ℤ∕(𝑝), где 𝑝 ∈ ℕ — простое.

Предложение 7.1

Следующие свойства конечно порождённой абелевой группы 𝐴 эквивалентны:

(1) 𝐴 полупроста

(2) 𝐴 порождается своими простыми подгруппами

(3) каждая ненулевая собственная подгруппа 𝐵 ⊊ 𝐴 отщепляется прямым слагаемым, т. е.
найдётся такая подгруппа 𝐶 ⊂ 𝐴, что 𝐴 = 𝐵 ⊕ 𝐶.

1В другой терминологии — неприводимой.
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Доказательство. Импликация (1) ⇒ (2) очевидна. Докажем импликацию (2) ⇒ (3). Так как
все простые абелевы группы являются группами кручения, группа 𝐴, удовлетворяющая усло-
вию (2), тоже является группой кручения и по теор. 7.2 на стр. 119 конечна. Пересечение любой
простой подгруппы 𝑈 ⊂ 𝐴 с любой подгруппой 𝑊 ⊊ 𝐴, будучи подгруппой в 𝑈, либо нулевое,
либо совпадает с 𝑈. Так как ℤ-линейная оболочка простых подгрупп совпадает с 𝐴, для любой
собственной подгруппы 𝐵 ⊊ 𝐴 найдётся простая подгруппа 𝑈1 ⊊ 𝐵. Сумма подгрупп 𝐵 и 𝑈1
прямая. Если 𝐵 ⊕ 𝑈1 ≠ 𝐴, заменяем 𝐵 на 𝐵 ⊕ 𝑈1 и повторяем рассуждение, до тех пор пока не
получим равенство𝐴 = 𝐵⊕𝑈1⊕…⊕𝑈𝑘, где все𝑈𝑘 просты. Остаётся положить𝐶 = 𝑈1⊕…⊕𝑈𝑘.

Чтобы установить импликацию (3) ⇒ (1), докажем сначала, что если группа 𝐴 обладает
свойством (3), то им обладает и каждая подгруппа 𝐵 ⊂ 𝐴. Пусть 𝑉 ⊂ 𝐵 — любая подгруппа.
Тогда в 𝐴 существуют такие подгруппы 𝐶, 𝑈, что 𝐴 = 𝐵 ⊕ 𝐶 = 𝑉 ⊕ 𝐶 ⊕ 𝑈. Обозначим через

𝜋∶ 𝐴 ↠ 𝐵 , 𝑏 + 𝑐 ↦ 𝑏 ,

проекцию 𝐴 на 𝐵 вдоль 𝐶 и положим 𝑊 = 𝜋(𝑈).
Упражнение 7.4. Проверьте, что 𝐵 = 𝑉 ⊕ 𝑊.

Поскольку группы ℤ𝑛 и ℤ ∕ (𝑝𝑚) c 𝑚 ⩾ 2 не просты и неразложимы, они не обладают свой-
ством (3) и по доказанному не могут входить в стандартное представление группы, которая об-
ладает свойством (3). Тем самым, каждая группа, обладающая свойством (3) является прямой
суммой простых групп. □

Упражнение 7.5. Убедитесь непосредственно, что группы ℤ и ℤ∕(𝑝𝑚) c𝑚 ⩾ 2 не порождаются
своими простыми подгруппами.

7.2. Группы, заданные образующими и соотношениями. На практике конечно порождённые
абелевы группы часто задаются образующими и соотношениями. Это описание обычно звучит
так: «рассмотрим абелеву группу 𝐴, порождённую элементами 𝑎1, … , 𝑎𝑚, которые связаны со-
отношениями

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑎1𝑟11 + 𝑎2𝑟21 + … + 𝑎𝑚𝑟𝑚1 = 0
𝑎1𝑟12 + 𝑎2𝑟22 + … + 𝑎𝑚𝑟𝑚2 = 0

⋯ ⋯ ⋯ ⋯ ⋯
𝑎1𝑟1𝑛 + 𝑎2𝑟2𝑛 + … + 𝑎𝑚𝑟𝑚𝑛 = 0 ,

(7-3)

где 𝑅 = (𝑟𝑖𝑗) ∈ Mat𝑚×𝑛(ℤ)». Оно означает, что 𝐴 = ℤ𝑚∕𝑀, где подмодуль 𝑀 ⊂ ℤ𝑚 порождается
над ℤ строками 𝑟1, … , 𝑟𝑚 матрицы 𝑅, а образующие 𝑎𝑗 = [𝑒𝑗]𝑀 ∈ 𝐴 суть классы стандартных
базисных векторов 𝑒𝑗 ∈ ℤ𝑚 по модулю подрешётки 𝑀 ⊂ ℤ𝑚.

7.2.1. Стандартное представление. Рассмотрим векторное пространство ℚ𝑚 ⊃ ℤ𝑚, в ко-
торое координатный модуль ℤ𝑚 естественным образом вложен, и обозначим через

ℚ ⊗ 𝑀 ≝ spanℚ(𝑀) ⊂ ℚ𝑚

ℚ-линейную оболочку строк матрицы 𝑅 в ℚ𝑚. Её размерность dimℚ(ℚ ⊗ 𝑀) = rk𝑅 = rk𝑀
совпадает как с рангом матрицы 𝑅 над полем ℚ, так и с рангом свободного ℤ-модуля 𝑀 ⊂ ℤ𝑛,
поскольку любой базис решётки 𝑀 над ℤ одновременно является базисом пространства ℚ⊗𝑀
над ℚ.

Упражнение 7.6. Докажите, что набор векторов 𝑣1, … , 𝑣𝑘 ∈ ℤ𝑚 ⊂ ℚ𝑚 линейно независим
над ℤ если и только если он линейно независим над ℚ.
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Мы заключаем, что ранг свободного слагаемого𝐴∕Tors(𝐴) в стандартном представлении 1 груп-
пы 𝐴 = ℤ𝑚 ∕𝑀 равен 𝑚 − rk𝑅, причём ранг матрицы 𝑅 можно вычислять над полем ℚ. Для
вычисления остальных слагаемых стандартного представления необходимо найти все ненуле-
вые инвариантные множители 𝜆1, … , 𝜆𝑟 матрицы 𝑅. Тогда фробениусово представление груп-
пы 𝐴 = ℤ𝑚 ∕𝑀 будет иметь вид ℤ𝑚−𝑟 ⊕ ℤ∕(𝜆1) ⊕ … ⊕ ℤ∕(𝜆𝑟), а стандартное представление
получится из него разложением каждого фактора ℤ∕(𝜆𝑖) по китайской теореме об остатках.

Упражнение 7.7. Найдём стандартное представление абелевой группы, порождённой элемен-
тами 𝑎1, 𝑎2, 𝑎3, которые связаны соотношениями

⎧⎪
⎪
⎨
⎪
⎪⎩

− 57𝑎1 + 58𝑎2 − 55𝑎3 = 0
− 34𝑎1 + 40𝑎2 − 22𝑎3 = 0
5𝑎1 − 10𝑎2 − 5𝑎3 = 0
9𝑎1 − 11𝑎2 + 5𝑎3 = 0 .

Для этого методом Гаусса найдём инвариантные множители матрицы

𝑅 =
⎛
⎜
⎜
⎝

−57 −34 5 9
58 40 −10 −11

−55 −22 −5 5

⎞
⎟
⎟
⎠

Прибавим к 1-й строке 2-ю:

⎛
⎜
⎜
⎝

1 6 −5 −2
58 40 −10 −11

−55 −22 −5 5

⎞
⎟
⎟
⎠

Зануляем верхнюю строку и левый столбец вне левого верхнего угла:

⎛
⎜
⎜
⎝

1 0 0 0
0 −308 280 105
0 308 −280 −105

⎞
⎟
⎟
⎠

Так как 3-я строка кратна 2-й, и наибольший общий делитель второй строки равен 7, нену-
левые множители матрицы 𝑅 суть 1 и 7, а её ранг равен 2. Мы заключаем, что

𝐴 = ℤ3∕𝑀 ≃ ℤ ⊕ ℤ∕(7) .

7.2.2. Порядки элементов. На практике часто бывает важно знать, отлична ли от нуля та
или иная ℤ-линейная комбинация 𝑤 = 𝑘1𝑎1 + … + 𝑘𝑚𝑎𝑚 образующих 𝑎𝑖, и если да, то каков
порядок2 ord([𝑤]) элемента [𝑤] в группе 𝐴. Для ответа на эти вопросы необходимо выяснить,
лежит или нет какое-нибудь целое кратное 𝑧𝑤 вектора 𝑤 = (𝑘1, … , 𝑘𝑚) в целочисленной ли-
нейной оболочке строк 𝑟1, … , 𝑟𝑛 ∈ ℤ𝑚 матрицы соотношений 𝑅 из формулы (7-3). Если строки
матрицы 𝑅 линейно независимы надℚ, т. е. образуют базис модуля𝑀 ⊂ ℤ𝑚 соотношений меж-
ду образующими 𝑎1, … , 𝑎𝑚 над ℤ, то достаточно решить над полем ℚ систему уравнений

𝑟1𝑥1 + … + 𝑟𝑚𝑥𝑚 = 𝑤 (7-4)

1См. теор. 7.2 на стр. 119.
2Напомню, что порядком ord(𝑤) элемента 𝑤 в аддитивной абелевой группе называется наименьшее

такое 𝑛 ∈ ℕ, что 𝑛𝑤 = 0, а если такого 𝑛 нет, то ord(𝑤) = ∞, см. n∘ 2.5.1 на стр. 51.
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которая в матричных обозначениях имеет вид𝑅𝑡𝑥 = 𝑤𝑡, и в силу линейной независимости век-
торов 𝑟1, … , 𝑟𝑛 либо несовместна, либо имеет единственное рациональное решение. В первом
случае никакое целое кратное 𝑧𝑤 не лежит в 𝑀. Поэтому класс [𝑤]𝑀 отличен от нуля в груп-
пе 𝐴 = ℤ𝑚∕𝑀 и имеет в ней бесконечный порядок. Если же система (7-4) имеет рациональное
решение 𝑥𝑖 = 𝑝𝑖∕𝑞𝑖 ∈ ℚ, где нод(𝑝𝑖, 𝑞𝑖) = 1 при всех 𝑖, то

𝑤 = 𝑝1
𝑞1
𝑟1 + … + 𝑝𝑛

𝑞𝑛
𝑟𝑛

и ord([𝑤]𝑀) = нок(𝑞1, … , 𝑞𝑛). В частности, [𝑤]𝑀 = 0 если и только если все 𝑞𝑖 = 1, т. е. когда
система (7-4) решается в целых числах.

7.2.3. Подрешётки в ℤ𝒎. Абелевы подгруппы 𝐿 ⊂ ℤ𝑚 обычно называют подрешётками
в ℤ𝑚. Согласно теор. 6.2 на стр. 110 каждая подрешётка 𝐿 ⊂ ℤ𝑚 является свободным ℤ-моду-
лем ранга rk 𝐿 ⩽ 𝑚. Если rk 𝐿 = 𝑚, подрешётка 𝐿 называется соизмеримой с ℤ𝑚. Из сказанного
выше вытекает

Предложение 7.2 (соизмеримые подрешётки)

Следующие свойства подрешётки 𝐿𝐴 ⊂ ℤ𝑚, порождённой столбцами матрицы 𝐴 ∈ Mat𝑚×𝑛(ℤ),
эквивалентны друг другу:

(1) rk 𝐿 = 𝑚

(2) факторгруппа ℤ𝑚∕𝐿 конечна

(3) ранг матрицы 𝐴 над полем ℚ равен 𝑚. □

Решётка 𝐿 ⊂ ℤ𝑚 называются отщепимой, если она удовлетворят следующему предложению.

Предложение 7.3 (отщепимые подрешётки)

Следующие свойства подрешётки 𝐿 ⊂ ℤ𝑚 эквивалентны друг другу:

(1) все ненулевые инвариантные множители подрешётки 𝐿 равны единице

(2) факторгруппа ℤ𝑚∕𝐿 не имеет кручения

(3) существует такая подрешётка 𝑁 ⊂ ℤ𝑚, что ℤ𝑚 = 𝐿 ⊕ 𝑁

(4) решётка 𝐿 является множеством всех целых решений системы однородных линейных
уравнений 𝐴𝑥 = 0 c целочисленной матрицей 𝐴 высоты 𝑚.

Доказательство. Равносильность условий (1), (2) и импликации (1) ⇒ (3), (4) вытекают из тео-
ремы о взаимном базисе: если первые 𝑟 базисных векторов базиса 𝑢1, … , 𝑢𝑚 в ℤ𝑚 образуют
базис в 𝐿, то дополнительная к 𝐿 подрешётка 𝑁 является линейной оболочкой последних 𝑚 − 𝑟
базисных векторов, а решётка 𝐿 задаётся линейными однородными уравнениями, констатиру-
ющими обнуление последних 𝑚 − 𝑟 координат вектора в базисе 𝑢1, … , 𝑢𝑚.

Импликация (3) ⇒ (2) очевидна, так как (𝐿 ⊕ 𝑁)∕𝐿 ≃ 𝑁.
Докажем импликацию (4) ⇒ (2). Пусть𝐴 ∈ Mat𝑘×𝑚(ℤ) и подрешётка𝐿 ⊂ ℤ𝑚 является ядром

линейного отображения 𝛼∶ ℤ𝑚 → ℤ𝑘, 𝑥 ↦ 𝐴𝑥. Тогда отображение 𝛼∶ ℤ𝑚∕𝐿 ↪→ ℤ𝑘, [𝑥] ↦ 𝐴𝑥,
корректно определено и инъективно.

Упражнение 7.8. Убедитесь в этом.

Тем самым, ℤ𝑚∕𝐿 изоморфен подмодулю модуля без кручения. □
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7.3. Общие замечания о полупростоте. Пусть 𝐾 — произвольное ассоциативное кольцо, т. е.
абелева группа с операцией умножения 𝐾 × 𝐾 → 𝐾, которая дистрибутивна по отношению к
сложению: (𝑥 + 𝑦)𝑧 = 𝑥𝑦+ 𝑥𝑧, 𝑥(𝑦+ 𝑧) = 𝑥𝑧+ 𝑦𝑧, и ассоциативна: (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧), где 𝑥, 𝑦, 𝑧 ∈ 𝐾.
Абелева группа 𝑉 называется левым 𝐾-модулем, если задано умножение (или действие)

𝐾 × 𝑉 → 𝑉 ,

которое тоже дистрибутивно и ассоциативно:

∀ 𝑧 ∈ 𝐾, ∀ 𝑢,𝑤 ∈ 𝑉 𝑧(𝑢 + 𝑤) = 𝑧𝑢 + 𝑧𝑤 и ∀ 𝑥, 𝑦 ∈ 𝐾, ∀ 𝑣 ∈ 𝑉 (𝑥 + 𝑦)𝑣 = 𝑥𝑣 + 𝑦𝑣 ,

∀ 𝑥, 𝑦 ∈ 𝐾, ∀ 𝑣 ∈ 𝑉 (𝑥𝑦)𝑣 = 𝑥(𝑦𝑣) .

Подмодуль в 𝑉 — это абелева подгруппа, выдерживающая умножение на все элементы из 𝐾.
Модуль 𝑈 называется простым, если в нём нет ненулевых собственных подмодулей, и полупро-
стым, если он является прямой суммой простых (не обязательно конечной).

Лемма 7.1

Пусть 𝐾-модуль 𝑊 линейно порождается над 𝐾 некоторым множеством 𝒮 своих простых 𝐾-
подмодулей. Тогда у любого собственного подмодуля 𝑈 ⊊ 𝑊 имеется дополнительный1 под-
модуль 𝑉, являющийся прямой суммой подходящих подмодулей из множества 𝒮. Для нулевого
подмодуля 𝑈 = 0 это означает, что весь модуль 𝑊 является прямой суммой подходящих подмо-
дулей из множества 𝒮. В частности, такой модуль 𝑊 автоматически полупрост.

Доказательство. Так как 𝑈 ≠ 𝑊 и 𝑊 линейно порождается подмодулями 𝑆 ∈ 𝒮, в множестве 𝒮
найдётся подмодуль 𝑆 ⊄ 𝑈. Сумма 𝑈 + 𝑆 является прямой, поскольку пересечение 𝑆 ∩ 𝑈 ⊊
𝑆 и 𝑆 прост. Обозначим через 𝒮′ множество всех полупростых подмодулей 𝑀 ⊂ 𝑊, которые
являются прямыми суммами модулей из 𝒮 и имеют нулевое пересечение с 𝑈. По предыдущему,
множество𝒮′ непусто. Введём на нём частичный порядок, полагая𝑀1 < 𝑀2, когда𝑀2 = 𝑀1⊕𝑀
для ненулевого 𝑀 ∈ 𝒮′.

Упражнение 7.9. Убедитесь, что 𝒮′ является полным чумом2.

По лемме Цорна3 в множестве 𝒮′ имеется максимальный элемент 𝑉. По построению𝑈∩𝑉 = 0.
Покажем, что 𝑈 + 𝑉 = 𝑊. Если 𝑈 + 𝑉 ≠ 𝑊, то повторяя проведённое в начале доказательства
рассуждение для подмодуля 𝑈′ = 𝑈 + 𝑉 в роли подмодуля 𝑈, мы найдём в 𝒮 такой подмодуль
𝑆 ⊂ 𝑊, что сумма 𝑈′ + 𝑆 прямая. Это означает, что 𝑉 ⊕ 𝑆 ∈ 𝒮′ строго больше, чем 𝑉. Всё
сказанное работает и для 𝑈 = 0. □

Теорема 7.3

Модуль 𝑊 полупрост если и только если каждый ненулевой подмодуль в 𝑊 содержит простой
ненулевой подмодуль и для каждого ненулевого собственного подмодуля𝑈 ⊂ 𝑊 найдётся такой
подмодуль 𝑉 ⊂ 𝑊, что 𝑊 = 𝑈 ⊕ 𝑉.

Доказательство. Если модуль 𝑊 полупрост, т. е. является прямой суммой простых подмодулей,
подмодуль 𝑉 ⊂ 𝑊, дополнительный к произвольно заданному подмодулю 𝑈 ⊂ 𝑊, существует
по лем. 7.1, применённой к множеству 𝒮 всех простых подмодулей в 𝑊.

1Т. е. такой подмодуль 𝑉 ⊂ 𝑊, что 𝑊 = 𝑈 ⊕ 𝑉, см. прим. 5.10 на стр. 86.
2См. опр. 0.3 на стр. 20.
3См. сл. 0.1 на стр. 20.
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Упражнение 7.10. Убедитесь, что проекция 𝜋∶ 𝑊 = 𝑈 ⊕ 𝑉 ↠ 𝑈, 𝑢 + 𝑣 ↦ 𝑢, 𝐾-линейна, т. е.
𝜋(𝑥𝑤) = 𝑥𝜋(𝑤) для всех 𝑥 ∈ 𝐾 и 𝑤 ∈ 𝑊.

Так как 𝑊 линейно порождается простыми подмодулями, проекция 𝜋 переводит хотя бы один
из них в ненулевой подмодуль в 𝑈.

Упражнение 7.11. Убедитесь, что этот ненулевой подмодуль прост.

Это доказывает прямую импликацию «только если». Чтобы доказать обратную импликацию,
обозначим через 𝒮 множество всех полупростых ненулевых подмодулей 𝑆 ⊆ 𝑊. Это множе-
ство непусто, поскольку содержит ненулевой простой подмодуль, имеющийся в 𝑊 по условию.
Зададим на 𝒮 частичный порядок, полагая 𝑆1 < 𝑆2 когда 𝑆2 = 𝑆1 ⊕ 𝑆 для некоторого 𝑆 ∈ 𝒮.

Упражнение 7.12. Убедитесь, что чум 𝒮 полон.

По лемме Цорна, в 𝒮 есть максимальный элемент 𝑀. Если он не совпадает с 𝑊, то найдётся
такой нетривиальный подмодуль 𝑉 ⊂ 𝑊, что 𝑊 = 𝑀 ⊕ 𝑉. Поскольку в 𝑉 есть нетривиальный
простой подмодуль 𝑆 ⊂ 𝑉, сумма 𝑀 ⊕ 𝑆 ∈ 𝒮 будет строго больше, чем 𝑀. Тем самым, 𝑀 = 𝑊. □

Следствие 7.1 (критерии полупростоты)

Пусть каждый ненулевой подмодуль 𝐾-модуля 𝑊 содержит ненулевой простой 𝐾-подмодуль.
Тогда следующие свойства модуля 𝑊 эквивалентны:

1) 𝑊 полупрост

2) 𝑊 линейно порождается простыми подмодулями

3) для каждого ненулевого собственного подмодуля 𝑈 ⊂ 𝑊 существует такой ненулевой
собственный подмодуль 𝑉 ⊂ 𝑊, что 𝑊 = 𝑈 ⊕ 𝑉. □

Упражнение 7.13. Пусть модуль 𝑉 таков, что для любого ненулевого собственного подмодуля
𝑈 ⊂ 𝑉 найдётся такой подмодуль 𝑊 ⊂ 𝑉, что 𝑉 = 𝑈 ⊕ 𝑊. Докажите, что любой подмодуль
𝑉′ ⊂ 𝑉 тоже обладает этим свойством.



Ответы и указания к некоторым упражнениям

Упр. 7.1. В ℤ∕(4) есть элемент порядка 4, а в ℤ∕(2) ⊕ ℤ∕(2) такого элемента нет.

Упр. 7.2. Имеется ровно три таких подгруппы. Они порождаются элементами (1, [0]3), (1, [1]3) и
(1, [−1]3).

Упр. 7.3. Каждая ненулевая собственная подгруппа в ℤ имеет вид (𝑛) = {𝑥 ∈ ℤ | 𝑥 ⫶ 𝑛}, где 𝑛 ⩾ 2,
а каждая ненулевая собственная подгруппа в ℤ∕(𝑝𝑚) имеет вид (𝑝𝑘) = {[𝑥] ∈ ℤ∕(𝑝𝑚) | 𝑥 ⫶ 𝑝𝑘},
где 1 ⩽ 𝑘 ⩽ 𝑚.

Упр. 7.4. Так как любой вектор 𝑏 ∈ 𝐵 представляется в 𝐴 как 𝑏 = 𝑣 + 𝑐 + 𝑢, где 𝑢 ∈ 𝑈, 𝑐 ∈ , 𝑢 ∈ 𝑈,
выполняется равенство 𝑏 = 𝜋(𝑏) = 𝜋(𝑣+ 𝑐+𝑢) = 𝑣+𝜋(𝑢). Поэтому 𝐵 = 𝑉+𝑊. Если 𝑏 ∈ 𝑉 ∩𝑊,
то 𝑏 = 𝜋(𝑢) для некоторого 𝑢 ∈ 𝑈, и 𝜋(𝑏 − 𝑢) = 𝑏 − 𝜋(𝑢) = 0. Поэтому 𝑏 − 𝑢 ∈ ker𝜋 = 𝐶, что
возможно только при 𝑏 = 𝑢 = 0.

Упр. 7.6. Умножая ℚ-линейную комбинацию векторов на общий знаменатель всех её коэффици-
ентов, получаем ℤ-линейную комбинацию тех же векторов.

Упр. 7.9. Верхней гранью цепи из 𝒮′ является объединение всех модулей цепи.

Упр. 7.10. Пусть 𝑤 = 𝑢 + 𝑣. Тогда 𝑓𝑤 = 𝑓𝑢 + 𝑓𝑣 и 𝑓𝑣 ∈ 𝑉. Поэтому 𝜋(𝑓𝑤) = 𝑓𝑢 = 𝑓𝜋(𝑤).
Упр. 7.11. Пусть 𝑆 ⊂ 𝑊 прост и 𝜋(𝑆) ≠ 0. Для любого 𝐾-подмодуля 𝑀 ⊂ 𝜋(𝑆) пересечение

𝑆 ∩ 𝜋−1(𝑀) = {𝑠 ∈ 𝑆 | 𝜋(𝑠) ∈ 𝑀}

является𝐾-подмодулем в 𝑆: если 𝜋(𝑠) ∈ 𝑀, то 𝜋(𝑓𝑠) = 𝑓𝜋(𝑠) ∈ 𝑀 для всех 𝑓 ∈ 𝐾 и 𝑠 ∈ 𝑆. Так как
в 𝑆 нет нетривиальных собственных подмодулей, их нет и в 𝜋(𝑆).

Упр. 7.12. Верхней гранью цепи из 𝒮 является объединение или, что то же самое, прямая сумма
всех модулей цепи.

Упр. 7.13. Воспользуйтесь рассуждением, которое использовалось при доказательстве имплика-
ции (3) ⇒ (1) в предл. 7.1 на стр. 121.
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