
§6. Конечно порождённые модули над областью главных идеалов

Всюду в этом параграфе𝐾 означает произвольную область главных идеалов. Все рассматривае-
мые нами𝐾-модули по умолчанию предполагаются конечно порождёнными. Под свободным𝐾-
модулем ранга нуль понимается нулевой 𝐾-модуль.

6.1. Метод Гаусса. Будем называть элементарным преобразованием строк прямоугольной мат-
рицы 𝐴 ∈ Mat𝑚×𝑛(𝐾) замену каких-нибудь двух строк 𝑟𝑖 и 𝑟𝑗 их линейными комбинациями

𝑟′
𝑖 = 𝛼𝑟𝑖 + 𝛽𝑟𝑗 и 𝑟′

𝑗 = 𝛾𝑟𝑖 + 𝛿𝑟𝑗
с обратимым определителем 𝛥 = 𝛼𝛿 − 𝛽𝛾 ∈ 𝐾. В этом случае матрица преобразования

(
𝑟𝑖
𝑟𝑗)

↦ (
𝑟′
𝑖
𝑟′
𝑗 ) = (

𝛼 𝛽
𝛾 𝛿) (

𝑟𝑖
𝑟𝑗)

обратима1, и исходные строки 𝑟𝑖 и 𝑟𝑗 восстанавливаются из преобразованных строк 𝑟′
𝑖 и 𝑟′

𝑗 по
формулам 𝑟𝑖 = (𝛿𝑟′

𝑖 − 𝛽𝑟′
𝑗 )∕𝛥 и 𝑟𝑗 = (−𝛾𝑟′

𝑖 + 𝛼𝑟′
𝑗 )∕𝛥.

Упражнение 6.1. Убедитесь в этом.

В частности, прибавление к одной строке другой строки, умноженной на произвольное число
𝑥 ∈ 𝐾, а также перестановка двух строк местами и умножение строк на обратимые элемен-
ты 𝑠1, 𝑠2 ∈ 𝐾 тоже являются элементарными преобразованиями, задаваемыми 2×2матрицами

(
1 0
𝑥 1) , (

0 1
1 0) и (

𝑠1 0
0 𝑠2) .

Элементарное преобразование не меняет линейной оболочки строк матрицы 𝐴 и заключается
в умножении 𝐴 слева на обратимую 𝑚 ×𝑚 матрицу 𝐿, которая получается из единичной 𝑚 ×𝑚
матрицы тем же самым элементарным преобразованием строк, что происходит в матрице 𝐴.

Симметричным образом, элементарным преобразованием столбцов матрицы 𝐴 мы назы-
ваем замену каких-нибудь двух столбцов 𝑐𝑖 и 𝑐𝑗 их линейными комбинациями 𝑐′

𝑖 = 𝛼𝑐𝑖 + 𝛽𝑐𝑗
и 𝑐′

𝑗 = 𝛾𝑐𝑖 + 𝛿𝑐𝑗 с обратимым в 𝐾 определителем 𝛼𝛿 − 𝛽𝛾. Такое преобразование не меняет
линейной оболочки столбцов матрицы 𝐴 и достигается умножением 𝐴 справа на обратимую
𝑛×𝑛 матрицу 𝑅, которая получается из единичной 𝑛×𝑛 матрицы тем же самым элементарным
преобразованием столбцов, что производится в матрице 𝐴. Прибавление к одному из столбцов
другого, умноженного на произвольное число 𝑥 ∈ 𝐾, а также перестановка столбцов местами и
умножение столбцов на обратимые элементы из 𝐾 являются частными примерами элементар-
ных преобразований.

Лемма 6.1

В области главных идеалов 𝐾 любую пару ненулевых элементов (𝑎, 𝑏), стоящих в одной строке
(соотв. в одном столбце) матрицы 𝐴 ∈ Mat𝑚×𝑛(𝐾), можно подходящим элементарным преоб-
разованием содержащих их столбцов (соотв. строк) заменить парой (𝑑, 0), где 𝑑 = нод(𝑎, 𝑏).

Доказательство. Запишем 𝑑 = нод(𝑎, 𝑏) как 𝑑 = 𝑎𝑥 + 𝑏𝑦, и пусть 𝑎 = 𝑑𝑎′, 𝑏 = 𝑑𝑏′. Тогда
𝑎′𝑥 + 𝑏′𝑦 = 1 и 𝑎′𝑏 − 𝑏′𝑎 = 0. Поэтому

(𝑎, 𝑏) ⋅ (
𝑥 −𝑏′

𝑦 𝑎′ ) = (𝑑, 0) и (
𝑥 𝑦

−𝑏′ 𝑎′) ⋅ (
𝑎
𝑏) = (

𝑑
0) ,

1См. прим. 5.15 на стр. 92.
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где det (
𝑥 −𝑏′

𝑦 𝑎′ ) = det (
𝑥 𝑦

−𝑏′ 𝑎′) = 1. □

Теорема 6.1

В области главных идеалов 𝐾 любая матрица 𝐴 ∈ Mat𝑚×𝑛(𝐾) конечным числом элементарных
преобразований строк и столбцов преобразуется в матрицу 𝐷𝐴 = (𝑑𝑖𝑗), у которой 𝑑𝑖𝑗 = 0 при
𝑖 ≠ 𝑗 и 𝑑𝑖𝑖 ∣ 𝑑𝑗𝑗 при 𝑖 < 𝑗, где мы считаем, что 𝑑 ∣ 0 для всех 𝑑 ∈ 𝐾, но 0 ∤ 𝑑 при 𝑑 ≠ 0.

Доказательство. Если 𝐴 = 0, то доказывать нечего. Если 𝐴 ≠ 0, то перестановками строк и
столбцов добьёмся, чтобы 𝑎11 ≠ 0. Если все элементы матрицы 𝐴 делятся на 𝑎11, то вычитая из
всех строк подходящие кратности первой строки, а из всех столбцов — подходящие кратности
первого столбца, добьёмся того, чтобы все элементы за исключением 𝑎11 в первом столбце и
первой строке занулились. При этом все элементы матрицы останутся делящимися на 𝑎11, и
можно заменить 𝐴 на матрицу размера (𝑚 − 1) × (𝑛 − 1), дополнительную к первой строке и
первому столбцу матрицы 𝐴, после чего повторить процедуру.

Пусть в матрице 𝐴 есть элемент 𝑎, не делящийся на 𝑎11, и 𝑑 = нод(𝑎, 𝑎11). Ниже мы пока-
жем, что в этом случае можно элементарными преобразованиями перейти к новой матрице 𝐴′

с 𝑎′
11 = 𝑑. Так как (𝑎11) ⊊ (𝑑), главный идеал, порождённый левым верхним угловым элемен-

том матрицы, при таком переходе строго увеличится. Поскольку в области главных идеалов не
существует бесконечно возрастающих цепочек строго вложенных друг в друга идеалов, после
конечного числа таких переходов мы получим матрицу, все элементы которой делятся на 𝑎11,
и к этой матрице будут применимы предыдущие рассуждения.

Если не делящийся на 𝑎11 элемент 𝑎 стоит в первой строке или первом столбце, достаточно
заменить пару (𝑎11, 𝑎) на (𝑑, 0) по лем. 6.1. Если все элементы первой строки и первого столб-
ца делятся на 𝑎11, а не делящийся на 𝑎11 элемент 𝑎 стоит строго ниже и правее 𝑎11, то мы, как
и выше, сначала занулим все элементы первой строки и первого столбца за исключением са-
мого 𝑎11, вычитая из всех строк подходящие кратности первой строки, а из всех столбцов —
подходящие кратности первого столбца. К элементу 𝑎 при этом будут добавляться числа, крат-
ные 𝑎11, и нод(𝑎, 𝑎11) не изменится. Далее, прибавим ту строку, где стоит 𝑎, к первой строке и
получим в ней копию элемента 𝑎. Наконец, заменим пару (𝑎11, 𝑎) на (𝑑, 0) по лем. 6.1. □

6.1.1. Инвариантные множители и нормальная форма Смита. Ниже, в n∘ 6.3.4 на стр. 118
мы покажем, что «диагональная» матрица 𝐷𝐴, в которой 𝑑𝑖𝑗 = 0 при 𝑖 ≠ 𝑗 и 𝑑𝑖𝑖 ∣ 𝑑𝑗𝑗 при 𝑖 < 𝑗,
с точностью до умножения её элементов на обратимые элементы из 𝐾 не зависит от выбора
последовательности элементарных преобразований, приводящих матрицу 𝐴 к такому виду. По
этой причине диагональные элементы 𝑑𝑖𝑖 матрицы 𝐷𝐴 называются инвариантными множите-
лями матрицы 𝐴, а сама диагональная матрица 𝐷𝐴 — нормальной формой Смита матрицы 𝐴.

Так как каждое элементарное преобразование строк (соотв. столбцов) матрицы 𝐴 является
результатом умножения матрицы 𝐴 слева (соотв. справа) на квадратную обратимую матрицу,
которая получается из единичной матрицы 𝐸 ровно тем же преобразованием, что совершается
в матрице 𝐴, мы заключаем, что 𝐷𝐴 = 𝐿𝐴𝑅, где 𝐿 = 𝐿𝓁 … 𝐿2𝐿1 и 𝑅 = 𝑅1𝑅2 …𝑅𝑟 — обратимые
матрицы размеров𝑚×𝑚 и 𝑛×𝑛, являющиеся произведениями обратимых матриц 𝐿𝑖 и 𝑅𝑗, осу-
ществляющих последовательные элементарные преобразования строк и столбцов матрицы 𝐴.
Мы будем называть 𝐿 и 𝑅 матрицами перехода от матрицы 𝐴 к её нормальной форме Смита.
Так как 𝐿 = 𝐿𝓁 … 𝐿1𝐸 и 𝑅 = 𝐸𝑅1 …𝑅𝑟, матрицы 𝐿 и 𝑅 получаются из единичных матриц раз-
меров 𝑚 × 𝑚 и 𝑛 × 𝑛 теми же цепочками элементарных преобразований строк и соответствен-
но столбцов, которые производились с матрицей 𝐴. Поэтому для явного отыскания матриц 𝐿
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и 𝑅 следует приписать к матрице 𝐴 ∈ Mat𝑚×𝑛(𝐾) справа и снизу единичные матрицы разме-
ров 𝑚 × 𝑚 и 𝑛 × 𝑛 так, что получится Г-образная таблица вида

𝐴 𝐸
𝐸 ,

и в процессе приведения матрицы 𝐴 к диагональному виду осуществлять элементарные преоб-
разования строк и столбцов сразу во всей Г-образной таблице. В результате на выходе получится
Г-образная таблица

𝐷𝐴 𝐿
𝑅 .

Пример 6.1

Вычислим нормальную форму Смита и матрицы перехода к ней для целочисленной матрицы

𝐴 =
⎛
⎜
⎜
⎜
⎝

−9 −18 15 −24 24
15 30 −27 42 −36
−6 −12 6 −12 24
31 62 −51 81 −87

⎞
⎟
⎟
⎟
⎠

∈ Mat4𝑥5(ℤ) .

Составляем Г-образную матрицу

𝐴 𝐸
𝐸 =

−9 −18 15 −24 24 1 0 0 0
15 30 −27 42 −36 0 1 0 0
−6 −12 6 −12 24 0 0 1 0
31 62 −51 81 −87 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

.Прибавим к 4-й строке третью, умноженную на 5 и переставим полученную строку наверх:

1 2 −21 21 33 0 0 5 1
−9 −18 15 −24 24 1 0 0 0
15 30 −27 42 −36 0 1 0 0
−6 −12 6 −12 24 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Теперь обнулим 1-ю строку и 1-й столбец левой матрицы вне левого верхнего угла, прибавив
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ко всем строкам и столбцам надлежащие кратности 1-й строки и 1-го столбца:

1 0 0 0 0 0 0 5 1
0 0 −174 165 321 1 0 45 9
0 0 288 −273 −531 0 1 −75 −15
0 0 −120 114 222 0 0 31 6
1 −2 21 −21 −33
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Делаем второй столбец пятым, а к 3-му столбцу прибавляем 4-й:

1 0 0 0 0 0 0 5 1
0 −9 165 321 0 1 0 45 9
0 15 −273 −531 0 0 1 −75 −15
0 −6 114 222 0 0 0 31 6
1 0 −21 −33 −2
0 0 0 0 1
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0

.

Вычитаем из 2-й строки 4-ю:

1 0 0 0 0 0 0 5 1
0 −3 51 99 0 1 0 14 3
0 15 −273 −531 0 0 1 −75 −15
0 −6 114 222 0 0 0 31 6
1 0 −21 −33 −2
0 0 0 0 1
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0

.

Все элементы 3× 4 матрицы, стоящей в строках со 2-й по 4-ю и столбцах со 2-го по 5-й, делятся
на 3. Поэтому мы обнуляем в этой матрице верхнюю строку и левый столбец, вычитая из 3-й
и 4-й строк подходящие кратности 2-й строки, а потом из 3-го и 4-го столбцов — подходящие
кратности 2-го:

1 0 0 0 0 0 0 5 1
0 −3 0 0 0 1 0 14 3
0 0 −18 −36 0 5 1 −5 0
0 0 12 24 0 −2 0 3 0
1 0 −21 −33 −2
0 0 0 0 1
0 1 17 33 0
0 1 18 33 0
0 0 0 1 0

.
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Теперь прибавляем к 3-й строке 4-ю:

1 0 0 0 0 0 0 5 1
0 −3 0 0 0 1 0 14 3
0 0 −6 −12 0 3 1 −2 0
0 0 12 24 0 −2 0 3 0
1 0 −21 −33 −2
0 0 0 0 1
0 1 17 33 0
0 1 18 33 0
0 0 0 1 0

и видим, что можно занулить все недиагональные элементы исходной матрицы, прибавляя к
4-й строке удвоенную 3-ю и вычитая из 4-го столбца удвоенный 3-й:

1 0 0 0 0 0 0 5 1
0 −3 0 0 0 1 0 14 3
0 0 −6 0 0 3 1 −2 0
0 0 0 0 0 4 2 −1 0
1 0 −21 9 −2
0 0 0 0 1
0 1 17 −1 0
0 1 18 −3 0
0 0 0 1 0

.

Таким образом, инвариантные множители матрицы 𝐴 суть 1, −3, −6, 0 и

𝐿 =
⎛
⎜
⎜
⎜
⎝

0 0 5 1
1 0 14 3
3 1 −2 0
4 2 −1 0

⎞
⎟
⎟
⎟
⎠

, 𝑅 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 −21 9 −2
0 0 0 0 1
0 1 17 −1 0
0 1 18 −3 0
0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐷𝐴 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0 0
0 −3 0 0 0
0 0 −6 0 0
0 0 0 0 0

⎞
⎟
⎟
⎟
⎠

.

Упражнение 6.2. Проверьте равенство 𝐿𝐴𝑅 = 𝐷𝐴 прямым вычислением.

6.1.2. Отыскание обратной матрицы. Пусть квадратная матрица 𝐴 ∈ Mat𝑛(𝐾) обратима.
Тогда и любая матрица вида 𝐵 = 𝐿𝐴𝑅, где 𝐿,𝑅 ∈ Mat𝑛(𝐾) обратимы, тоже обратима, ибо мат-
рица 𝑅−1𝐴−1𝐿−1 обратна к 𝐵. В частности, обратимы все матрицы, которые получаются из 𝐴
элементарными преобразованиями строк и столбцов, включая нормальную форму Смита 𝐷𝐴.

Упражнение 6.3. Убедитесь, что диагональная матрица обратима если и только если обрати-
мы все её диагональные элементы.

Таким образом, матрица 𝐴 обратима если и только если обратимы все её инвариантные мно-
жители, и в этом случае существуют такие обратимые матрицы 𝐿 = 𝐿𝓁 … 𝐿1 и 𝑅 = 𝑅1 …𝑅𝑟,
что 𝐿𝐴𝑅 = 𝐸. В этом случае 𝐴 = 𝐿−1𝐸𝑅−1 = 𝐿−1𝑅−1, откуда 𝐴−1 = 𝑅𝐿 = 𝑅𝐿𝐸, а 𝐸 = 𝑅𝐿𝐴, т. е.
умножение слева на матрицу 𝑅𝐿 = 𝑅1 …𝑅𝑟𝐿𝓁 … 𝐿1 задаёт цепочку элементарных преобразова-
ний строк, превращающую матрицу 𝐴 в матрицу 𝐸, а матрицу 𝐸 — в матрицу 𝐴−1.

Упражнение 6.4. Покажите, что элементарными преобразованиями строк матрицы 𝐴 можно
превратить любой её ненулевой столбец в столбец, единственным ненулевым элементом
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которого является нод элементов исходного столбца матрицы 𝐴, и если этот элемент необ-
ратим, то и матрица 𝐴 необратима.

Таким образом, чтобы выяснить, обратима ли 𝑛 × 𝑛 матрица 𝐴, и найти 𝐴−1, если 𝐴 обратима,
следует элементарными преобразованиями строк 𝑛×2𝑛 матрицы 𝐴 𝐸 попытаться получить
в левой половине матрицу𝐸, последовательно слева направо обнуляя в каждом столбце все эле-
менты, кроме одного. Если в ходе вычислений матрица𝐴 превратится в заведомо необратимую
матрицу1, то и сама матрица 𝐴 необратима. Ну а если удастся превратить матрицу 𝐴 в матри-
цу 𝐸, то на выходе получится матрица 𝐸 𝐵 , в которой 𝐵 = 𝐴−1.

Пример 6.2

Выясним, обратима ли в Mat4(ℤ) матрица

𝐴 =
⎛
⎜
⎜
⎜
⎝

1 −3 2 2
−3 9 −6 −5
−1 4 0 2
3 −7 11 12

⎞
⎟
⎟
⎟
⎠

.

Приписываем к ней справа единичную матрицу:

1 −3 2 2 1 0 0 0
−3 9 −6 −5 0 1 0 0
−1 4 0 2 0 0 1 0
3 −7 11 12 0 0 0 1

.

Обнуляем 1-й столбец вне левого верхнего угла, прибавляя ко всем строкам надлежащие крат-
ности 1-й строки:

1 −3 2 2 1 0 0 0
0 0 0 1 3 1 0 0
0 1 2 4 1 0 1 0
0 2 5 6 −3 0 0 1

.

Теперь обнуляем верхний и нижний элементы 2-го столбца, прибавляя к верхней и нижней
строкам надлежащие кратности 3-й строки, после чего переставляем 2-ю строку вниз:

1 0 8 14 4 0 3 0
0 1 2 4 1 0 1 0
0 0 1 −2 −5 0 −2 1
0 0 0 1 3 1 0 0

.

Обнуляем верхние два элемента 3-го столбца, прибавляя к верхним двум строкам надлежащие
кратности 3-й строки:

1 0 0 30 44 0 19 −8
0 1 0 8 11 0 5 −2
0 0 1 −2 −5 0 −2 1
0 0 0 1 3 1 0 0

.

1Что происходит, когда единственный ненулевой элемент столбца оказывается необратимым или
стоящим в одной строке с единственным ненулевым элементом одного из предыдущих столбцов.
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Наконец, обнуляем 4-й столбец над нижней единицей, прибавляя к верхним трём строкам над-
лежащие кратности 4-й строки:

1 0 0 0 −46 −30 19 −8
0 1 0 0 −13 −8 5 −2
0 0 1 0 1 2 −2 1
0 0 0 1 3 1 0 0

.

Таким образом, матрица 𝐴 обратима и

𝐴−1 =
⎛
⎜
⎜
⎜
⎝

−46 −30 19 −8
−13 −8 5 −2
1 2 −2 1
3 1 0 0

⎞
⎟
⎟
⎟
⎠

.

Упражнение 6.5. Проверьте прямым умножением двух матриц, что 𝐴𝐴−1 = 𝐸.

6.1.3. Решение систем линейных уравнений. Система линейных уравнений

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + … + 𝑎3𝑛𝑥𝑛 = 𝑏3

… … … … …
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

(6-1)

на неизвестные 𝑥1, … , 𝑥𝑛 в матричных обозначениях записывается одним равенством 𝐴𝑥 = 𝑏,
в котором 𝐴 = (𝑎𝑖𝑗) ∈ Mat𝑚×𝑛(𝐾), а 𝑥 и 𝑏 обозначают столбцы высоты 𝑛 и 𝑚, состоящие из
неизвестных и правых частей уравнений (6-1). Как и выше, обозначим через 𝐷𝐴 = 𝐿𝐴𝑅 нор-
мальную форму Смита матрицы 𝐴. Умножая равенство 𝐴𝑥 = 𝑏 слева на 𝐿 и полагая 𝑥 = 𝑅𝑦,
где 𝑦 = 𝑅−1𝑥 — новые переменные, получаем систему уравнений 𝐷𝐴𝑦 = 𝑐 на неизвестные 𝑦, в
которой 𝑐 = 𝐿𝑏 и матрица коэффициентов 𝐷𝐴 диагональна, и которая равносильна (6-1) в том
смысле, что между решениями обеих систем имеется𝐾-линейная биекция 𝑥 = 𝑅𝑦. В частности,
система 𝐷𝐴𝑦 = 𝑐 совместна если и только если совместна исходная система (6-1).

Уравнения системы𝐷𝐴𝑦 = 𝑐 имеют вид 𝑑𝑖𝑖𝑦𝑖 = 𝑐𝑖. Такое уравнение не имеет решений, если
и только если 𝑑𝑖𝑖 ∤ 𝑐𝑖. Если же 𝑑𝑖𝑖 ∣ 𝑐𝑖, то при 𝑑𝑖𝑖 = 𝑐𝑖 = 0 решениями уравнения являются все
числа 𝑦𝑖 ∈ 𝐾, а при 𝑑𝑖𝑖 ≠ 0 уравнение имеет единственное решение 𝑦𝑖 = 𝑐𝑖∕𝑑𝑖𝑖.

Пусть𝑑𝑖𝑖 ≠ 0при 𝑖 ⩽ 𝑟 и𝑑𝑗𝑗 = 0при 𝑗 > 𝑟. Мы заключаем, что система𝐷𝐴𝑦 = 𝑐 несовместна
если и только если 𝑑𝑖𝑖 ∤ 𝑐𝑖 хотя бы при одном 𝑖 ⩽ 𝑟 или 𝑐𝑗 ≠ 0 хотя бы при одном 𝑗 > 𝑟, и в этом
случае исходная система (6-1) тоже несовместна. Если же система 𝐷𝐴𝑦 = 𝑐 совместна, то её
решения имеют вид 𝑦 = 𝑤0 + 𝑤, где 𝑤0 = (𝑐1 ∕𝑑11, … , 𝑐𝑟 ∕𝑑𝑟𝑟, 0, … , 0)𝑡, а вектор 𝑤 ∈ 𝐾𝑛

пробегает свободный подмодуль ранга min(𝑚, 𝑛) − 𝑟 c базисом из векторов

𝑤𝑘 = (0, … , 0, 1, 0, … , 0)𝑡 , где 1 стоит на (𝑟 + 𝑘)-м месте,

и в этом случае все решения исходной системы (6-1) имеют вид 𝑥 = 𝑢0 + 𝑢, где 𝑢0 = 𝑅𝑤0, а
𝑢 ∈ 𝐾𝑛 пробегает свободный подмодуль ранга min(𝑚, 𝑛) − 𝑟 c базисом из векторов 𝑢𝑘 = 𝑅𝑤𝑘.

Отметим, что столбец 𝑐 = 𝐿𝑏 правых частей системы 𝐷𝐴𝑦 = 𝑐 получается из столбца 𝑏
правых частей исходной системы (6-1) теми же преобразованиями строк, что производятся с
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матрицей 𝐴 в процессе её приведения к виду 𝐷𝐴, а матрица 𝑅 получается из единичной матри-
цы 𝐸 теми же преобразованиями столбцов, что производятся с матрицей 𝐴 в том же процессе.
Поэтому для отыскания 𝑐 и 𝑅 можно составить Г-образную матрицу вида

𝐴 𝑏
𝐸 ,

приведести 𝐴 к нормальной форме Смита и получить на выходе

𝐷𝐴 𝑐
𝑅 .

Пример 6.3

Найдём все целые решения системы уравнений

⎧⎪
⎨
⎪⎩

−65𝑥1 − 156𝑥2 + 169𝑥3 + 104𝑥4 = 117
−143𝑥1 − 351𝑥2 + 364𝑥3 + 221𝑥4 = 195

52𝑥1 + 117𝑥2 − 143𝑥3 − 91𝑥4 = −156
(6-2)

Для этого составим Г-образную таблицу из матрицы коэффициентов при неизвестных, к кото-
рой справа приписана матрица правых частей уравнений, а снизу — единичная матрица:

−65 −156 169 104 117
−143 −351 364 221 195

52 117 −143 −91 −156
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Вычтем из 2-й строки 1-ю, умноженную на 2, и поменяем две верхние строки местами:

−13 −39 26 13 −39
−65 −156 169 104 117
52 117 −143 −91 −156
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Поскольку все элементы матрицы коэффициентов делятся на 13, зануляем в ней верхнюю стро-
ку и левый столбец, за исключением верхнего левого углового элемента, прибавляя ко 2-й и
3-й строкам надлежащие кратности 1-й строки, а ко 2-му, 3-му и 4-му столбцам — надлежащие
кратности 1-го столбца:

−13 0 0 0 −39
0 39 39 39 312
0 −39 −39 −39 −312
1 −3 2 1
0 1 0 0
0 0 1 0
0 0 0 1

.
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Прибавляем к 3-й строке 2-ю, после чего вычитаем 2-й столбец из 3-го и 4-го:

−13 0 0 0 −39
0 39 0 0 312
0 0 0 0 0
1 −3 5 4
0 1 −1 −1
0 0 1 0
0 0 0 1

.

Мы заключаем, что система (6-2) равносильна системе

{
−13𝑦1 = −39
39𝑦2 = 312

(6-3)

на четыре неизвестные 𝑦1, … , 𝑦4, через которые исходные неизвестные 𝑥1, … , 𝑥4 выражаются
по формуле:

⎛
⎜
⎜
⎜
⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1 −3 5 4
0 1 −1 −1
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞
⎟
⎟
⎟
⎠

. (6-4)

Все решения системы (6-3) описываются формулой:

(𝑦1, 𝑦2, 𝑦3, 𝑦4) = (3, 8, 𝑧1, 𝑧2) , где 𝑧1, 𝑧2 ∈ ℤ — любые.

Решения исходной системы получаются из них по формуле (6-4):

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (5𝑧1 + 4𝑧2 − 21, 8 − 𝑧1 − 𝑧2, 𝑧1, 𝑧2) , где 𝑧1, 𝑧2 ∈ ℤ — любые.

6.2. Инвариантные множители. Как мы видели в прим. 5.12 на стр. 88, произвольный 𝐾-мо-
дуль 𝑀, линейно порождённый над 𝐾 конечным набором векторов

𝒘 = (𝑤1, … ,𝑤𝑚) ,

представляет собою фактор 𝑀 ≃ 𝐾𝑚∕𝑅𝒘 свободного координатного модуля 𝐾𝑚 по подмодулю
𝑅𝒘 ⊂ 𝐾𝑚 линейных соотношений между порождающими векторами 𝒘. Подмодуль 𝑅𝒘 состо-
ит из всех таких строк (𝑥1, … , 𝑥𝑚) ∈ 𝐾𝑚, что 𝑥1𝑤1 + … + 𝑥𝑚𝑤𝑚 = 0 в 𝑀, и является ядром
эпиморфизма

𝜋𝒘 ∶ 𝐾𝑚 ↠ 𝑀 , (𝑥1, … , 𝑥𝑚) ↦ 𝑥1𝑤1 + … + 𝑥𝑚𝑤𝑚 . (6-5)

Теорема 6.2

Каждый подмодуль 𝑁 в свободном модуле 𝐹 конечного ранга над областью главных идеалов 𝐾
тоже свободен, и rk𝑁 ⩽ rk𝐹.

Доказательство. Индукция по 𝑚 = rk𝐹. При 𝑚 = 1 модуль 𝑁 ≃ 𝐾, и каждый ненулевой под-
модуль 𝑁 ⊂ 𝐾 представляет собою главный идеал (𝑑) ⊂ 𝐾, который является свободным 𝐾-
модулем ранга 1 с базисом 𝑑. Пусть теперь 𝑚 > 1. Зафиксируем в 𝐹 базис 𝑒1, … , 𝑒𝑚 и будем за-
писывать векторы из 𝑁 строками их координат в этом базисе. Первые координаты всевозмож-
ных векторов 𝑣 ∈ 𝑁 образуют идеал (𝑑) ⊂ 𝐾. Если 𝑑 = 0, подмодуль 𝑁 содержится в свободном
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модуле ранга𝑚−1 с базисом 𝑒2, … , 𝑒𝑚. По индукции, такой модуль𝑁 свободен и rk𝑁 ⩽ (𝑚−1).
Если𝑑 ≠ 0, обозначим через𝑢 ∈ 𝑁 какой-нибудь вектор с первой координатой𝑑. Порождённый
вектором 𝑢 модуль 𝐾𝑢 свободен ранга 1, поскольку равенство 𝑥𝑢 = 0 влечёт равенство 𝑥𝑑 = 0,
возможное в целостном кольце 𝐾 только при 𝑥 = 0. Покажем, что 𝑁 = 𝐾𝑢 ⊕ 𝑁′, где 𝑁′ ⊂ 𝑁 —
подмодуль, состоящий из векторов с нулевой первой координатой. Очевидно, что 𝐾𝑢 ∩𝑁′ = 0.
Если первая координата вектора 𝑣 ∈ 𝑁 равна 𝑥𝑑, то 𝑣 = 𝑥𝑢 + 𝑤, где 𝑤 = 𝑣 − 𝑥𝑢 ∈ 𝑁′. Поэто-
му 𝑁 = 𝐾𝑢 + 𝑁′, и 𝑁 = 𝐾𝑢 ⊕ 𝑁′ по предл. 5.2 на стр. 85. Модуль 𝑁′ содержится в свободном
модуле ранга 𝑚 − 1 с базисом 𝑒2, … , 𝑒𝑚. По индукции он свободен и rk𝑁′ ⩽ (𝑚 − 1). Поэтому
𝑁 = 𝐾𝑢 ⊕ 𝑁′ тоже свободен и rk𝑁 = 1 + rk𝑁′ ⩽ 𝑚. □

Пример 6.4 (качественный анализ систем линейных уравнений)

Каждая матрица 𝐴 ∈ Mat𝑚×𝑛(𝐾) задаёт 𝐾-линейное отображение 𝐹𝐴 ∶ 𝐾𝑛 → 𝐾𝑚, 𝑥 ↦ 𝐴𝑥, пе-
реводящее стандартные базисные векторы 𝑒1, … , 𝑒𝑛 ∈ 𝐾𝑛 в столбцы матрицы 𝐴. Множество
решений системы линейных уравнений 𝐴𝑥 = 𝑏 является полным прообразом 𝐹−1(𝑏) данного
вектора 𝑏 ∈ 𝐾𝑚 при отображении 𝐹𝐴. Если 𝑏 ∉ im𝐹𝐴, то этот прообраз пуст и система 𝐴𝑥 = 𝑏
несовместна. Если 𝑏 ∈ im𝐹𝐴, то𝐹−1

𝐴 (𝑏) = 𝑤+ker𝐹𝐴 представляет собою сдвиг свободного моду-
ля ker𝐹𝐴 ⊂ 𝐾𝑛 на такой вектор 𝑤 ∈ 𝐾𝑛, что 𝐹(𝑤) = 𝑏. На языке уравнений ядро ker𝐹𝐴 является
множеством решений системы однородных линейных уравнений 𝐴𝑥 = 0 с теми же самыми ле-
выми частями, что и система 𝐴𝑥 = 𝑏. Наличие у такой системы ненулевого решения означает,
что ker𝐹𝐴 ≠ 0, и в этом случае любая система 𝐴𝑥 = 𝑏 либо несовместна, либо множество её
решений является сдвигом свободного модуля положительного ранга, что согласуется с n∘ 6.1.3
на стр. 108.

Теорема 6.3 (теорема о взаимном базисе)

Пусть 𝐹 — свободный модуль ранга 𝑚 над областью главных идеалов 𝐾, и 𝑁 ⊂ 𝐹 — произволь-
ный его подмодуль. Тогда в модуле 𝐹 существует такой базис 𝒆 = (𝑒1, … , 𝑒𝑚), что подходящие
кратности 𝜆1𝑒1, … , 𝜆𝑛𝑒𝑛 первых 𝑛 = rk𝑁 его базисных векторов составляют базис в 𝑁 и 𝜆𝑖 ∣ 𝜆𝑗
при 𝑖 < 𝑗.

Доказательство. Зафиксируем произвольные базисы 𝒘 = (𝑤1, … ,𝑤𝑚) в 𝐹 и 𝒖 = 𝒘𝐶𝒘𝒖 в 𝑁.
Последний существует по теор. 6.2 и состоит из 𝑛 ⩽ 𝑚 векторов. Обозначим через 𝐷 = 𝐿𝐶𝒘𝒖𝑅
нормальную форму Смита матрицы перехода 𝐶𝒘𝒖. Поскольку матрицы 𝐿 и 𝑅 обратимы, набор
векторов 𝒆 = 𝒘𝐿−1 является базисом в 𝐹, а набор векторов 𝒗 = 𝒖𝑅 — базисом в 𝑁. Так как

𝒗 = 𝒖𝑅 = 𝒘𝐶𝒘𝒖𝑅 = 𝒆 𝐿𝐶𝒘𝒖𝑅 = 𝒆𝐷

векторы 𝑣𝑖 = 𝑑𝑖𝑖𝑒𝑖 базиса 𝒗 имеют предписанный теоремой вид, в котором 𝜆𝑖 = 𝑑𝑖𝑖 суть инва-
риантные множители матрицы 𝐶𝒘𝒖. □

Определение 6.1

Множители 𝜆1, … , 𝜆𝑛 из теор. 6.3 называются инвариантными множителями подмодуля 𝑁 в
свободном модуле 𝐹, а построенные в теор. 6.3 базисы 𝑒1, … , 𝑒𝑚 в 𝐹 и 𝜆1𝑒1, … , 𝜆𝑛𝑒𝑛 в 𝑁 на-
зываются взаимными базисами свободного модуля 𝐹 и его подмодуля 𝑁. В n∘ 6.3.4 на стр. 118
ниже мы покажем, что множители 𝜆𝑖 не зависят от выбора взаимных базисов, что оправдывает
эпитет «инвариантные» в их названии.
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Пример 6.5

Построим взаимные базисы целочисленной решётки ℤ3 и её подрешётки 𝐿 ⊂ ℤ3, порождённой
столбцами матрицы

𝐴 =
⎛
⎜
⎜
⎝

126 51 72 33
30 15 18 9
60 30 36 18

⎞
⎟
⎟
⎠

. (6-6)

Обозначим через 𝒆 = (𝑒1, 𝑒2, 𝑒3) стандартный базис в ℤ3. По условию, столбцы матрицы 𝐴, т. е.
векторы 𝒂 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝒆𝐴 порождают решётку 𝐿. Пусть 𝐷𝐴 = 𝐿𝐴𝑅 — нормальная фор-
ма Смита матрицы 𝐴. Тогда векторы 𝒘 = 𝒂𝑅 = 𝒆𝐴𝑅 тоже порождают 𝐿, поскольку образую-
щие 𝒂 = 𝒘𝑅−1 линейно через них выражаются. По предл. 5.6 на стр. 97 векторы 𝒖 = 𝒆 𝐿−1

составляют базис в ℤ3, так как матрица перехода от них к стандартному базису обратима. При
этом 𝒆 = 𝒖𝐿. В силу равенств 𝒘 = 𝒆𝐴𝑅 = 𝒖𝐿𝐴𝑅 = 𝒖𝐷𝐴, образующие 𝑤𝑖 = 𝑑𝑖𝑖𝑢𝑖 пропорцио-
нальны базисным векторам 𝑢𝑖. Поэтому взаимные базисы в ℤ3 и 𝐿 состоят из векторов 𝒖, т. е.
столбцов матрицы 𝐿−1, и векторов𝑤𝑖 = 𝑑𝑖𝑖𝑢𝑖 с ненулевыми𝑑𝑖𝑖. Для их отыскания приведём мат-
рицу 𝐴 к нормальной форме Смита. Так как матрица 𝑅 нас сейчас не интересует, в вычислении
из прим. 6.1 на стр. 104 можно ограничиться только верхней частью Г-образной таблицы:

𝐴 𝐸 =
126 51 72 33 1 0 0
30 15 18 9 0 1 0
60 30 36 18 0 0 1

.

Отнимаем из первой строки удвоенную третью:

6 −9 0 −3 1 0 −2
30 15 18 9 0 1 0
60 30 36 18 0 0 1

и делаем четвёртый столбец первым:

−3 6 −9 0 1 0 −2
9 30 15 18 0 1 0
18 60 30 36 0 0 1

.

Так как все элементы левой матрицы делятся на 3, зануляем в ней 1-ю строку и 1-й столбец вне
левого верхнего угла:

−3 0 0 0 1 0 −2
0 48 −12 18 3 1 −6
0 96 −24 36 6 0 −11

.

Теперь зануляем 3-ю строку, отнимая из неё удвоенную 2-ю:

−3 0 0 0 1 0 −2
0 48 −12 18 3 1 −6
0 0 0 0 0 −2 1

.

Прибавляем к 3-му столбцу 4-й и переставляем результат во 2-й столбец:

−3 0 0 0 1 0 −2
0 6 48 18 3 1 −6
0 0 0 0 0 −2 1

.
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Отнимаем из 3-го и 4-го столбцов 2-й, умноженный на 8 и на 3, меняем знак в первой строке и
получаем окончательно:

𝐷𝐴 𝐿 =
3 0 0 0 −1 0 2
0 6 0 0 3 1 −6
0 0 0 0 0 −2 1

.

Из проделанного вычисления уже видно, что 𝐿 ≃ ℤ2, а ℤ3∕𝐿 ≃ ℤ∕(3) ⊕ℤ∕(6) ⊕ℤ. Для отыскания
матрицы 𝐿−1 действуем как в прим. 6.2 на стр. 107: приписываем к 𝐿 единичную матрицу

𝐿 =
−1 0 2 1 0 0
3 1 −6 0 1 0
0 −2 1 0 0 1

,

прибавляем ко 2-й строке утроенную 1-ю:

−1 0 2 1 0 0
0 1 0 3 1 0
0 −2 1 0 0 1

,

затем прибавляем к 3-й строке удвоенную 2-ю:

−1 0 2 1 0 0
0 1 0 3 1 0
0 0 1 6 2 1

,

наконец, отнимаем из 1-й строки удвоенную 3-ю, меняем в ней знак и получаем

𝐿−1 =
⎛
⎜
⎜
⎝

11 4 2
3 1 0
6 2 1

⎞
⎟
⎟
⎠

.

Таким образом, взаимные базисы решётки ℤ3 и её подрешётки 𝐿 состоят из векторов

𝑢1 = (11, 3, 6) , 𝑢2 = (4, 1, 2) , 𝑢3 = (2, 0, 1)

и векторов 𝑤1 = 3𝑢1 = (33, 9, 18), 𝑤2 = 6𝑢2 = (24, 6, 12).

Упражнение 6.6. Выразите последние два вектора через столбцы матрицы (6-6).

6.3. Элементарные делители. Зафиксируем в каждом классе ассоциированных простых эле-
ментов кольца𝐾 какого-нибудь представителя и обозначим множество всех этих попарно неас-
социированных представителей через 𝑃(𝐾). Как и ранее, будем обозначать через 𝜈𝑝(𝑚) показа-
тель, с которым 𝑝 ∈ 𝑃(𝐾) входит в разложение элемента 𝑚 ∈ 𝐾 на простые множители. Сопо-
ставим каждому упорядоченному набору необратимых чисел

𝜆1, … , 𝜆𝑛 ∈ 𝐾 , где 𝜆𝑖 ∣ 𝜆𝑗 при 𝑖 < 𝑗, (6-7)

неупорядоченное дизъюнктное объединение по всем 𝑖 = 1, … , 𝑛 степеней 𝑝𝜈𝑝(𝜆𝑖) с ненулевыми
показателями 𝜈𝑝(𝜆𝑖). Иначе говоря, рассмотрим для каждого 𝑖 = 1, … , 𝑛 разложение на про-

стые множители 𝜆𝑖 = ∏𝑝∈𝑃(𝐾) 𝑝𝜈𝑝(𝜆𝑖) и соберём все участвующие в этих разложениях сомножи-
тели 𝑝𝜈 с 𝜈 > 0 в одно неупорядоченное множество, где каждая степень 𝑝𝜈, присутствующая
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в разложении ровно 𝑘 чисел 𝜆𝑖, тоже присутствует ровно 𝑘 раз. Получающееся таким образом
неупорядоченное множество (возможно повторяющихся) степеней 𝑝𝜈 называется набором эле-
ментарных делителей упорядоченного набора (6-7).

Лемма 6.2

Описанная выше процедура устанавливает биекцию между рассматриваемыми с точностью до
умножения каждого элемента на обратимое число из 𝐾 упорядоченными наборами необрати-
мых чисел 𝜆1, … , 𝜆𝑛 ∈ 𝐾, в которых 𝜆𝑖 ∣ 𝜆𝑗 при 𝑖 < 𝑗, и всевозможными неупорядоченными
наборами степеней 𝑝𝜈, где 𝑝 ∈ 𝑃(𝐾), 𝑛 ∈ ℕ, элементы в которых могут повторяться.

Доказательство. Набор 𝜆1, … , 𝜆𝑛 однозначно восстанавливается по своему набору элементар-
ных делителей следующим образом. Расставим элементарные делители в клетки диаграммы
Юнга так, чтобы в первой строке шли в порядке нестрого убывания степени того 𝑝 ∈ 𝑃(𝐾),
степеней которого в наборе элементарных делителей имеется больше всего. Во вторую строку
поместим в порядке нестрого убывания степени простого числа, следующего за 𝑝 по общему
количеству вхождений его степеней в набор элементарных делителей и т. д. Поскольку 𝜆𝑛 де-
лится на все остальные 𝜆𝑖, в его разложение на простые множители входят все встречающиеся
среди элементарных делителей простые основания, причём каждое из них — с максимально
возможным показателем. Таким образом, 𝜆𝑛 является произведением всех элементарных дели-
телей, стоящих в первом столбце построенной диаграммы Юнга. По индукции мы заключаем,
что произведения элементарных делителей по столбцам диаграммы, перебираемым слева на-
право, суть 𝜆𝑛, … , 𝜆1, т. е. прочитанный справа налево набор (6-7). □

Пример 6.6

Набор элементарных делителей

32 32 3 3 3
23 23 22 2
72 7 7
5 5

возникает из множителей 𝜆1 = 3, 𝜆2 = 3 ⋅ 2, 𝜆3 = 3 ⋅ 22 ⋅ 7, 𝜆4 = 32 ⋅ 23 ⋅ 7 ⋅ 5, 𝜆5 = 32 ⋅ 23 ⋅ 72 ⋅ 5.

Теорема 6.4 (теорема об элементарных делителях)

Всякий конечно порождённый модуль над областью главных идеалов 𝐾 изоморфен

𝐾𝑛0 ⊕ 𝐾
(𝑝𝑛11 )

⊕ … ⊕ 𝐾
(𝑝𝑛𝛼𝛼 )

(6-8)

где 𝑛𝜈 ∈ ℕ, все 𝑝𝜈 ∈ 𝐾 просты, и слагаемые в прямой сумме могут повторяться. Два модуля

𝐾𝑛0 ⊕ 𝐾
(𝑝𝑛11 )

⊕ … ⊕ 𝐾
(𝑝𝑛𝛼𝛼 )

и 𝐾𝑚0 ⊕ 𝐾
(𝑞𝑚1

1 )
⊕ … ⊕ 𝐾

(𝑞
𝑚𝛽
𝛽 )

изоморфны если и только если 𝑛0 = 𝑚0, 𝛼 = 𝛽 и слагаемые можно перенумеровать так, чтобы
𝑛𝜈 = 𝑚𝜈 и 𝑝𝜈 = 𝑠𝜈𝑞𝜈, где все 𝑠𝜈 ∈ 𝐾 обратимы.

Определение 6.2

Набор (возможно повторяющихся) степеней 𝑝𝑛𝑖𝑖 , по которым происходит факторизация в (6-8),
называется набором элементарных делителей модуля (6-8).
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Доказательство cуществования разложения (6-8). Пусть 𝐾-модуль 𝑀 порождается векторами

𝑤1, … ,𝑤𝑚 .

Тогда 𝑀 = 𝐾𝑚∕𝑅, где 𝑅 — ядро эпиморфизма 𝐾𝑚 ↠ 𝑀, переводящего стандартные базисные
векторы 𝑒𝑖 ∈ 𝐾𝑚 в образующие 𝑤𝑖 ∈ 𝑀, как в форм. (6-5) на стр. 110. По теор. 6.3 в 𝐾𝑚 су-
ществует такой базис 𝑢1, … , 𝑢𝑚, что некоторые кратности 𝜆1𝑢1, … , 𝜆𝑘𝑢𝑘 первых 𝐾 базисных
векторов составляют базис в 𝑅. Таким образом, 𝑀 = 𝐾𝑚∕𝑅 = 𝐾∕(𝜆1) ⊕ … ⊕ 𝐾∕(𝜆𝑘) ⊕ 𝐾𝑚−𝑘.
Если 𝑖-й инвариантный множитель 𝜆𝑖 обратим, то отвечающее ему слагаемое 𝐾∕(𝜆𝑖) = 𝐾∕𝐾
нулевое. Если 𝜆𝑖 необратим, то 𝜆𝑖 = 𝑝𝑚1

1 … 𝑝𝑚𝑠𝑠 , где 𝑝𝑗 ∈ 𝐾 — попарно не ассоциированные про-

стые элементы, и по китайской теореме об остатках 𝐾∕(𝜆𝑖) = 𝐾∕(𝑝𝑚1
1 ) ⊕ … ⊕ 𝐾∕(𝑝𝑚𝑠𝑠 ), что и

даёт разложение (6-8). □
Чтобы установить единственность разложения (6-8) для заданного 𝐾-модуля 𝑀, мы дадим

инвариантное описание его ингредиентов во внутренних терминах модуля 𝑀. Этому посвяще-
ны идущие ниже разделы n∘ 6.3.1 – n∘ 6.3.3. Далее, в n∘ 6.3.4 мы установим обещанные ранее
независимость инвариантных множителей матрицы 𝐴 от способа её приведения к нормальной
форме Смита 𝐷𝐴 и независимость инвариантных множителей подмодуля 𝑁 ⊂ 𝐹 в свободном
модуле 𝐹 от выбора взаимных базисов в 𝐹 и 𝑁.

6.3.1. Отщепление кручения. Вектор𝑤 из модуля𝑀 над целостным1 кольцом𝐾 называет-
ся элементом кручения, если 𝑥𝑤 = 0 для какого-нибудь ненулевого 𝑥 ∈ 𝐾. Например, любой
класс [𝑘]𝑛 ∈ ℤ∕(𝑛) является элементом кручения в ℤ-модуле ℤ∕(𝑛), так как 𝑛[𝑘]𝑛 = [𝑛𝑘]𝑛 = [0]𝑛.
В общем случае элементы кручения составляют подмодуль в 𝑀, который обозначается

Tors𝑀 ≝ {𝑤 ∈ 𝑀 | ∃ 𝑥 ≠ 0∶ 𝑥𝑚 = 0 } (6-9)

и называется подмодулем кручения в 𝑀.

Упражнение 6.7. Убедитесь в том, что Tors𝑀 действительно является подмодулем в 𝑀.

Если Tors𝑀 = 0, то говорят, что модуль 𝑀 не имеет кручения. Например, любой идеал целост-
ного кольца𝐾 и любой подмодуль в координатном модуле𝐾𝑛 над таким кольцом не имеют кру-
чения. Если Tors𝑀 = 𝑀, то 𝑀 называется модулем кручения. Например, фактор 𝐾∕𝐼 по любому
ненулевому идеалу 𝐼 ⊂ 𝐾 является𝐾-модулем кручения, поскольку для любого класса [𝑎] ∈ 𝐾∕𝐼
и любого ненулегого 𝑥 ∈ 𝐼 класс 𝑥[𝑎] = [𝑥𝑎] = [0], так как 𝑥𝑎 ∈ 𝐼.
Предложение 6.1

Для любого модуля 𝑀 над целостным кольцом 𝐾 фактормодуль 𝑀∕Tors(𝑀) не имеет кручения.
Если подмодуль 𝑁 ⊂ 𝑀 таков, что Tors(𝑀∕𝑁) = 0, то Tors(𝑀) ⊂ 𝑁.

Доказательство. При ненулевом 𝑥 ∈ 𝐾 равенство 𝑥[𝑤] = [𝑥𝑤] = [0] в 𝑀∕Tors(𝑀) означает, что
𝑥𝑤 ∈ Tors(𝑀), т. е. 𝑦𝑥𝑤 = 0 для некоторого ненулевого 𝑦 ∈ 𝐾. Так как в 𝐾 нет делителей нуля,
𝑥𝑦 ≠ 0 и 𝑤 ∈ Tors(𝑀), т. е. [𝑤] = [0]. Это доказывает первое утверждение. Для доказательства
второго заметим, что если𝑤 ∈ Tors(𝑀) −𝑁, то класс [𝑤] ∈ 𝑀∕𝑁 является ненулевым элементом
кручения. □

Теорема 6.5

Всякий конечно порождённый модуль𝑀 над областью главных идеалов𝐾 является прямой сум-
мой свободного модуля и подмодуля кручения. В частности, любой модуль без кручения авто-
матически свободен.

1См. n∘ 1.4.1 на стр. 28.
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Доказательство. По уже доказанному𝑀 ≃ 𝐾𝑛0 ⊕𝐾∕(𝑝𝑛11 )⊕…⊕𝐾∕(𝑝𝑛𝛼𝛼 ), где первое слагаемое
свободно от кручения, а сумма остальных𝑁 = 𝐾∕(𝑝𝑛11 )⊕…⊕𝐾∕(𝑝𝑛𝛼𝛼 ) является модулем кручения,
и тем самым содержится в Tors(𝑀). Так как 𝑀∕𝑁 ≃ 𝐾𝑛0 не имеет кручения, Tors(𝑀) ⊂ 𝑁 по
предл. 6.1. Тем самым, Tors(𝑀) = 𝑁, 𝑀 = 𝐾𝑛0 ⊕ Tors(𝑀) и 𝑀∕Tors(𝑀) ≃ 𝐾𝑛0 . □

Следствие 6.1 (из существования разложения из теор. 6.5)

В форм. (6-8) на стр. 114 сумма 𝐾∕(𝑝𝑛11 ) ⊕ … ⊕ 𝐾∕(𝑝𝑛𝛼𝛼 ) = Tors(𝑀) и число 𝑛0, равное рангу
свободного модуля 𝑀∕Tors(𝑀), не зависят от выбора разложения (6-8). □

6.3.2. Отщепление 𝒑-кручения. Для каждого простого 𝑝 ∈ 𝑃(𝐾) назовём подмодуль

Tors𝑝(𝑀) ≝ {𝑤 ∈ 𝑀 | ∃ 𝑘 ∈ ℕ∶ 𝑝𝑘𝑤 = 0}

подмодулем 𝑝-кручения в 𝑀, а его элементы — элементами 𝑝-кручения.

Упражнение 6.8. Убедитесь, что Tors𝑝(𝑀) действительно является подмодулем в𝑀 и докажите
для него аналог предл. 6.1: фактор 𝑀 ∕ Tors𝑝(𝑀) не имеет 𝑝-кручения, и если подмодуль
𝑁 ⊂ 𝑀 таков, что Tors𝑝(𝑀∕𝑁) = 0, то Tors𝑝(𝑀) ⊂ 𝑁.

Теорема 6.6

Всякий конечно порождённый модуль кручения 𝑀 = Tors(𝑀) над областью главных идеалов 𝐾
является прямой суммой своих подмодулей 𝑝-кручения: 𝑀 = ⨁𝑝 Tors𝑝(𝑀), где сумма берётся
по всем таким 𝑝 ∈ 𝑃(𝐾), что Tors𝑝(𝑀) ≠ 0. При этом каждый конечно порождённый модуль 𝑝-
кручения имеет вид 𝐾∕(𝑝𝜈1) ⊕ … ⊕ 𝐾∕(𝑝𝜈𝑘), где 𝜈1, … , 𝜈𝑘 ∈ ℕ.

Доказательство. Если простое 𝑞 ∈ 𝐾 не ассоциировано с 𝑝, то нод(𝑝𝑘, 𝑞𝑚) = 1 для всех 𝑘,𝑚, и
класс [𝑝𝑘] обратим в факторкольце 𝐾∕(𝑞𝑚). Поэтому гомоморфизм умножения на 𝑝𝑘:

𝐾∕(𝑞𝑚) → 𝐾∕(𝑞𝑚) , 𝑥 ↦ 𝑝𝑘𝑥 ,

биективен и, в частности, не имеет ядра. Напротив, модуль 𝐾∕(𝑝𝜈) аннулируется умножением
на 𝑝𝜈. Тем самым, в разложении из форм. (6-8) на стр. 114

𝑀 = Tors(𝑀) = (
𝐾

(𝑝𝜈1 ) ⊕ … ⊕ 𝐾
(𝑝𝜈𝑘 ) ) ⊕ (⨁𝑞≠𝑝( 𝐾

(𝑞𝜇𝑞,1 ) ⊕ … ⊕ 𝐾
(𝑞𝜇𝑞,𝑚𝑞 ) ))

слагаемое в левых скобках содержится в Tors𝑝(𝑀), а фактор по нему, изоморфный сумме в пра-
вых скобках, не имеет 𝑝-кручения. Поэтому Tors𝑝(𝑀) совпадает с левым слагаемым,𝑀∕Tors𝑝(𝑀)
изоморфен правому слагаемому, и 𝑀 ≃ Tors𝑝(𝑀) ⊕ (𝑀∕Tors𝑝(𝑀)). □

Следствие 6.2 (из существования разложения из теор. 6.6)

В форм. (6-8) на стр. 114 сумма всех подмодулей 𝐾∕(𝑝𝜈) с заданным 𝑝 ∈ 𝑃(𝐾) является подмо-
дулем 𝑝-кручения в 𝑀 и не зависит от выбора разложения (6-8). □

6.3.3. Инвариантность показателей 𝒑-кручения. Согласно теор. 6.6 каждый конечно по-
рождённый модуль 𝑝-кручения 𝑀 над областью главных идеалов 𝐾 имеет вид

𝑀 = 𝐾
(𝑝𝜈1) ⊕ … ⊕ 𝐾

(𝑝𝜈𝑛) . (6-10)

Упорядоченные по нестрогому убыванию натуральные числа 𝜈1 ⩾ 𝜈2 ⩾ … ⩾ 𝜈𝑛 называются
показателями 𝑝-кручения модуля 𝑀. Они образуют диаграмму Юнга 𝜈 = 𝜈(𝑀) = (𝜈1, … , 𝜈𝑛),
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которая называется цикловым типом модуля 𝑝-кручения 𝑀. Для завершения доказательства
теор. 6.4 остаётся проверить, что цикловой тип зависит только от модуля 𝑀, а не от выбора
конкретного разложения (6-10). Для этого рассмотрим гомоморфизм умножения на 𝑝

𝜑∶ 𝑀 → 𝑀 , 𝑤 ↦ 𝑝𝑤
и обозначим через 𝜑𝑘 = 𝜑 ∘ … ∘ 𝜑∶ 𝑤 ↦ 𝑝𝑘𝑤 его 𝑘-кратную итерацию, считая, что 𝜑0 = Id𝑀.
Очевидно, что ker𝜑𝑘 ⊆ ker𝜑𝑘+1 при всех 𝑘, и ker𝜑𝑘 = 𝑀 при 𝑘 ⩾ 𝜈1, но ker𝜑𝑘 ≠ 𝑀 при 𝑘 < 𝜈1.
Таким образом, мы имеем конечную цепочку возрастающих подмодулей

0 = ker𝜑0 ⊆ ker𝜑1 ⊆ … ⊆ ker𝜑𝜈1−1 ⊊ ker𝜑𝜈1 = 𝑀 , (6-11)

которая зависит только от модуля 𝑀. В частности, 𝜈1 зависит только от 𝑀.

Лемма 6.3

Для каждого 𝑘 = 1, … , 𝜈1 фактормодуль ker𝜑𝑘∕ker𝜑𝑘−1 является векторным пространством
над полем 𝕜 = 𝐾∕(𝑝) размерности, равной высоте 𝑘-го столбца диаграммы Юнга 𝜈(𝑀).

Доказательство. Зададим умножение класса [𝑥] ∈ 𝐾∕(𝑝) на класс [𝑤] ∈ ker𝜑𝑘∕ker𝜑𝑘−1 пра-
вилом [𝑥][𝑧] ≝ [𝑥𝑧]. Оно корректно, поскольку для 𝑥′ = 𝑥 + 𝑝𝑦 и 𝑤′ = 𝑤 + 𝑢, где 𝑝𝑘−1𝑢 = 0,
имеем 𝑥′𝑤′ = 𝑥𝑤 + (𝑥 + 𝑝𝑦)𝑢 + 𝑝𝑦𝑤, где 𝑝𝑘−1((𝑥 + 𝑝𝑦) 𝑢 + 𝑝𝑦𝑤) = 0, так как 𝑝𝑘−1𝑢 = 0
и 𝑝𝑘𝑤 = 0. Аксиомы дистрибутивности и ассоциативности очевидно выполняются. Это дока-
зывает первое утверждение. Для доказательства второго рассмотрим произвольное разложе-
ние (6-10). Гомоморфизм 𝜑 переводит каждое слагаемое этого разложения в себя. Обозначим
через 𝜑𝑖 = 𝜑|𝐾∕(𝑝𝜈𝑖 ) ограничение 𝜑 на 𝑖-е слагаемое 𝐾∕(𝑝𝜈𝑖) разложения (6-10). Фактор модуль

ker𝜑𝑘∕ker𝜑𝑘−1 изоморфен прямой сумме фактормодулей ker𝜑𝑘𝑖 ∕ker𝜑𝑘−1
𝑖 .

Упражнение 6.9. Убедитесь, что при каждом 𝑖 для каждого 𝑘 = 1, … , 𝜈𝑖 отображение

𝐾∕(𝑝) → ker𝜑𝑘𝑖 ∕ker𝜑𝑘−1
𝑖 , 𝑥 (mod 𝑝) ↦ 𝑝𝜈𝑖−𝑘𝑥 (mod ker𝜑𝑘−1

𝑖 ) ,

корректно определено, 𝕜-линейно и биективно.

Таким образом, на каждом слагаемом разложения (6-10) цепочка ядер (6-11) имеет вид

0 = ker𝜑0𝑖 ⊊ ker𝜑1𝑖 ⊊ … ⊊ ker𝜑𝜈𝑖−1𝑖 ⊊ ker𝜑𝜈𝑖 = 𝐾∕(𝑝𝜈𝑖𝑖 ) ,

и каждый из её факторов ker𝜑𝑘𝑖∕ker𝜑𝑘−1
𝑖 при𝑘 = 1, … , 𝜈𝑖 является одномерным векторным про-

странством над полем𝕜 = 𝐾∕(𝑝), а во всём модуле (6-10) пространство ker𝜑𝑘∕ker𝜑𝑘−1 является
прямой суммой этих одномерных пространств в количестве, равном числу строк диаграммы 𝜈,
длина которых не меньше 𝑘, т. е. длине 𝑘-го столбца диаграммы 𝜈. □
На этом доказательство теоремы об элементарных делителях заканчивается.

Следствие 6.3 (теорема об инвариантных множителях)

Всякий конечно порождённый модуль над областью главных идеалов 𝐾 изоморфен

𝐾𝑛0 ⊕ 𝐾
(𝜆1)

⊕ … ⊕ 𝐾
(𝜆𝑔)

(6-12)

где 𝑛0,𝑔 — целые неотрицательные, а 𝜆1, … , 𝜆𝑔 ∈ 𝐾 — такие ненулевые необратимые элемен-
ты, что 𝜆𝑖 ∣ 𝜆𝑗 при 𝑖 < 𝑗. Два таких модуля

𝐾𝑛0 ⊕ 𝐾
(𝜆1)

⊕ … ⊕ 𝐾
(𝜆𝑔)

и 𝐾𝑚0 ⊕ 𝐾
(𝜇1)

⊕ … ⊕ 𝐾
(𝜇ℎ)

изоморфны если и только если 𝑛0 = 𝑚0, 𝑔 = ℎ и 𝜆𝑖 = 𝑠𝑖𝜇𝑖, где все 𝑠𝑖 ∈ 𝐾 обратимы. □
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6.3.4. Единственность инвариантных множителей. Пусть 𝐹 — свободный модуль конеч-
ного ранга 𝑚 над областью главных идеалов 𝐾 и 𝑁 ⊂ 𝐹 — его подмодуль. Покажем, что множи-
тели 𝜆1, … , 𝜆𝑛 из теоремы о взаимном базисе1 не зависят от выбора взаимных базисов. В самом
деле, фактормодуль 𝑀 = 𝐹∕𝑁 ничего не знает о взаимных базисах, и по теореме об элементар-
ных делителях2 он имеет вид

𝑀 ≃ 𝐾𝑚0 ⊕ 𝐾
(𝑝𝑚1

1 )
⊕ … ⊕ 𝐾

(𝑝𝑚𝛼𝛼 )
. (6-13)

С другой стороны, если базис 𝑒1, … , 𝑒𝑚 модуля 𝐹 таков, что векторы 𝜆1𝑒1, … , 𝜆𝑛𝑒𝑛 составляют
базис в 𝑁 и 𝜆𝑖 ∣ 𝜆𝑗 при 𝑖 < 𝑗, то 𝑀 = 𝐹∕𝑁 ≃ 𝐾𝑚−𝑛 ⊕ 𝐾∕(𝜆1) ⊕ … ⊕ 𝐾∕(𝜆𝑛), где каждый фактор
𝐾∕(𝜆) либо нулевой (если 𝜆 обратим), либо — когда 𝜆 необратим — распадается по китайской
теореме об остатках в прямую сумму модулей вида 𝐾∕(𝑝𝜈𝑝(𝜆)), где 𝑝𝜈𝑝(𝜆) берутся из разложения
𝜆 = ∏𝑝∈𝑃(𝐾) 𝑝𝜈𝑝(𝜆) на простые множители. Мы заключаем, что 𝑚0 = 𝑚 − 𝑛, а набор степеней

𝑝𝜈𝑝(𝜆) является набором элементарных делителей упорядоченного по отношению делимости
набора всех необратимых множителей 𝜆, который по лем. 6.2 на стр. 114 однозначно восста-
навливается по набору своих элементарных делителей. Таким образом число 𝑛 = 𝑚 − 𝑚0 и
все ненулевые необратимые инвариантные множители подмодуля 𝑁 однозначно считываются
с разложения (6-13), что и доказывает независимость инвариантных множителей подмодуля𝑁
от выбора взаимного базиса.

Применительно к модулю 𝐹 = 𝐾𝑚 со стандартным базисом 𝒆 = (𝑒1, … , 𝑒𝑚) и его подмоду-
лю 𝑁 ⊂ 𝐾𝑚, порождённому столбцами 𝒂 = (𝑎1, … , 𝑎𝑛) матрицы 𝐴 ∈ Mat𝑚×𝑛(𝐾), это утвержде-
ние означает, что элементы 𝑑𝑖𝑖 нормальной формы Смита матрицы 𝐴 не зависят от способа её
приведения к нормальной форме и даже собственно от матрицы, а зависят лишь от подмоду-
ля𝑁. В самом деле, если𝐷 = 𝐿𝐴𝑅— это (какая-нибудь) нормальная форма Смита матрицы𝐴, то
из равенства𝒂 = 𝒆𝐴 вытекает равенство𝒂𝑅 = 𝒆𝐿−1𝐿𝐴𝑅 = 𝒆𝐿−1𝐷. В силу обратимости матриц𝑅
и 𝐿 векторы 𝒖 = 𝒆 𝐿−1 тоже составляют базис в 𝐾𝑚, а векторы 𝒘 = 𝒂𝑅 линейно порождают 𝑁.
Так как 𝒘 = 𝒖𝐷, векторы 𝒖 = (𝑢1, … , 𝑢𝑚) и векторы 𝑤𝑖 = 𝑑𝑖𝑖𝑢𝑖 с ненулевыми 𝑑𝑖𝑖 образуют вза-
имные базисы модуля𝐾𝑚 и его подмодуля𝑁, а ненулевые диагональные элементы 𝑑𝑖𝑖 являются
инвариантными множителями этого подмодуля.

1См. теор. 6.3 на стр. 111.
2См. теор. 6.4 на стр. 114.
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Упр. 6.1. (
𝛼 𝛽
𝛾 𝛿)

−1
= 1

𝛥 (
𝛿 −𝛽

−𝛾 𝛼 ) как мы видели в прим. 5.15 на стр. 92.

Упр. 6.3. Если матрица𝐷 диагональна, то матрица𝐷𝐴 (соотв.𝐴𝐷) получается из матрицы𝐴 умно-
жением её 𝑖-й строки (соотв. 𝑖-го столбца) на диагональный элемент 𝑑𝑖𝑖 матрицы 𝐷. Поэтому
равенство 𝐴𝐷 = 𝐷𝐴 = 𝐸 равносильно тому, что 𝑎𝑖𝑖𝑑𝑖𝑖 = 1 и 𝑎𝑖𝑗 = 0 при всех 𝑖 ≠ 𝑗.

Упр. 6.4. Последовательно заменяя в данном столбце пары ненулевых элементов 𝑎, 𝑏 по лем. 6.1
на стр. 102 парами нод(𝑎, 𝑏), 0, получаем столбец в котором отличен от нуля ровно один эле-
мент 𝑑 ∈ 𝐾, равный нод элементов исходного столбца. Если матрица 𝐴 обратима, то её столб-
цы (𝑎1, … , 𝑎𝑛) образуют базис в 𝐾𝑛, причём 𝑎𝑗 = 𝑑𝑒𝑖, где (𝑒1, … , 𝑒𝑛) — стандартный базис
в 𝐾𝑛. Пусть стандартный базисный вектор 𝑒𝑖 выражается через столбцы матрицы 𝐴 по форму-
ле 𝑒𝑖 = ∑ 𝑥𝜈𝑎𝜈. Тогда 𝑎𝑗 − ∑𝑑𝑥𝜈𝑎𝜈 = 0, и вектор 𝑎𝑗 входит в эту линейную комбинацию с
коэффициентом 1 − 𝑑𝑥𝑗, откуда 𝑑𝑥𝑗 = 1.

Упр. 6.6. Векторы 𝑤1, 𝑤2 — это первые два вектора набора 𝒘 = 𝒂𝑅, где матрица 𝑅 = 𝑅1𝑅2𝑅3𝑅4
задаёт совершённые в прим. 6.5 на стр. 111 преобразования столбцов:

𝑅1 =
⎛
⎜
⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟
⎟
⎟
⎠

делает четвёртый столбец первым,

𝑅2 =
⎛
⎜
⎜
⎜
⎝

1 2 −3 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

прибавляет ко 2-у и 3-у столбцам 1-й, умноженный на 2 и на −3,

𝑅3 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1

⎞
⎟
⎟
⎟
⎠

записывает во 2-й столбец сумму к 3-го и 4-го, а в 3-й столбец — бывший 2-й,

𝑅4 =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 −8 −3
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

отнимает из 3-го и 4-го столбцов 2-й, умноженный на 8 и на 3. Вычисляя произведение1, полу-
чаем

𝑅 =
⎛
⎜
⎜
⎜
⎝

0 0 1 0
0 1 −8 −3
0 1 −8 −2
1 −3 26 9

⎞
⎟
⎟
⎟
⎠

,

1Или, что тоже самое, применяя указанные четыре преобразования к единичной матрице 4 × 4.
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откуда 𝑤1 = 𝑎4 и 𝑤2 = 𝑎2 + 𝑎3 − 3𝑎4.

Упр. 6.7. Если 𝑥1𝑤1 = 0 и 𝑥2𝑤2 = 0 для ненулевых 𝑥1, 𝑥2 ∈ 𝐾, то 𝑥1𝑥2(𝑤1 ±𝑤2) = 0 и 𝑥1𝑥2 ≠ 0, так
как в 𝐾 нет делителей нуля, и 𝑥1(𝑦𝑤1) = 𝑥2(𝑦𝑤2) = 0 для всех 𝑦 ∈ 𝐾.

Упр. 6.8. Если 𝑝𝑘1𝑤1 = 0 и 𝑝𝑘2𝑤2 = 0, то 𝑝𝑘1+𝑘2(𝑤1 ± 𝑤2) = 0 и 𝑝𝑘1𝑦𝑤1 = 0 для всех 𝑦 ∈ 𝐾.
Равенство 𝑝𝑘1[𝑤] = [0] в 𝑀 ∕ Tors𝑝(𝑀) означает, что 𝑝𝑘1𝑤 ∈ Tors𝑝(𝑀), т. е. 𝑝𝑘2𝑝𝑘1𝑤 = 0 для
некоторого 𝑘2 ∈ ℕ, откуда 𝑝𝑘1+𝑘2𝑤 = 0 и 𝑤 ∈ Tors𝑝(𝑀), т. е. [𝑤] = [0]. Если 𝑤 ∈ Tors𝑝(𝑀) −𝑁,
то класс [𝑤] ∈ 𝑀∕𝑁 является ненулевым элементом 𝑝-кручения.

Упр. 6.9. Класс [𝑝𝜈𝑖−𝑘𝑥] ∈ 𝐾 ∕ (𝑝𝜈𝑖) лежит в ker𝜑𝑘𝑖 , поскольку 𝑝𝑘[𝑝𝜈𝑖−𝑘𝑥] = [𝑝𝜈𝑖𝑥] = [0]. Если
𝑥′ = 𝑥 + 𝑝𝑦, то 𝑝𝜈𝑖−𝑘𝑥′ = 𝑝𝜈𝑖−𝑘𝑥 + 𝑝𝜈𝑖−𝑘+1𝑦 и класс [𝑝𝜈𝑖−𝑘+1𝑦] ∈ 𝐾∕(𝑝𝜈𝑖) лежит в ker𝜑𝑘−1

𝑖 ,
так как 𝑝𝑘−1[𝑝𝜈𝑖−𝑘+1𝑦] = [𝑝𝜈𝑖𝑦] = [0]. Линейность отображения очевидна. Оно сюръективно,
поскольку каждый класс [𝑦] ∈ 𝐾∕(𝑝𝜈𝑖), такой что [𝑝𝑘𝑦] = [0], имеет 𝑦 = 𝑝𝜈𝑖−𝑘𝑥 для некоторого
𝑥 ∈ 𝐾 в силу того, что𝑝𝑘𝑥 делится на𝑝𝜈𝑖 в факториальном кольце𝐾 если и только если 𝑥 делится
на 𝑝𝜈𝑖−𝑘. Ядро отображения нулевое по той же причине: если класс [𝑝𝜈𝑖−𝑘𝑥] ∈ 𝐾∕(𝑝𝜈𝑖) лежит в
ker𝜑𝑘−1

𝑖 , то 𝑝𝑘−1𝑝𝜈𝑖−𝑘𝑥 = 𝑝𝜈𝑖−1𝑥 делится на 𝑝𝜈𝑖 , а значит 𝑥 ⫶ 𝑝 и класс [𝑥] ∈ 𝐾∕(𝑝) нулевой.
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