
§5. Векторы и матрицы

5.1. Модули над коммутативными кольцами. Аддитивная абелева группа1 𝑉 называется мо-
дулем над коммутативным кольцом 𝐾 или 𝐾-модулем, если задана операция умножения

𝐾 × 𝑉 → 𝑉 , (𝑥, 𝑣) ↦ 𝑥 ⋅ 𝑣 = 𝑥𝑣 ,

c теми же свойствами, что известное из курса геометрии умножение векторов на числа2:

∀ 𝑥, 𝑦 ∈ 𝐾 ∀ 𝑣 ∈ 𝑉 𝑥(𝑦𝑣) = (𝑥𝑦)𝑣 (5-1)

∀ 𝑥, 𝑦 ∈ 𝐾 ∀ 𝑣 ∈ 𝑉 (𝑥 + 𝑦)𝑣 = 𝑥𝑣 + 𝑦𝑣 (5-2)

∀ 𝑥 ∈ 𝐾 ∀ 𝑢,𝑤 ∈ 𝑉 𝑥(𝑢 + 𝑤) = 𝑥𝑢 + 𝑥𝑤 . (5-3)

Если в кольце 𝐾 есть единица и выполняется дополнительное свойство

∀ 𝑣 ∈ 𝑉 1𝑣 = 𝑣 , (5-4)

то модуль 𝑉 называется унитальным.

Упражнение 5.1. Выведите из свойств (5-1) – (5-3), что в любом 𝐾-модуле 𝑉 для всех 𝑣 ∈ 𝑉 и
𝑥 ∈ 𝐾 выполняются равенства 0 ⋅ 𝑣 = 0 и 𝑥 ⋅ 0 = 0, а в унитальном модуле над коммутатив-
ным кольцом с единицей— равенство3 (−1) ⋅ 𝑣 = −𝑣.

Всюду далее мы предполагаем, что 𝐾 является коммутативным кольцом с единицей и по умол-
чанию считаем все модули унитальными. Унитальные модули над полями — это в точности
векторные пространства. По этой причине мы часто будем называть элементы 𝐾-модулей век-
торами, элементы кольца 𝐾 — скалярами, а операцию 𝐾 × 𝑉 → 𝑉 — умножением векторов
на скаляры. Часто бывает удобно записывать произведение вектора 𝑣 ∈ 𝑉 на скаляр 𝑥 ∈ 𝐾 не
как 𝑥𝑣, а как 𝑣𝑥. Мы по определению считаем эти две записи эквивалентными обозначениями

𝑣𝑥 ≝ 𝑥𝑣

для одного и того же вектора из 𝑉.
Упражнение 5.2. Убедитесь, что «правые» версии равенств (5-1) – (5-4) тоже выполняются:

(𝑣𝑦)𝑥 = 𝑣(𝑦𝑥) , 𝑣(𝑥 + 𝑦) = 𝑣𝑥 + 𝑣𝑦 , (𝑢 + 𝑤)𝑥 = 𝑢𝑥 + 𝑤𝑥 , 𝑣 1 = 𝑣 .

Аддитивная абелева подгруппа 𝑈 ⊆ 𝑉 в 𝐾-модуле 𝑉 называется 𝐾-подмодулем, если она обра-
зует 𝐾-модуль относительно имеющейся в 𝑉 операции умножения векторов на скаляры. Для
этого необходимо и достаточно, чтобы 𝑥𝑢 ∈ 𝑈 для всех 𝑥 ∈ 𝐾 и 𝑢 ∈ 𝑈. Подмодули 𝑈 ⊊ 𝑉
называются собственными. Собственный подмодуль 0, состоящий из одного нуля, называется
тривиальным.

1См. n∘ 1.1.2 на стр. 22.
2См. лекциюhttp://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_01.pdf. При этом в роли «ве-

кторов» выступают элементы модуля 𝑉, а в роли «чисел» — элементы кольца 𝐾.
3Слева стоит произведение вектора 𝑣 ∈ 𝑉 на скаляр−1 ∈ 𝐾, а справа—противоположный к 𝑣 вектор

−𝑣 ∈ 𝑉.

81

http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_01.pdf


82 §5Векторы и матрицы

Пример 5.1 (кольцо как модуль над собой)

Каждое коммутативное кольцо 𝐾 является модулем над самим собой: сложение векторов и их
умножение на скаляры суть сложение и умножение в 𝐾. Если в 𝐾 имеется единица, 𝐾-модуль 𝐾
является унитальным.𝐾-подмодули 𝐼 ⊂ 𝐾—это в точности идеалы кольца𝐾. В частности, ком-
мутативное кольцо 𝐾 с единицей является полем если и только если в 𝐾-модуле 𝐾 нет нетриви-
альных собственных подмодулей1.

Пример 5.2 (координатный модуль 𝐾𝑟)

Декартово произведение 𝑟 экземпляров кольца 𝐾 обозначается 𝐾𝑟 = 𝐾 × … × 𝐾 и состоит из
строк 𝑎 = (𝑎1, … , 𝑎𝑟), в которых 𝑎𝑖 ∈ 𝐾. Сложение таких строк и их умножение их на скаляры
𝑥 ∈ 𝐾 происходит покоординатно: для 𝑎 = (𝑎1, … , 𝑎𝑟), 𝑏 = (𝑏1, … , 𝑏𝑟) и 𝑥 ∈ 𝐾 мы полагаем

𝑎 + 𝑏 ≝ (𝑎1 + 𝑏1, … , 𝑎𝑟 + 𝑏𝑟) и 𝑥𝑎 ≝ (𝑥𝑎1, … , 𝑥𝑎𝑟) .

Пример 5.3 (модуль матриц Mat𝑚×𝑛(𝐾))
Таблицыиз𝑚 строк и 𝑛 столбцов, заполненные элементами кольца𝐾, называются𝑚×𝑛матри-
цами с элементами из𝐾. Множество всех таких матриц обозначается Mat𝑚×𝑛(𝐾). Элемент мат-
рицы 𝐴, расположенный в 𝑖-й строке и 𝑗-м столбце, обозначается 𝑎𝑖𝑗. Запись 𝐴 = (𝑎𝑖𝑗) означает,
что матрица 𝐴 состоит из таких элементов 𝑎𝑖𝑗. Например, матрица 𝐴 ∈ Mat3×4(ℤ) с элементами
𝑎𝑖𝑗 = 𝑖 − 𝑗 имеет вид

⎛
⎜
⎜
⎝

0 −1 −2 −3
1 0 −1 −2
2 1 0 −1

⎞
⎟
⎟
⎠

.

Также как и координатные строки,𝑚×𝑛матрицыMat𝑚×𝑛(𝐾) образуют𝐾-модуль относительно
поэлементного сложения и умножения на скаляры: сумма 𝑆 = (𝑠𝑖𝑗) матриц 𝐴 = (𝑎𝑖𝑗) и 𝐵 = (𝑏𝑖𝑗)
имеет 𝑠𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗, а произведение 𝑃 = 𝑥𝐴 матрицы 𝐴 на число 𝑥 ∈ 𝐾 имеет 𝑝𝑖𝑗 = 𝑥𝑎𝑖𝑗.

Пример 5.4 (абелевы группы как ℤ-модули)

Каждая аддитивно записываемая абелева группа 𝐴 может рассматриваться как унитальный ℤ-
модуль, в котором сложение векторов есть сложение в 𝐴, а умножение векторов на числа ±𝑛,
где 𝑛 ∈ ℕ, задаётся правилом (±𝑛)⋅𝑎 ≝ ± (𝑎+…+𝑎), где в скобках стоит 𝑛 слагаемых, равных 𝑎.

Упражнение 5.3. Удостоверьтесь, что эти операции удовлетворяют аксиомам (5-1) – (5-4).

5.1.1. Гомоморфизмы модулей. Отображение 𝜑∶ 𝑀 → 𝑁 между 𝐾-модулями 𝑀 и 𝑁 на-
зывается 𝐾-линейным или гомоморфизмом 𝐾-модулей, если оно перестановочно со сложением
векторов и умножением векторов на скаляры, т. е. для всех 𝑥 ∈ 𝐾 и 𝑢,𝑤 ∈ 𝑀

𝜑(𝑢 + 𝑤) = 𝜑(𝑢) + 𝜑(𝑤) и 𝜑(𝑥𝑢) = 𝑥𝜑(𝑢) . (5-5)

Упражнение 5.4. Убедитесь, что композиция 𝐾-линейных отображений тоже 𝐾-линейна.
Гомоморфизмы 𝐾-модулей образуют 𝐾-модуль относительно операций сложения значений и
умноженияих на скаляры: отображения𝜑+𝜓 и 𝑥𝜑, где 𝑥 ∈ 𝐾, переводят каждый вектор𝑤 ∈ 𝑀,
соответственно, в 𝜑(𝑤) + 𝜓(𝑤) и в 𝑥𝜑(𝑤) = 𝜑(𝑥𝑤).

Упражнение 5.5. Убедитесь, что для любого 𝑥 ∈ 𝐾 и 𝐾-линейных отображений 𝜑,𝜓∶ 𝑀 → 𝑁
отображения 𝜑 + 𝜓 и 𝑥𝜑 тоже 𝐾-линейны.

1См. предл. 4.1 на стр. 67.
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Модуль 𝐾-линейных отображений𝑀 → 𝑁 называется модулем гомоморфизмов из𝑀 в 𝑁 и обо-
значается Hom(𝑀,𝑁) или Hom𝐾(𝑀,𝑁), если надо явно указать кольцо, над которым рассматри-
ваются модули.

Так как 𝐾-линейные отображения 𝜑∶ 𝑀 → 𝑁 являются гомоморфизмами абелевых групп,
все они обладают перечисленными в n∘ 1.5 на стр. 30 свойствами таких гомоморфизмов. В част-
ности, 𝜑(0) = 0 и 𝜑(−𝑤) = −𝜑(𝑤) для всех 𝑤 ∈ 𝑀, а каждый непустой слой 𝜑 является адди-
тивным сдвигом ядра ker𝜑 = 𝜑−1(0) = {𝑢 ∈ 𝑀 | 𝜑(𝑢) = 0}, т. е. 𝜑−1(𝜑(𝑤)) = 𝑤 + ker𝜑 для всех
𝑤 ∈ 𝑀. В частности, инъективность 𝜑 равносильна тому, что ker𝜑 = 0 состоит из одного нуля.

Упражнение 5.6. Убедитесь, что ядро и образ 𝐾-линейного гомоморфизма 𝜑∶ 𝑀 → 𝑁 явля-
ются подмодулями в𝑀 и в 𝑁 соответственно.

Биективные гомоморфизмы модулей называются изоморфизмами. 𝐾-линейное отображение
𝜑∶ 𝑀 → 𝑁 является изоморфизмом если и только если ker𝜑 = 0 и im𝜑 = 𝑁. Например, вы-
писывание элементов матрицы в строку в произвольном порядке задаёт изоморфизм между
модулем матриц Mat𝑚×𝑛(𝐾) из прим. 5.3 и координатным 𝐾-модулем 𝐾𝑚𝑛 из прим. 5.2.

Пример 5.5 (дифференцирование)

Кольцо многочленов𝐾[𝑥] с коэффициентами в коммутативном кольце𝐾 можно рассматривать

и как 𝐾-модуль. Оператор дифференцирования 𝐷 = 𝑑
𝑑𝑥 ∶ 𝐾[𝑥] → 𝐾[𝑥], 𝑓(𝑥) ↦ 𝑓′(𝑥), является

гомоморфизмом 𝐾-модулей, поскольку перестановочен со сложением многочленов и умноже-
нием многочленов на константы, но не является гомоморфизмом колец, так как не перестано-
вочен с умножением многочленов друг на друга.

Предостережение 5.1. Именуемое в школе «линейной функцией» отображение 𝜑∶ 𝐾 → 𝐾, за-
даваемое правилом 𝜑(𝑥) = 𝑎𝑥 + 𝑏, где 𝑎, 𝑏 ∈ 𝐾 фиксированы, является 𝐾-линейным в смысле
предыдущего определения только при 𝑏 = 0. Если же 𝑏 ≠ 0, то 𝜑 не перестановочно ни со
сложением, ни с умножением на числа.

5.1.2. Прямые произведения и прямые суммы. Из любого семейства 𝐾-модулей 𝑀𝜈, за-
нумерованных элементами 𝜈 произвольного множества 𝒩, можно образовать прямое произ-
ведение ∏𝜈∈𝒩𝑀𝜈, состоящее из всевозможных семейств 𝑣 = (𝑣𝜈)𝜈∈𝒩 векторов 𝑣𝜈 ∈ 𝑀𝜈, зану-
мерованных элементами 𝜈 ∈ 𝒩, как в n∘ 1.6 на стр. 34. Такие семейства можно поэлементно
складывать и умножать на скаляры точно также, как мы это делали в n∘ 1.6 в прямых произве-
дениях абелевых групп и коммутативных колец. А именно, сумма 𝑣 + 𝑤 семейств 𝑣 = (𝑣𝜈)𝜈∈𝒩
и 𝑤 = (𝑤𝜈)𝜈∈𝒩 имеет 𝜈-м членом элемент 𝑣𝜈 + 𝑤𝜈, а 𝜈-й член произведения 𝑥𝑣 семейства
𝑣 = (𝑣𝜈)𝜈∈𝒩 на скаляр 𝑥 ∈ 𝐾 равен 𝑥𝑣𝜈. Модуль ∏𝜈∈𝒩𝑀𝜈 называется прямым произведени-
ем модулей 𝑀𝜈, а его подмодуль ⨁𝜈∈𝒩𝑀𝜈, состоящий из всех семейств 𝑣 = (𝑣𝜈)𝜈∈𝒩 c конеч-
нымчисломненулевых векторов 𝑣𝜈, называется прямой суммоймодулей𝑀𝜈. Для конечныхмно-
жеств𝒩 прямые суммы совпадают с прямыми произведениями. Так, координатный модуль 𝐾𝑟

из прим. 5.2 и модуль матрицMat𝑚×𝑛(𝐾) из прим. 5.3 являются прямыми суммами (и произве-
дениями), соответственно, 𝑟 и𝑚𝑛 одинаковых экземпляров 𝐾-модуля 𝐾.

Пример 5.6 (многочлены и степенные ряды)

Обозначим через 𝐾𝑡𝑛 множество одночленов вида 𝑎𝑡𝑛, где 𝑎 ∈ 𝐾, а 𝑡 — переменная. Каждое
множество 𝐾𝑡𝑛 является 𝐾-модулем, изоморфным модулю 𝐾. Прямая сумма ⨁𝑛⩾0 𝐾𝑡𝑛 изо-
морфна модулю многочленов 𝐾[𝑡], а прямое произведение ∏𝑛⩾0 𝐾𝑡𝑛 — модулю формальных
степенных рядов 𝐾⟦𝑡⟧.
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Пример 5.7 (модуль функций со значениями в модуле)

Отображения 𝑍 → 𝑀 из любого множества 𝑍 в произвольный 𝐾-модуль 𝑀 можно складывать
и умножать на числа из 𝐾 по тем же правилам, что выше: для 𝜑,𝜓∶ 𝑍 → 𝑀 и 𝑥 ∈ 𝐾 отоб-
ражения 𝜑 + 𝜓 и 𝑥𝜑 переводят 𝑧 ∈ 𝑍 в 𝜑(𝑧) + 𝜓(𝑧) и 𝑥𝜑(𝑧) соответственно. Эти операции
задают на множестве 𝑀𝑍 всех отображений 𝑍 → 𝑀 структуру 𝐾-модуля, изоморфного прямо-
му произведению ∏𝑧∈𝑍𝑀𝑧 одинаковых копий 𝑀𝑧 = 𝑀 модуля 𝑀, занумерованных элемента-
ми 𝑧 ∈ 𝑍. Этот изоморфизм сопоставляет отображению 𝜑∶ 𝑍 → 𝑀 семейство его значений

(𝜑(𝑧))𝑧∈𝑍 ∈ ∏𝑧∈𝑋𝑀𝑧. Если 𝑍 является 𝐾-модулем, то 𝐾-линейные отображения 𝑍 → 𝑀 состав-
ляют подмодуль Hom𝐾(𝑍,𝑀) ⊂ 𝑀𝑍.

Предложение 5.1

Для любого семейства 𝐾-модулей 𝑀𝜇, занумерованных элементами 𝜇 произвольного множе-
стваℳ, и любого 𝐾-модуля 𝑁 имеется изоморфизм 𝐾-модулей

∏𝜇∈ℳ Hom𝐾(𝑀𝜇,𝑁) ⥲ Hom𝐾(⨁𝜇∈ℳ𝑀𝜇, 𝑁) , (5-6)

который переводит семейство 𝐾-линейных гомоморфизмов 𝜑𝜇 ∶ 𝑀𝜇 → 𝑁 в гомоморфизм

⨁𝜑𝜇 ∶ ⨁𝜇∈ℳ𝑀𝜇 → 𝑁 , (5-7)

отображающий каждое семейство векторов (𝑤𝜇)𝜇∈ℳ с конечным числом ненулевых членов в
сумму ∑𝜇∈ℳ 𝜑𝜇(𝑤𝜇) с конечным числом ненулевых слагаемых.

Доказательство. Отображение (5-6) очевидно является 𝐾-линейным гомоморфизмом. Обрат-
ное к (5-6) отображение переводит каждый 𝐾-линейный гомоморфизм 𝜓∶ ⨁𝜇∈ℳ𝑀𝜇 → 𝑁 в
семейство гомоморфизмов 𝜑𝜇 ∶ 𝑀𝜇 → 𝑁, где для каждого 𝜈 ∈ ℳ гомоморфизм 𝜑𝜈 = 𝜓𝜄𝜈 яв-
ляется композицией 𝜓 с вложением 𝜄𝜈 ∶ 𝑀𝜈 ↪ ⨁𝜇∈ℳ𝑀𝜇, которое отправляет каждый вектор
𝑢 ∈ 𝑀𝜈 в семейство (𝑤𝜇)𝜇∈ℳ с единственным ненулевым элементом 𝑤𝜈 = 𝑢. □

Пример 5.8 (продолжение прим. 5.6 на стр. 83)

В прим. 5.6 мы видели, что модуль многочленов 𝐾[𝑡] ≃ ⨁𝑛⩾0 𝐾𝑡𝑛 можно воспринимать как
прямую сумму модулей 𝐾𝑡𝑛 ≃ 𝐾. Применительно к этому случаю предл. 5.1 утверждает, что
каждое 𝐾-линейное отображение 𝜑∶ 𝐾[𝑡] → 𝐾 однозначно задаётся последовательностью 𝐾-
линейных отображений 𝜑𝑛 = 𝜑|𝐾𝑡𝑛 ∶ 𝐾𝑡𝑛 → 𝐾 — ограничений отображения 𝜑 на подмодули
𝐾𝑡𝑛 ⊂ 𝐾[𝑡]. Каждое из отображений 𝜑𝑛 в свою очередь однозначно задаётся своим значением
на базисном мономе 𝑡𝑛, т. е. числом 𝑓𝑛 = 𝜑𝑛(𝑡𝑛) ∈ 𝐾. Последовательность чисел 𝑓𝑛 может
быть любой, и отвечающее такой последовательности 𝐾-линейное отображение 𝜑∶ 𝐾[𝑡] → 𝐾
переводит многочлен 𝑎(𝑡) = 𝑎0 + 𝑎1𝑡 + … + 𝑎𝑚𝑡𝑚 в число 𝜑(𝑎) = 𝑓0𝑎0 + 𝑓1𝑎1 + … + 𝑓𝑚𝑎𝑚. Мы
заключаем, что модуль Hom𝐾(𝐾[𝑡],𝐾) изоморфен прямому произведению счётного множества
копий модуля 𝐾, т. е. модулю формальных степенных рядов 𝐾⟦𝑥⟧. Изоморфизм сопоставляет
последовательности (𝑓𝑛) её производящую функцию 𝐹(𝑥) = ∑𝑛⩾0 𝑓𝑛𝑥𝑛 ∈ 𝐾⟦𝑥⟧. Например, для
любого 𝛼 ∈ 𝐾 гомоморфизм вычисления ev𝛼 ∶ 𝐾[𝑡] → 𝐾, 𝑓 ↦ 𝑓(𝛼), переводящий многочлены
в их значения в точке 𝛼 ∈ 𝐾 и действующий на базисные мономы по правилу 𝑡𝑛 ↦ 𝛼𝑛, имеет
𝑓𝑛 = 𝛼𝑛 и задаётся рядом ∑𝑛⩾0 𝛼𝑛𝑥𝑛 = (1 − 𝛼𝑥)−1 ∈ 𝐾⟦𝑥⟧.

Упражнение 5.7. В условиях предл. 5.1 постройте изоморфизм 𝐾-модулей

⨁𝜇∈ℳ Hom𝐾(𝑁,𝑀𝜇) ⥲ Hom𝐾(𝑁, ⨁𝜇∈ℳ𝑀𝜇) . (5-8)
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5.1.3. Пересечения и суммы подмодулей. В произвольном 𝐾-модуле 𝑀 пересечение лю-
бого множества подмодулей также является подмодулем в 𝑀. Пересечение всех подмодулей,
содержащих заданное множество векторов 𝐴 ⊂ 𝑀, называется 𝐾-линейной оболочкой множе-
ства 𝐴 или 𝐾-подмодулем, порождённым множеством 𝐴, и обозначается span(𝐴) или span𝐾(𝐴),
если надо указать, из какого кольца берутся константы. Линейная оболочка является наимень-
шим по включению𝐾-подмодулем в𝑀, содержащим𝐴, и может быть иначе описана как множе-
ство всех конечных линейных комбинаций 𝑥1𝑎1+…+𝑥𝑛𝑎𝑛 векторов 𝑎𝑖 ∈ 𝐴 с коэффициентами
𝑥𝑖 ∈ 𝐾, ибо все такие линейные комбинации образуют подмодуль в𝑀 и содержатся во всех под-
модулях, содержащих 𝐴. В противоположность пересечениям, объединения подмодулей почти
никогда не являются подмодулями.

Упражнение 5.8. Покажите, что объединение двух подгрупп в абелевой группе является под-
группой если и только если одна из подгрупп содержится в другой.

𝐾-линейная оболочка объединения произвольного множества подмодулей 𝑈𝜈 ⊂ 𝑀 называется
суммой этих подмодулей и обозначается ∑𝜈 𝑈𝜈 ≝ span⋃𝜈 𝑈𝜈. Таким образом, сумма подмоду-
лей представляет собой множество всевозможных конечных сумм векторов, принадлежащих
этим подмодулям. Например,

𝑈1 + 𝑈2 = {𝑢1 + 𝑢2 | 𝑢1 ∈ 𝑈1 , 𝑢2 ∈ 𝑈2}
𝑈1 + 𝑈2 + 𝑈3 = {𝑢1 + 𝑢2 + 𝑢3 | 𝑢1 ∈ 𝑈1 , 𝑢2 ∈ 𝑈2 , 𝑢3 ∈ 𝑈3}

и т. д. Если подмодули 𝑈1, … ,𝑈𝑚 ⊂ 𝑀 таковы, что гомоморфизм сложения

𝑈1 ⊕ … ⊕ 𝑈𝑛 → 𝑈1 + … + 𝑈𝑛 ⊂ 𝑀 , (𝑢1, … , 𝑢𝑛) ↦ 𝑢1 + … + 𝑢𝑛 , (5-9)

является биекцией между 𝑈1 ⊕ … ⊕𝑈𝑛 и 𝑈1 + … +𝑈𝑛, то сумму 𝑈1 + … +𝑈𝑛 называют прямой
и обозначают𝑈1 ⊕ … ⊕𝑈𝑛, как в n∘ 5.1.2 выше. Биективность отображения (5-9) эквивалентна
тому, что каждый вектор𝑤 ∈ 𝑈1 + … +𝑈𝑛 имеет единственное разложение𝑤 = 𝑢1 + … + 𝑢𝑛, в
котором 𝑢𝑖 ∈ 𝑈𝑖 при каждом 𝑖.

Предложение 5.2

Сумма подмодулей 𝑈1, … ,𝑈𝑛 ⊂ 𝑉 является прямой если и только если каждый из подмодулей
имеет нулевое пересечение с суммойвсех остальных. В частности, сумма𝑈+𝑊 двух подмодулей
прямая тогда и только тогда, когда 𝑈 ∩ 𝑊 = 0.

Доказательство. Обозначим через 𝑊𝑖 сумму всех подмодулей 𝑈𝜈 за исключением 𝑖-того. Если
пересечение𝑈𝑖 ∩𝑊𝑖 содержит ненулевой вектор 𝑢𝑖 = 𝑢1 + … +𝑢𝑖−1 +𝑢𝑖+1 + … +𝑢𝑛, где 𝑢𝑖 ∈ 𝑈𝑖
при всех 𝑖, то у этого вектора имеется два различных представления1

0 + … + 0 + 𝑢𝑖 + 0 + … + 0 = 𝑢1 + … + 𝑢𝑖−1 + 0 + 𝑢𝑖+1 + … + 𝑢𝑛 .

Поэтому такая сумма не прямая. Наоборот, если 𝑈𝑖 ∩ 𝑊𝑖 = 0 при всех 𝑖, то переписывая равен-
ство 𝑢1 + … + 𝑢𝑛 = 𝑤1 + … + 𝑤𝑛, где 𝑢𝜈,𝑤𝜈 ∈ 𝑈𝜈 при всех 𝜈, в виде 𝑢𝑖 − 𝑤𝑖 = ∑𝜈≠𝑖(𝑤𝜈 − 𝑢𝜈),
заключаем, что этот вектор лежит в 𝑈𝑖 ∩ 𝑊𝑖 = 0. Поэтому 𝑢𝑖 = 𝑤𝑖 для каждого 𝑖 = 1, … , 𝑛. □

Следствие 5.1

Для того чтобы модуль𝑀 распадался в прямую сумму собственных подмодулей 𝐿,𝑁 ⊂ 𝑀 необ-
ходимо и достаточно, чтобы 𝐿 + 𝑁 = 𝑀 и 𝐿 ∩ 𝑁 = 0. □

1В левом отлично от нуля только 𝑖-е слагаемое, а в правом оно нулевое.
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5.1.4. Фактор модули. Для любых 𝐾-модуля𝑀 и подмодуля 𝑁 ⊆ 𝑀 можно образовать фак-
тормодуль 𝑀∕𝑁, состоящий из классов [𝑚]𝑁 = 𝑚 (mod 𝑁) = 𝑚 + 𝑁 = {𝑚′ ∈ 𝑀 | 𝑚′ − 𝑚 ∈ 𝑁},
которые являются аддитивными сдвигами подмодуля 𝑁 на всевозможные элементы 𝑚 ∈ 𝑀
или, что тоже самое, классами эквивалентности по отношению 𝑚 ≡ 𝑚′ (mod 𝑁) сравнимости
по модулю 𝑁, означающему, что𝑚′ − 𝑚 ∈ 𝑁. Сложение классов и их умножение на элементы
кольца определяются обычными формулами [𝑚1]𝑁 + [𝑚2]𝑁 ≝ [𝑚1 + 𝑚2]𝑁 и 𝑥 ⋅ [𝑚]𝑁 ≝ [𝑥𝑚]𝑁.

Упражнение 5.9. Проверьте, что отношение сравнимости по модулю 𝑁 является эквивалент-
ностью, а операции корректно определены и удовлетворяют аксиомам (5-1) – (5-4).

В частности, факторкольцо 𝐾∕ 𝐼 кольца 𝐾 по идеалу 𝐼 ⊂ 𝐾 является фактором 𝐾-модуля 𝐾 по
его 𝐾-подмодулю 𝐼, ср. с прим. 5.1 выше.

Пример 5.9 (разложение гомоморфизма)

Любой гомоморфизм 𝐾-модулей 𝜑∶ 𝑀 → 𝑁 является композицией сюрьективного гомомор-
физма факторизации 𝜋𝜑 ∶ 𝑀 ↠ 𝑀∕ker𝜑, 𝑤 ↦ [𝑤]ker𝜑 и отображения

𝜄𝜑 ∶ 𝑀∕ker𝜑 ↪ 𝑁 , [𝑤]ker𝜑 ↦ 𝜑(𝑤) ,

которое корректно определено и инъективно, так как равенство 𝜑(𝑢) = 𝜑(𝑤) означает, что
𝑢 − 𝑤 ∈ ker𝜑. Отображение 𝜄𝜑 𝐾-линейно, поскольку

𝜄𝜑(𝑥[𝑢] + 𝑦[𝑤]) = 𝜄𝜑([𝑥𝑢 + 𝑦𝑤]) = 𝜑(𝑥𝑢 + 𝑦𝑤) = 𝑥𝜑(𝑢) + 𝑦𝜑(𝑤) = 𝑥𝜄𝜑([𝑢]) + 𝑦𝜄𝜑([𝑤]) .

Тем самым, 𝜄𝜑 ∶ 𝑀∕ker𝜑 ⥲ im𝜑 является изоморфизмом 𝐾-модулей.

Упражнение 5.10. Пусть модуль 𝑀 является прямой суммой своих подмодулей 𝐿,𝑁 ⊂ 𝑀. По-
кажите, что𝑀∕𝑁 ≃ 𝐿 и𝑀∕𝐿 ≃ 𝑁.

Пример 5.10 (дополнительные подмодули и разложимость)

Подмодули 𝐿,𝑁 ⊂ 𝑀 называются дополнительными, если𝑀 = 𝐿⊕𝑁. Согласно сл. 5.1 на стр. 85
для этого необходимо и достаточно, чтобы 𝐿 ∩ 𝑁 = 0 и 𝐿 + 𝑁 = 𝑀. В такой ситуации модуль𝑀
называется разложимым, а про подмодули 𝐿, 𝑁 говорят, что они отщепляются от𝑀 прямыми
слагаемыми.Модуль𝑀, не представимыйв виде прямой суммысвоих собственныхподмодулей,
называется неразложимым. Например, ℤ-модуль ℤ неразложим, хотя и имеет собственные ℤ-
подмодули. В самом деле, каждый собственный подмодуль 𝐼 ⊂ ℤ представляет собою главный
идеал 𝐼 = (𝑑). Согласно упр. 5.10, разложение ℤ = (𝑑) ⊕ 𝑁 означает наличие в ℤ подмодуля
𝑁 ⊂ ℤ, изоморфного ℤ-модулю ℤ∕ (𝑑), все элементы которого аннулируются умножением на
число 𝑑 ∈ ℤ, тогда как в ℤ-модуле ℤ умножение на число 𝑑 действует инъективно.

Упражнение 5.11. Рассмотрим ℤ-подмодуль 𝑁 ⊂ ℤ2, порождённый векторами (2, 1) и (1, 2).
Покажите, что 𝑁 ≃ ℤ2, 𝑀∕𝑁 ≃ ℤ∕ (3), и не существует такого ℤ-подмодуля 𝐿 ⊂ ℤ2, что
ℤ2 = 𝐿 ⊕ 𝑁 .

Пример 5.11 (фактор модуля по идеалу кольца)

Для произвольных 𝐾-модуля𝑀 и идеала 𝐼 ⊂ 𝐾 обозначим через

𝐼𝑀 ≝ {𝑥1𝑎1 + … + 𝑥𝑛𝑎𝑛 ∈ 𝑀 | 𝑥𝑖 ∈ 𝐼, 𝑎𝑖 ∈ 𝑀, 𝑛 ∈ ℕ}

𝐾-подмодуль, образованный всевозможными линейными комбинациями элементов модуля𝑀
с коэффициентами из идеала 𝐼.
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Упражнение 5.12. Проверьте, что 𝐼𝑀 действительно является 𝐾-подмодулем в𝑀.

Абелева факторгруппа𝑀∕𝐼𝑀, элементы которой— это классы

[𝑤]𝐼𝑀 = 𝑤 + 𝐼𝑀 = {𝑣 ∈ 𝑀 | 𝑣 − 𝑤 ∈ 𝐼𝑀} ,

является модулем над факторкольцом𝐾∕𝐼. Умножение векторов на скаляры задаётся правилом

[𝑥]𝐼 ⋅ [𝑤]𝐼𝑀 = [𝑥𝑤][𝐼𝑀] .

Упражнение 5.13. Убедитесь, что оно корректно.

Если𝑀 = 𝑁1⊕…⊕𝑁𝑚 раскладывается с прямую сумму своих подмодулей𝑁𝑖 ⊂ 𝑀, то возникает
аналогичное разложение 𝐼𝑀 = 𝐼𝑁1 ⊕ … ⊕ 𝐼𝑁𝑚 в сумму подмодулей 𝐼𝑁𝑖 = 𝑁𝑖 ∩ 𝐼𝑀.

Упражнение 5.14. Убедитесь в этом.

Мы заключаем, что в этом случае𝑀∕𝐼𝑀 = (𝑁1∕𝐼𝑁1) ⊕ … ⊕ (𝑁𝑚∕𝐼𝑁𝑚). В частности,

𝐾𝑛∕𝐼𝐾𝑛 = (𝐾∕𝐼)𝑛 . (5-10)

для любого идеала 𝐼 ⊂ 𝐾.

Предложение 5.3

Для любых 𝐾-модулей 𝑀, 𝑁 и подмодуля 𝐿 ⊂ 𝑀 гомоморфизмы 𝜑∶ 𝑀 → 𝑁, переводящие 𝐿 в
нуль, образуют подмодуль Ann𝑁(𝐿) ≝ {𝜑∶ 𝑀 → 𝑁 | 𝜑(𝐿) = 0} ⊂ Hom(𝑀,𝑁). Каждый гомомор-
физм𝜑 ∈ Ann𝑁(𝐿) корректно задаёт𝐾-линейное отображение𝜑𝐿 ∶ 𝑀∕𝐿 → 𝑁, [𝑣]𝐿 ↦ 𝜑(𝑣). При
этом отображение Ann𝑁(𝐿) → Hom𝐾(𝑀∕𝐿,𝑁), 𝜑 ↦ 𝜑𝐿, является изоморфизмом 𝐾-модулей, и
обратный к нему изоморфизм Hom𝐾(𝑀∕𝐿,𝑁) → Ann𝑁(𝐿), 𝜓 ↦ 𝜓𝜋𝐿, переводит гомоморфизм
𝜓∶ 𝑀∕𝐿 → 𝑁 в его композицию с эпиморфизмом факторизации 𝜋𝐿 ∶ 𝑀 ↠ 𝑀∕𝐿.

Доказательство. Если 𝜑1,𝜑2 ∶ 𝑀 → 𝑁 аннулируют 𝐿, то линейная комбинация 𝑥1𝜑1 + 𝑦1𝜑2
тоже аннулирует 𝐿. Поэтому Ann𝑁(𝐿) является 𝐾-подмодулем в Hom𝐾(𝑀,𝑁). Если 𝜑 ∈ Ann𝑁(𝐿),
отображение 𝜑𝐿 ∶ [𝑣]𝐿 ↦ 𝜑(𝑣) корректно определено, так как для любого вектора 𝑤 = 𝑣 + 𝓁 с
𝓁 ∈ 𝐿 имеем 𝜑𝐿(𝑤) = 𝜑(𝑣) + 𝜑(𝓁) = 𝜑(𝑣) = 𝜑𝐿(𝑣). Очевидно, что отображение 𝜑𝐿, во-первых,
само 𝐾-линейно, а во вторых, 𝐾-линейно зависит от 𝜑. Поэтому отображение

Ann𝑁(𝐿) → Hom𝐾(𝑀∕𝐿,𝑁) , 𝜑 ↦ 𝜑𝐿 ,

является гомоморфизмом 𝐾-модулей. Поскольку для любого гомоморфизма 𝜓∶ 𝑀 ∕ 𝐿 → 𝑁
выполняется равенство (𝜓𝜋𝐿)𝐿 = 𝜓, а для любого гомоморфизма 𝜑 ∈ Ann𝑁(𝐿) — равенство
𝜑𝐿𝜋𝐿 = 𝜑, отображения 𝜑 ↦ 𝜑𝐿 и 𝜓 ↦ 𝜓𝜋𝐿 обратны друг другу и тем самым биективны. □

5.1.5. Образующие и соотношения. Говорят, что вектор 𝑣 из𝐾-модуля𝑀 линейно выража-
ется над𝐾 через векторы𝑤1, … ,𝑤𝑚, если 𝑣 = 𝑥1𝑤1+…+𝑥𝑚𝑤𝑚 для некоторых 𝑥1, … , 𝑥𝑚 ∈ 𝐾.
Правая часть этой формулы называется линейной комбинацией векторов𝑤𝑖 ∈ 𝑉 с коэффициен-
тами 𝑥𝑖 ∈ 𝐾. Линейная комбинация, в которой все коэффициенты 𝑥𝑖 = 0, называетсятривиаль-
ной. Множество векторов 𝑍 ⊂ 𝑀 называется линейно зависимым, если некоторая нетривиаль-
ная конечная линейная комбинация векторов из 𝑍 обращается в нуль, т. е. 𝑥1𝑢1 + … +𝑥𝑘𝑢𝑘 = 0
для некоторых 𝑢1, … , 𝑢𝑘 ∈ 𝑍 и 𝑥1, … , 𝑥𝑘 ∈ 𝐾, таких что не все 𝑥𝑖 равны нулю. Каждая такая
линейная комбинация называется линейным соотношением на векторы из множества 𝑍.
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Мыговорим, чтомножество𝑍 ⊂ 𝑀 порождаетмодуль𝑀, еслилюбойвектор𝑣 ∈ 𝑀 является
линейнойкомбинациейконечного числа векторовиз𝑍, т. е.𝑣 = 𝑥1𝑢1+…+𝑥𝑚𝑢𝑚 длянекоторых
𝑥𝑖 ∈ 𝐾, 𝑤𝑖 ∈ 𝐺 и𝑚 ∈ ℕ.

Множество𝐸 ⊂ 𝑀 называется базисом модуля𝑀, если каждый вектор 𝑣 ∈ 𝑀 единственным
образом линейно выражается через векторы из 𝐸, т. е. 𝑣 = ∑𝑒∈𝐸 𝑥𝑒𝑒, где все 𝑥𝑒 ∈ 𝐾 и только
конечноемножество из них отлично от нуля, и равенство двух таких сумм∑𝑒∈𝐸 𝑥𝑒𝑒 = ∑𝑒∈𝐸 𝑦𝑒𝑒
с конечным числом ненулевых слагаемых равносильно равенству коэффициентов 𝑥𝑒 = 𝑦𝑒 при
каждом векторе 𝑒 ∈ 𝐸.

Модуль𝑀, обладающий базисом, называется свободным, и коэффициенты 𝑥𝑒 единственно-
го линейного выражения вектора 𝑣 через базисные векторы 𝑒 ∈ 𝐸 какого-либо базиса 𝐸 ⊂ 𝑀
называются координатами вектора 𝑣 в базисе 𝐸. Иначе можно сказать, что свободный модуль
с базисом 𝐸 представляет собою прямую сумму ⨁𝑒∈𝐸 𝐾𝑒 одинаковых копий 𝐾𝑒 = 𝐾 модуля 𝐾,
занумерованных элементами 𝑒 ∈ 𝐸.

Лемма 5.1

Множество векторов 𝐸 составляет базис𝐾-модуля𝑀 если и только если оно линейно независи-
мо и линейно порождает𝑀 над 𝐾.

Доказательство. Пусть множество векторов 𝐸 порождает 𝐾-модуль𝑀. Если существует линей-
ное соотношение 𝑥1𝑒1+…+𝑥𝑛𝑒𝑛 = 0, в котором 𝑒𝑖 ∈ 𝐸 и 𝑥1 ≠ 0, то нулевой вектор 0 ∈ 𝑀 имеет
два различныхпредставления в линейной комбинации векторов из𝐸: первое даётся указанным
соотношением, второе имеет вид 0 = 0 ⋅ 𝑒1. Наоборот, если множество 𝐸 линейно независимо
и имеется равенство ∑𝑒∈𝐸 𝑥𝑒𝑒 = ∑𝑒∈𝐸 𝑦𝑒𝑒, в обоих частях которого отлично от нуля лишь ко-
нечное число коэффициентов, то перенося все ненулевые слагаемые в одну часть, получаем ко-
нечное линейное соотношение ∑𝑒∈𝐸(𝑥𝑒−𝑦𝑒) ⋅𝑒 = 0, возможное только если все коэффициенты
нулевые, т. е. только когда 𝑥𝑒 = 𝑦𝑒 при всех 𝑒. □

Предостережение 5.2. Если кольцо коэффициентов 𝐾 не является полем, то линейная зависи-
мость векторов, вообще говоря, не даёт возможности линейно выразить один из этих векторов
через другие. Поэтому понятие размерности в том виде, как оно определяется для векторных
пространств над полем, не переносится буквально на модули над произвольными коммутатив-
ными кольцами. Например, идеал 𝐼 ⊂ 𝐾 порождается как модуль над 𝐾 одним элементом если
и только если он главный, т. е. 𝐼 = (𝑑) для некоторого 𝑑 ∈ 𝐾. Такой идеал является свободным
𝐾-модулем с базисом 𝑑 если и только если 𝑑 не делит нуль в 𝐾. Если же идеал 𝐼 ⊂ 𝐾 не главный,
то его нельзя линейно породить менее, чем двумя элементами, а любой набор, содержащий по
меньшей мере два разных элемента кольца линейно зависим, так как 𝑎𝑏 − 𝑏𝑎 = 0 для любых
𝑎, 𝑏 ∈ 𝐾. Поэтому в неглавном идеале заведомо нет базиса. Так, идеал (𝑥, 𝑦) ⊂ ℚ[𝑥, 𝑦], состо-
ящий из всех многочленов с нулевым свободным членом, как модуль над кольцом 𝐾 = ℚ[𝑥, 𝑦]
линейно порождается векторами 𝑤1 = 𝑥 и 𝑤2 = 𝑦, которые линейно зависимы над 𝐾, ибо
𝑦𝑤1 − 𝑥𝑤2 = 0, но ни один из них не выражается линейно через другой.

Пример 5.12 (задание модуля образующими и соотношениями)

Координатный модуль 𝐾𝑛 из прим. 5.2 на стр. 82 свободен, так как каждый вектор (𝑥1, … , 𝑥𝑛)
единственным образом представляется в виде линейной комбинации 𝑥1𝑒1 + … + 𝑥𝑛𝑒𝑛 стан-
дартных базисных векторов 𝑒𝑖 = (0, … , 0, 1, 0, … , 0), где единственная ненулевая координата
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равна 1 и стоит на 𝑖-том месте. Если некоторый𝐾-модуль𝑀 линейно порождается над𝐾 векто-
рами 𝑤1, … ,𝑤𝑚, то имеется 𝐾-линейный эпиморфизм

𝜋∶ 𝐾𝑚 ↠ 𝑀 , (𝑥1, … , 𝑥𝑚) ↦ 𝑥1𝑤1 + … + 𝑥𝑚𝑤𝑚 .

Его ядро 𝑅 = ker𝜋 называется модулем соотношений между образующими 𝑤𝑖, поскольку оно
состоит из всех тех строк (𝑥1, … , 𝑥𝑛) ∈ 𝐾𝑚, что являются коэффициентами линейных соотно-
шений 𝑥1𝑤1 + … + 𝑥𝑚𝑤𝑚 = 0 между образующими 𝑤𝑖 в модуле 𝑀. Таким образом, каждый
конечно порождённый 𝐾-модуль𝑀 имеет вид𝑀 = 𝐾𝑚∕𝑅 для некоторого числа𝑚 ∈ ℕ и неко-
торого подмодуля 𝑅 ⊂ 𝐾𝑚.

5.1.6. Ранг свободного модуля. Модуль 𝐹 называется свободным модулем ранга 𝑟 если он
обладает базисом из 𝑟 векторов. Число 𝑟 обозначается rk𝐹 и не зависит от выбора базиса в силу
следующей теоремы.

Теорема 5.1

Все базисы свободного модуля 𝐹 над коммутативным кольцом 𝐾 с единицей равномощны.

Доказательство. Пусть множество векторов 𝐸 ⊂ 𝐹 является базисом в 𝐹, т. е. 𝐹 = ⨁𝑒∈𝐸 𝐾𝑒.
Рассмотрим произвольный максимальный идеал1 𝔪 ⊂ 𝐾. В прим. 5.11 на стр. 86 мы видели,
что фактормодуль 𝐹∕𝔪𝐹 является векторным пространством над полем 𝕜 = 𝐾∕𝔪 и изоморфен
⨁𝑒∈𝐸 𝕜 ⋅ [𝑒] в силу форм. (5-10) на стр. 87. Таким образом классы [𝑒] векторов 𝑒 ∈ 𝐸 составляют
базис векторного пространства 𝐹 ∕𝔪𝐹 над полем 𝕜 = 𝐾 ∕𝔪. Но из курса линейной алгебры
известно2, что все базисы векторного пространства имеют одинаковую мощность. □

5.2. Алгебры над коммутативными кольцами. Модуль 𝐴 над коммутативным кольцом 𝐾 на-
зывается 𝐾-алгеброй или алгеброй над 𝐾, если на нём задана операция умножения

𝐴 × 𝐴 → 𝐴 , (𝑎, 𝑏) ↦ 𝑎𝑏 ,

которая 𝐾-линейна по 𝑎 при фиксированном 𝑏 и 𝐾-линейна по 𝑏 при фиксированном3 𝑎, т. е.

(𝑥1𝑎1 + 𝑥2𝑎2) 𝑏 = 𝑥1𝑎1𝑏 + 𝑥2𝑎2𝑏 и 𝑎 (𝑦1𝑏1 + 𝑦2𝑏2) = 𝑦1𝑎𝑏1 + 𝑦2𝑎𝑏2

для всех 𝑎, 𝑏, 𝑎𝑖, 𝑏𝑗 ∈ 𝐴 и всех 𝑥𝑖, 𝑦𝑗 ∈ 𝐾. Поскольку для всех 𝑎 ∈ 𝐴 выполняются равенства

0 ⋅ 𝑎 = (0 + 0) 𝑎 = 0 ⋅ 𝑎 + 0 ⋅ 𝑎 и 𝑎 ⋅ 0 = 𝑎 (0 + 0)𝑎 = 𝑎 ⋅ 0 + 𝑎 ⋅ 0 ,

мы заключаем, что 0 ⋅ 𝑎 = 0 = 𝑎 ⋅ 0 для всех 𝑎 ∈ 𝐴 в любой 𝐾-алгебре 𝐴.
Алгебра 𝐴 называется ассоциативной, если (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) для всех 𝑎, 𝑏, 𝑐 ∈ 𝐴, и коммута-

тивной — если 𝑎𝑏 = 𝑏𝑎 для всех 𝑎, 𝑏 ∈ 𝐴. Алгебра 𝐴 называется алгеброй с единицей, если в
ней есть нейтральный элемент по отношению к умножению, т. е. такой 𝑒 ∈ 𝐴, что 𝑒𝑎 = 𝑎𝑒 = 𝑎
для всех 𝑎 ∈ 𝐴. Так как для любых элементов 𝑒′, 𝑒″ с этим свойством выполняются равенства
𝑒′ = 𝑒′ ⋅ 𝑒″ = 𝑒″, единица в алгебре единственна, если существует.

1См. прим. 4.3 на стр. 70.
2См. теор. 7.3 на стр. 93 лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_07.pdf.
3Такие функции от двух аргументов называются билинейными.

http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_07.pdf
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Отображение 𝜑∶ 𝐴 → 𝐵 между 𝐾-алгебрами 𝐴 и 𝐵 называется гомоморфизмом 𝐾-алгебр,
если оно 𝐾-линейно и перестановочно с умножением, т. е. 𝜑(𝑎1𝑎2) = 𝜑(𝑎1)𝜑(𝑎2). Будучи го-
моморфизмами𝐾-модулей, гомоморфизмы𝐾-алгебр обладают всеми свойствами из n∘ 5.1.1 на
стр. 82 выше.

Примерами коммутативных ассоциативных𝐾-алгебр с единицами являются алгебра мно-
гочленов 𝐾[𝑥1, … , 𝑥𝑛] и другие конечно порождённые коммутативные 𝐾-алгебры из прим. 4.5
на стр. 71. Основным модельным примером некоммутативной 𝐾-алгебры является

Пример 5.13 (алгебра 𝐾-линейных эндоморфизмов)

Модуль Hom𝐾(𝑀,𝑀) всех 𝐾-линейных отображений𝑀 → 𝑀 обозначается End𝑀 или End𝐾𝑀 и
называется алгеброй эндоморфизмов1 𝐾-модуля𝑀, поскольку композиция эндоморфизмов

End(𝑀) × End(𝑀) → End(𝑀) , (𝜑,𝜓) ↦ (𝜑 ∘ 𝜓∶ 𝑤 ↦ 𝜑(𝜓(𝑤))) ,

задаёт на End𝑀 структуру ассоциативной 𝐾-алгебры с единицей, в роли которой выступает
тождественный эндоморфизм Id𝑀 ∶ 𝑤 ↦ 𝑤.

Упражнение 5.15. Проверьте, что композиция отображений ассоциативна и линейно зависит
от каждого из двух компонуемых отображений.

5.2.1. Алгебра матриц Mat𝒏(𝑲). Рассмотрим свободный координатный модуль 𝑀 = 𝐾𝑛 с
базисом из векторов 𝑒1, … , 𝑒𝑛. Каждый 𝐾-линейный эндоморфизм 𝜑∶ 𝐾𝑛 → 𝐾𝑛 однозначно
задаётся набором из 𝑛 векторов 𝑤𝑖 = 𝜑(𝑒𝑖) — образами базисных векторов под действием эн-
доморфизма 𝜑. В самом деле, поскольку любой вектор𝑤 ∈ 𝐾𝑛 единственным образом записы-
вается в виде 𝑤 = 𝑥1𝑒1 + … + 𝑥𝑖𝑒𝑖, значение 𝜑 на нём вычисляется как

𝜑(𝑤) = 𝜑(𝑥1𝑒1 + … + 𝑥𝑛𝑒𝑛) = 𝑥1𝜑(𝑒1) + … + 𝑥𝑛𝜑(𝑤𝑛) = 𝑥1𝑤1 + … + 𝑥𝑛𝑤𝑛 ,

и наоборот, для любого набора векторов 𝑤1, … ,𝑤𝑛 ∈ 𝐾𝑛 отображение

𝜑𝑤1,…,𝑤𝑛
∶ 𝐾𝑛 → 𝐾𝑛 , 𝑥1𝑒1 + … + 𝑥𝑛𝑒𝑛 ↦ 𝑥1𝑤1 + … + 𝑥𝑛𝑤𝑛 ,

является 𝐾-линейным и переводит каждый базисный вектор 𝑒𝑖 в вектор 𝑤𝑖.
Упражнение 5.16. Убедитесь в этом.

Таким образом, мы получаем биекцию между 𝐾-линейными эндоморфизмами 𝐾𝑛 → 𝐾𝑛, т. е.
элементами𝐾-модуля End𝐾𝑛, и упорядоченныминаборами (𝑤1, … ,𝑤𝑛) из 𝑛 векторов𝑤𝑖 ∈ 𝐾𝑛,
т. е. элементами 𝐾-модуля 𝐾𝑛 × … × 𝐾𝑛 ≃ 𝐾𝑛2 .

Упражнение 5.17. Убедитесь в том, что эта биекция 𝐾-линейна, т. е. является изоморфизмом
𝐾-модулей.

Набор векторов𝑤𝑗 = 𝜑(𝑒𝑗) ∈ 𝐾𝑛, задающих эндоморфизм𝜑∶ 𝐾𝑛 → 𝐾𝑛, принято записывать в
виде квадратной матрицы2 𝛷 размера 𝑛×𝑛, помещая координаты 𝑗-го вектора𝑤𝑗 в 𝑗-й столбец
этой таблицы:

𝑤1,𝑤2, … ,𝑤𝑛 =
⎛
⎜
⎜
⎝

𝜑11
⋮
𝜑𝑛1

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

𝜑12
⋮
𝜑𝑛2

⎞
⎟
⎟
⎠

, … ,
⎛
⎜
⎜
⎝

𝜑1𝑛
⋮
𝜑𝑛𝑛

⎞
⎟
⎟
⎠

⇢ 𝛷 =
⎛
⎜
⎜
⎝

𝜑11 𝜑12 … 𝜑1𝑛
⋮ ⋮ … ⋮
𝜑𝑛1 𝜑𝑛2 … 𝜑𝑛𝑛

⎞
⎟
⎟
⎠
.

1Терминологию, относящуюся к отображениям множеств, см. на стр. 5.
2См. прим. 5.3 на стр. 82.
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Матрица 𝛷 = (𝜑𝑖𝑗) в 𝑖-й строке и 𝑗-м столбце которой находится 𝑖-я координата вектора 𝜑(𝑒𝑗),
называется матрицей отображения 𝜑∶ 𝐾𝑛 → 𝐾𝑛 в базисе 𝑒1, … , 𝑒𝑛. Таким образом, сопостав-
ляя эндоморфизму 𝜑 его матрицу 𝛷, мы получаем изоморфизм 𝐾-модулей

End(𝐾𝑛) ⥲ Mat𝑛×𝑛(𝐾) , 𝜑 ↦ 𝛷 , (5-11)

где Mat𝑛(𝐾) ≝ Mat𝑛×𝑛(𝐾) — модуль 𝑛 × 𝑛 матриц1 с элементами из 𝐾. Изоморфизм (5-11) поз-
воляет перенести на 𝐾-модуль матриц ассоциативное умножение с единицей, которое имеется
в алгебре End(𝐾𝑛) из прим. 5.13 выше и задаётся композицией отображений. Возникающая та-
ким образом билинейная ассоциативная операция

Mat𝑛×𝑛(𝐾) × Mat𝑛×𝑛(𝐾) → Mat𝑛×𝑛(𝐾) , (𝛷,𝛹) ↦ 𝛷𝛹 ,

где 𝛷 и 𝛹 суть матрицы 𝐾-линейных отображений 𝜑,𝜓∶ 𝐾𝑛 → 𝐾𝑛, а 𝛷𝛹 — матрица их ком-
позиции 𝜑𝜓∶ 𝐾𝑛 → 𝐾𝑛, 𝑤 ↦ 𝜑(𝜓(𝑤)), называется произведением матриц. Элемент 𝑝𝑖𝑗 ∈ 𝐾
произведения 𝑃 = 𝛷𝛹 = (𝑝𝑖𝑗) является 𝑖-й координатой вектора

𝜑(𝜓(𝑒𝑗)) = 𝜑(𝜓1𝑗𝑒1 + … + 𝜓𝑛𝑗𝑒𝑛) = 𝜓1𝑗𝜑(𝑒1) + … + 𝜓𝑛𝑗𝜑(𝑒𝑛) ,

которая равна𝜓1𝑗𝜑𝑖1+…+𝜓𝑛𝑗𝜑𝑖𝑛. Мы заключаем, что произведение 𝐶 = 𝐴𝐵 матриц𝐴 = (𝑎𝑖𝑗)
и 𝐵 = (𝑏𝑖𝑗) имеет в 𝑖-й строке и 𝑗-м столбце элемент

𝑐𝑖𝑗 = ∑
𝑘
𝑎𝑖𝑘𝑏𝑘𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + … + 𝑎𝑖𝑛𝑏𝑛𝑗 .

Единицей алгебры Mat𝑛×𝑛(𝐾) является матрица тождественного отображения Id∶ 𝐾𝑛 → 𝐾𝑛

𝐸 =
⎛
⎜
⎜
⎜
⎝

1 0 … 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 1

⎞
⎟
⎟
⎟
⎠

∈ Mat𝑛×𝑛(𝐾) , (5-12)

(по диагонали стоят единицы, в остальных местах — нули). Как и композиция отображений,
умножение матриц не коммутативно. Например,

(
1 2
0 3) ⋅ (

3 0
4 5) = (

11 10
12 15)

(
3 0
4 5) ⋅ (

1 2
0 3) = (

3 6
4 23) .

Как модуль над𝐾 алгебраMat𝑛(𝐾) изоморфна координатному модулю𝐾𝑛2 и тем самым свобод-
на. Стандартный базис в Mat𝑛(𝐾) состоит из матриц 𝐸𝑖𝑗, единственным ненулевым элементом
которых является единица, стоящая в 𝑖-й строке и 𝑗-м столбце. Произвольная матрица 𝐴 = (𝑎𝑖𝑗)
линейно выражается через этот базис по формуле 𝐴 = ∑𝑖,𝑗 𝑎𝑖𝑗𝐸𝑖𝑗. Прообразами базисных мат-
риц 𝐸𝑖𝑗 при изоморфизме (5-11) являются 𝐾-линейные отображения 𝐸𝑖𝑗 ∶ 𝐾𝑛 → 𝐾𝑛, которые

1См. прим. 5.3 на стр. 82.
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мы обозначаем также, как и базисные матрицы, и которые действуют на базисные векторы 𝑒𝑘
координатного модуля 𝐾𝑛 по правилам

𝐸𝑖𝑗(𝑒𝑘) =
{
𝑒𝑖 при 𝑘 = 𝑗
0 при 𝑘 ≠ 𝑗.

Отсюда немедленно получается таблица умножения базисных матриц 𝐸𝑖𝑗:

𝐸𝑖𝑘𝐸𝓁𝑗 =
{
𝐸𝑖𝑗 при 𝑘 = 𝓁
0 при 𝑘 ≠ 𝓁,

(5-13)

которая ещё раз показывает, что умножение матриц не коммутативно: 𝐸12𝐸21 ≠ 𝐸21𝐸12.
Упражнение 5.18. Составьте таблицу коммутаторов [𝐸𝑖𝑘,𝐸𝓁𝑗] ≝ 𝐸𝑖𝑘𝐸𝓁𝑗 − 𝐸𝓁𝑗𝐸𝑖𝑘.

Пример 5.14

Вычислим 𝐴2023 для матрицы 𝐴 = (
1 1
0 1). Поскольку 𝐴 = 𝐸 + 𝐸12 и матрицы 𝐸 и 𝐸12 комму-

тируют, вычислить (𝐸 + 𝐸12)2023 можно по формуле для раскрытия бинома1, а так как 𝐸𝑛12 = 0
при 𝑛 > 1, на ответ влияют только первые два члена:

(
1 1
0 1)

2023
= (𝐸 + 𝐸12)2023 = 𝐸 + 2023𝐸12 = (

1 2023
0 1 ) .

Упражнение 5.19. Покажите, что (
1 1
0 1)

𝑛
= (

1 𝑛
0 1) при всех 𝑛 ∈ ℤ.

5.2.2. Обратимые элементы. Элемент 𝑎 алгебры 𝐴 с единицей 𝑒 ∈ 𝐴 называется обрати-
мым, если существует такой элемент 𝑎−1 ∈ 𝐴, что 𝑎𝑎−1 = 𝑎−1𝑎 = 𝑒. В ассоциативной алгебре 𝐴
это требование можно ослабить до существования таких 𝑎′, 𝑎″ ∈ 𝐴, что 𝑎′𝑎 = 𝑎𝑎″ = 𝑒. В са-
мом деле, тогда 𝑎′ = 𝑎′𝑒 = 𝑎′(𝑎𝑎″) = (𝑎′𝑎)𝑎″ = 𝑒𝑎″ = 𝑎″. Это вычисление заодно показывает,
что обратный к 𝑎 элемент 𝑎−1, если он существует, однозначно определяется по 𝑎 равенствами
𝑎𝑎−1 = 𝑎−1𝑎 = 𝑒.

Пример 5.15 (обратимые 2 × 2-матрицы)

Выясним, какие 2 × 2-матрицы

𝛷 = (
𝑎 𝑏
𝑐 𝑑)

обратимы в алгебреMat2×2(𝐾) из n∘ 5.2.1. Чтобы получить нули в правом верхнем и левом ниж-
нем углах произведения

(
𝛼 𝛽
𝛾 𝛿) (

𝑎 𝑏
𝑐 𝑑) = (

∗ 0
0 ∗)

можно в качестве первого приближения к левой матрице взять матрицу со строками

(𝛼,𝛽) = (𝑑, −𝑏) и (𝛾, 𝛿) = (−𝑐, 𝑎) .
1См. формулу (0-8) на стр. 8.
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Тогда

(
𝑑 −𝑏

−𝑐 𝑑 ) (
𝑎 𝑏
𝑐 𝑑) = (

𝑎𝑑 − 𝑏𝑐 0
0 𝑎𝑑 − 𝑏𝑐) = (

𝑎 𝑏
𝑐 𝑑) (

𝑑 −𝑏
−𝑐 𝑑 ) .

Матрица

𝛷∨ ≝ (
𝑑 −𝑏

−𝑐 𝑎 )

называется присоединённой к матрице𝛷, а число det𝛷 ≝ 𝑎𝑑 − 𝑏𝑐 ∈ 𝐾— определителем матри-
цы 𝛷. В этих обозначениях предыдущее равенство переписывается в виде

𝛷∨𝛷 = 𝛷𝛷∨ = det(𝛷) ⋅ 𝐸 .

Мы заключаем, что если det𝛷 обратим в 𝐾, то матрица 𝛷 обратима и 𝛷−1 = det(𝛷)−1𝛷∨.

Упражнение 5.20. Убедитесь, что (𝐴𝐵)∨ = 𝐵∨𝐴∨ для любых 𝐴,𝐵 ∈ Mat2×2(𝐾).
Из упражнения вытекает, что для всех 𝐴,𝐵 ∈ Mat2×2(𝐾)

det(𝐴𝐵) ⋅ 𝐸 = 𝐴𝐵(𝐴𝐵)∨ = 𝐴𝐵𝐵∨𝐴∨ = 𝐴 ⋅ det(𝐵) ⋅ 𝐸 ⋅ 𝐴∨ = det(𝐵) ⋅ 𝐴𝐴∨ = det(𝐴) ⋅ det(𝐵) ⋅ 𝐸 ,

откуда det(𝐴𝐵) = det(𝐴) ⋅ det(𝐵). Мы заключаем, что если матрица 𝛷 обратима, то

1 = det𝐸 = det(𝛷𝛷−1) = det(𝛷) ⋅ det(𝛷−1) ,

и тем самым det𝛷 обратим в 𝐾. Итак, 2× 2 матрица𝛷 обратима если и только если обратим её
определитель, и в этом случае 𝛷−1 = det(𝛷)−1𝛷∨.

Пример 5.16 (обращение унитреугольной матрицы)

Диагональ, идущая из левого верхнего угла квадратнойматрицы в правый нижний, называется
главной. Если все стоящие под (соотв. над) главной диагональю элементы нулевые, матрица
называется верхней (соотв. нижней) треугольной.

Упражнение 5.21. Проверьте, что верхние и нижние треугольные матрицы являются подал-
гебрами1 в Mat𝑛(𝐾).

Треугольные матрицы с единицами на главной диагонали называются унитреугольными. По-
кажем, что каждая верхняя унитреугольная матрица 𝐴 = (𝑎𝑖𝑗) обратима2 и обратная к ней
матрица 𝐵 = 𝐴−1 тоже верхняя унитреугольная с наддиагональными элементами

𝑏𝑖𝑗 =
𝑗−𝑖−1

∑
𝑠=0

(−1)𝑠+1
∑

𝑖<𝜈1<…<𝜈𝑠<𝑗
𝑎𝑖𝜈1𝑎𝜈1𝜈2𝑎𝜈2𝜈3 … 𝑎𝜈𝑠−1𝜈𝑠𝑎𝜈𝑠𝑗 =

= −𝑎𝑖𝑗 + ∑
𝑖<𝑘<𝑗

𝑎𝑖𝑘𝑎𝑘𝑗 − ∑
𝑖<𝑘<𝓁<𝑗

𝑎𝑖𝑘𝑎𝑘𝓁𝑎𝓁𝑗 + ∑
𝑖<𝑘<𝓁<𝑚<𝑗

𝑎𝑖𝑘𝑎𝑘𝓁𝑎𝓁𝑚𝑎𝑚𝑗 − … . (5-14)

Для этого запишем матрицу 𝐴 в виде линейной комбинации базисных матриц 𝐸𝑖𝑗:

𝐴 = 𝐸 + ∑
𝑖<𝑗

𝑎𝑖𝑗𝐸𝑖𝑗 = 𝐸 + 𝑁 ,

1Т. е. являются подмодулями, замкнутыми относительно умножения.
2Причём этот факт, как и приводимое здесь доказательство, остаётся в силе для матриц с элементами

в произвольном (даже некоммутативном) ассоциативном кольце с единицей.
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где матрица 𝑁 = ∑𝑖<𝑗 𝑎𝑖𝑗𝐸𝑖𝑗 представляет собою наддиагональную часть матрицы 𝐴. Согласно
форм. (5-13) на стр. 92 коэффициент при 𝐸𝑖𝑗 в матрице 𝑁𝑘 равен нулю при 𝑗 − 𝑖 < 𝑘, а при
𝑗 − 𝑖 ⩾ 𝑘 представляет собою сумму всевозможных произведений1

𝑎𝑖𝜈1𝑎𝜈1𝜈2… 𝑎𝜈𝑘−2𝜈𝑘−1
𝑎𝜈𝑘−1𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 сомножителей

, где 𝑖 < 𝜈1 < … < 𝜈𝑘−1 < 𝑗 .

В частности, он заведомо зануляется, когда 𝑘 превышает размер матрицы 𝐴. Полагая 𝑥 = 𝐸,
𝑦 = 𝑁 в равенстве2 (𝑥 + 𝑦)(𝑥𝑚−1 − 𝑥𝑚−2𝑦 + … + (−1)𝑚−1𝑦𝑚−1) = 𝑥𝑚 − 𝑦𝑚, при достаточно
большом𝑚 мы получим матричное равенство 𝐴(𝐸 − 𝑁 + 𝑁2 − 𝑁3 + …) = 𝐸, откуда

𝐴−1 = 𝐸 − 𝑁 + 𝑁2 − 𝑁3 + … ,

что и утверждалось.

5.3. Матричный формализм. Матрица из𝑚 строк и 𝑛 столбцов, заполненная элементами ка-
кого-нибудь𝐾-модуля 𝑅, называется𝑚×𝑛 матрицей с элементами из 𝑅. Множество всех таких
матриц обозначаетсяMat𝑚×𝑛(𝑅) и тоже является𝐾-модулем, изоморфным прямому произведе-
нию𝑚𝑛 копий модуля 𝑅.

5.3.1. Умножение матриц. Пусть элементы 𝐾-модулей 𝐿 и 𝑀 можно билинейно перемно-
жать со значениями в 𝐾-модуле 𝑁, т. е. задано такое отображение 𝐿 × 𝑀 → 𝑁, (𝑢,𝑤) → 𝑢𝑤, что
(𝑥1𝑢1 + 𝑥2𝑢2)(𝑦1𝑤1 + 𝑦2𝑤2) = 𝑥1𝑦1𝑢1𝑤1 + 𝑥1𝑦2𝑢1𝑤2 + 𝑥2𝑦1𝑢2𝑤1 + 𝑥2𝑦2𝑢2𝑤2 для всех 𝑢𝑖 ∈ 𝐿,
𝑤𝑗 ∈ 𝑀 и 𝑥𝑖, 𝑦𝑗 ∈ 𝐾. Тогда для всех𝑚, 𝑠, 𝑛 ∈ ℕ определено произведение матриц

Mat𝑚×𝑠(𝐿) × Mat𝑠×𝑛(𝑀) → Mat𝑚×𝑛(𝑁) , (𝐴,𝐵) ↦ 𝐴𝐵 .

Обратите внимание, что в этом произведенииширина левой матрицы𝐴 должна быть равна вы-
соте правой матрицы 𝐵, а само произведение имеет столько же строк, сколько левый сомножи-
тель, и столько же столбцов, сколько правый. При 𝑚 = 𝑛 = 1 результатом умножения строки
ширины 𝑠 на столбец высоты 𝑠 является матрица размера 1 × 1, т. е. один элемент, который
определяется так:

(𝑎1, … , 𝑎𝑠)
⎛
⎜
⎜
⎝

𝑏1
⋮
𝑏𝑠

⎞
⎟
⎟
⎠

≝ 𝑎1𝑏1 + … + 𝑎𝑠𝑏𝑠 =
𝑠

∑
𝑘=1

𝑎𝑘𝑏𝑘 . (5-15)

Для произвольных 𝑚 и 𝑛 элемент 𝑐𝑖𝑗 матрицы 𝐶 = 𝐴𝐵 равен произведению 𝑖-й строки из 𝐴 на
𝑗-й столбец из 𝐵, посчитанному по формуле (5-15):

𝑐𝑖𝑗 = (𝑎𝑖1, … 𝑎𝑖𝑠) ⋅
⎛
⎜
⎜
⎝

𝑏1𝑗
⋮
𝑏𝑠𝑗

⎞
⎟
⎟
⎠

=
𝑠

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 . (5-16)

1Продуктивно представлять себе 𝐸𝑖𝑗 как стрелку, ведущую из числа 𝑗 в число 𝑖 на числовой прямой.
Произведение 𝑘 сомножителей 𝐸𝑖𝑗 отлично от нуля если и только если конец каждой стрелки совпадает
с началом предыдущей, и в этом случае такое произведение равно сумме всех перемножаемых стрелок,
рассматриваемых как целочисленные векторы на числовой прямой. Таким образом, каждое ненулевое
произведение 𝑘 стрелок имеет длину как минимум 𝑘, а разложения элемента𝐸𝑖𝑗 в произведение 𝑘 таких
элементов находятся в биекции со всевозможными способами пройти из 𝑗 в 𝑖 за 𝑘 шагов.

2Поскольку матрицы 𝐸 и 𝑁 коммутируют друг с другом, в результате этой подстановки мы получим
верное матричное равенство.
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Иначе можно сказать, что в 𝑗-том столбце матрицы 𝐴𝐵 стоит линейная комбинация 𝑠 столбцов
матрицы 𝐴 с коэффициентами из 𝑗-го столбца матрицы 𝐵. Это описание получается, если под-
ставить в формулу (5-15) в качестве элементов 𝑏𝑖 числа из 𝑗-го столбца матрицы 𝐵, а в качестве
элементов 𝑎𝑗 — столбцы матрицы 𝐴, интерпретируемые как элементы 𝐾-модуля 𝐿𝑚, записан-
ные в виде координатных столбцов.

Упражнение 5.22. Удостоверьтесь, что это описание согласуется с формулой (5-16).

Например, для того, чтобы превратить матрицу

𝐴 = (
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23) (5-17)

в матрицу из четырёх столбцов, равных, соответственно, сумме 1-го столбца матрицы 𝐴 со 2-м,
умноженным на 𝜆, сумме 1-го и 3-го столбцов матрицы 𝐴, сумме 3-го столбца матрицы 𝐴 со
2-м, умноженнымна 𝜇, и сумме всех трёх столбцов матрицы𝐴, умноженных на их номера, надо
умножить матрицу 𝐴 справа на матрицу

⎛
⎜
⎜
⎝

1 1 0 1
𝜆 0 𝜇 2
0 1 1 3

⎞
⎟
⎟
⎠

Упражнение 5.23. Проверьте это прямым вычислением по формуле (5-16).

Симметричным образом, если в формуле (5-15) взять в в качестве элементов 𝑎𝑗 те, что стоят в
𝑖-й строке матрицы 𝐴, а в качестве 𝑏𝑖 — строки матрицы 𝐵, интерпретируемые как элементы
𝐾-модуля 𝑀𝑛, записанные в виде координатных строк, то можно сказать, что 𝑖-й строкой мат-
рицы 𝐴𝐵 является линейная комбинация строк матрицы 𝐵 с коэффициентами, стоящими в 𝑖-й
строке матрицы 𝐴. Например, если в той же матрице (5-17) хочется поставить вторую строку
на место первой, а вместо второй написать её сумму с первой строкой, умноженной на 𝜆, то это
достигается умножением слева на матрицу

(
0 1
𝜆 1)

Упражнение 5.24. Проверьте это прямым вычислением по формуле (5-16).

Предыдущие два описания произведения𝐴𝐵 получаются друг из друга одновременной переста-
новкой букв 𝐴,𝐵 и заменой слов «столбец» и «строка» друг на друга. Матрица 𝐶𝑡 = (𝑐𝑡𝑖𝑗) размера
𝑛 × 𝑚, по строкам которой записаны столбцы 𝑚 × 𝑛 матрицы 𝐶 = (𝑐𝑖𝑗), называется транспо-
нированной к матрице 𝐶. Её элементы 𝑐𝑡𝑖𝑗 = 𝑐𝑗𝑖 получаются отражением элементов матрицы 𝐶
относительно биссектрисы левого верхнего угла матрицы.

Предложение 5.4

Для матриц с элементами из коммутативного кольца выполняется равенство (𝐴𝐵)𝑡 = 𝐵𝑡𝐴𝑡,
т. е. транспонирование обращает порядок сомножителей в произведениях матриц, элементы
которых коммутируют друг с другом.

Доказательство. Пусть 𝐴𝐵 = 𝐶, 𝐵𝑡𝐴𝑡 = 𝐷, тогда 𝑐𝑖𝑗 = ∑
𝑘
𝑎𝑖𝑘𝑏𝑘𝑗 = ∑

𝑘
𝑎𝑡𝑘𝑖𝑏𝑡𝑗𝑘 = ∑

𝑘
𝑏𝑡𝑗𝑘𝑎𝑡𝑘𝑖 = 𝑑𝑗𝑖. □
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Упражнение 5.25. Убедитесь, что если операция умножения 𝐿 × 𝑀 → 𝑁 билинейна, то произ-
ведение матриц Mat𝑚×𝑠(𝐿) × Mat𝑠×𝑛(𝑀) → Mat𝑚×𝑛(𝑁) тоже билинейно, т. е.

(𝑥1𝐴1 + 𝑥2𝐴2)𝐵 = 𝑥1𝐴1𝐵 + 𝑥2𝐴2𝐵 и 𝐴(𝑦1𝐵1 + 𝑦2𝐵2) = 𝑦1𝐴𝐵1 + 𝑦2𝐴𝐵2

для всех 𝐴,𝐴1,𝐴2 ∈ Mat𝑚×𝑠(𝐿), 𝐵,𝐵1,𝐵2 ∈ Mat𝑚×𝑠(𝑀) и 𝑥𝑖, 𝑦𝑗 ∈ 𝐾.

Предложение 5.5

Если на 𝐾-модулях 𝐿1, 𝐿2, 𝐿3, 𝐿12, 𝐿23, 𝐿123 заданы билинейные ассоциативные1 умножения

𝐿1 × 𝐿2 → 𝐿12 , 𝐿12 × 𝐿3 → 𝐿123 , 𝐿2 × 𝐿3 → 𝐿23 , 𝐿1 × 𝐿23 → 𝐿123 ,

то при всех𝑚, 𝑘, 𝓁, 𝑛 ∈ ℕ умножения матриц

Mat𝑚×𝑘(𝐿1) × Mat𝑘×𝓁(𝐿2) → Mat𝑚×𝓁(𝐿12) , Mat𝑚×𝓁(𝐿12) × Mat𝓁×𝑛(𝐿3) → Mat𝑚×𝑛(𝐿123) ,
Mat𝑘×𝓁(𝐿2) × Mat𝓁×𝑛(𝐿3) → Mat𝑘×𝑛(𝐿23) , Mat𝑚×𝑘(𝐿1) × Mat𝑘×𝑛(𝐿23) → Mat𝑚×𝑛(𝐿123) .

тоже ассоциативны, т. е. (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) когда эти произведения определены.

Доказательство. Пусть𝐴𝐵 = 𝑃,𝐵𝐶 = 𝑄. Проверим, что (𝑖, 𝑗)-е элементыматриц𝑃𝐶 и𝐴𝑄 равны:

∑
𝑘
𝑝𝑖𝑘𝑐𝑘𝑗 = ∑

𝑘
(∑

𝓁
𝑎𝑖𝓁𝑏𝓁𝑘)𝑐𝑘𝑗 = ∑

𝑘𝓁
(𝑎𝑖𝓁𝑏𝓁𝑘)𝑐𝑘𝑗 =

= ∑
𝑘𝓁

𝑎𝑖𝓁(𝑏𝓁𝑘𝑐𝑘𝑗) = ∑
𝓁
𝑎𝑖𝓁(∑

𝑘
𝑏𝓁𝑘𝑐𝑘𝑗) = ∑

𝓁
𝑎𝑖𝓁𝑞𝓁𝑗 .

Обратите внимание, что 2-е и 4-е равенства используют билинейность умножений. □
5.3.2. Матрицы перехода. Пусть в 𝐾-модуле𝑀 заданы два набора векторов:

𝒖 = (𝑢1, … , 𝑢𝑛) и 𝒘 = (𝑤1, … ,𝑤𝑚) ,

причём первый из них содержится в линейной оболочке второго, т. е. каждый вектор 𝑢𝑗 имеет
вид 𝑢𝑗 = 𝑤1𝑐1𝑗 +𝑤2𝑐2𝑗 + … +𝑤𝑚𝑐𝑚𝑗, где 𝑐𝑖𝑗 ∈ 𝐾. Эти 𝑛 равенств собираются в одну матричную
формулу 𝒖 = 𝒘𝐶𝒘𝒖, где 𝒖 = (𝑢1, … , 𝑢𝑛) и 𝒘 = (𝑤1, … ,𝑤𝑚) суть матрицы-строки с элемен-
тами из 𝑀, а матрица 𝐶𝒘𝒖 = (𝑐𝑖𝑗) получается подстановкой в матрицу 𝒖 вместо каждого из
векторов 𝑢𝑗 столбца коэффициентов его линейного выражения через векторы𝑤𝑖. Матрица 𝐶𝒘𝒖
называетсяматрицей перехода от векторов𝒖 к векторам𝒘. Название объясняется тем, что если
имеется набор векторов𝒗 = (𝑣1, … , 𝑣𝑘), линейно выражающихся через векторы𝒖поформулам
𝒗 = 𝒖𝐶𝒖𝒗, то выражение векторов 𝒗 через векторы𝒘 задаётся матрицей

𝐶𝒘𝒗 = 𝐶𝒘𝒖𝐶𝒖𝒗 , (5-18)

которая возникает при подстановке 𝒖 = 𝒘𝐶𝒘𝒖 в разложение 𝒗 = 𝒖𝐶𝒖𝒗. В частности, если век-
тор 𝑣 ∈ span(𝑢1, … , 𝑢𝑛) ⊂ span(𝑤1, … ,𝑤𝑛) линейно выражается через векторы 𝒖 по формуле
𝑣 = 𝑢1𝑥1 + … + 𝑢𝑛𝑥𝑛 = 𝒖𝒙, где 𝒙 = (𝑥1, … , 𝑥𝑛)𝑡 ∈ 𝐾𝑛 — столбец коэффициентов, то этот

1Т. е. (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) всякий раз, когда произведения определены.
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же вектор выражается через векторы 𝒘 по формуле 𝑣 = 𝑤1𝑦1 + … + 𝑤𝑚𝑦𝑚 = 𝒘𝒚 со столбцом
коэффициентов 𝒚 = (𝑦1, … , 𝑦𝑚)𝑡 ∈ 𝐾𝑚, который связан со столбцом 𝒙 соотношением

𝒚 = 𝐶𝒘𝒖𝒙 .

Отметим, что когда набор векторов𝒘 = (𝑤1, … ,𝑤𝑚) линейно зависим, у каждого вектора 𝑣 из
их линейной оболочки имеется много разных линейных выражений через векторы 𝑤𝑗. Поэто-
му обозначение 𝐶𝒘𝒗 в этой ситуации не корректно в том смысле, что элементы матрицы 𝐶𝒘𝒗
определяются наборами векторов𝒘 и 𝒗 не однозначно. Тем не менее, равенство (5-18) вполне
осмысленно и означает, что имея какие-нибудь линейные выражения 𝐶𝒘𝒖 и 𝐶𝒖𝒗 векторов 𝒖 че-
рез𝒘 и векторов 𝒗 через 𝒖, мы можем явно предъявить одно из линейных выражений 𝐶𝒘𝒗 век-
торов 𝒗 через векторы𝒘, перемножив матрицы 𝐶𝒘𝒖 и 𝐶𝒖𝒗.

Если же набор векторов 𝒆 = (𝑒1, … , 𝑒𝑛) является базисом своей линейной оболочки, то
матрица перехода 𝐶𝒆𝒘, выражающая произвольный набор векторов 𝒘 = (𝑤1, … ,𝑤𝑚) через 𝒆
однозначно определяется наборами 𝒆 и𝒘, т. е. 𝒖 = 𝒘 если и только если 𝐶𝒆𝒖 = 𝐶𝒆𝒘. Отсюда по-
лучается следующийкритерий обратимостиматрицы с элементамииз коммутативного кольца.

Предложение 5.6

Следующие условия на квадратную матрицу 𝐶 ∈ Mat𝑛(𝐾) эквивалентны:

1) матрица 𝐶 обратима в Mat𝑛(𝐾)

2) столбцы матрицы 𝐶 образуют базис свободного модуля 𝐾𝑛

3) строки матрицы 𝐶 образуют базис свободного модуля 𝐾𝑛.

Доказательство. Последние два свойства равносильны, так как по предл. 5.4 на стр. 95 равен-
ства 𝐵𝐶 = 𝐶𝐵 = 𝐸 при транспонировании превращаются в равенства 𝐶𝑡𝐵𝑡 = 𝐵𝑡𝐶𝑡 = 𝐸, и
тем самым обратимость матрицы 𝐶 влечёт обратимость транспонированной матрицы 𝐶𝑡 и на-
оборот. Чтобы доказать равносильность первых двух условий, обозначим через 𝒖 = (𝑢1, … , 𝑢𝑛)
набор столбцовматрицы𝐶, рассматриваемых как векторыкоординатногомодуля𝐾𝑛. Тогда𝐶 =
= 𝐶𝒆𝒖 является матрицей перехода от векторов 𝒖 к стандартному базису 𝒆 = (𝑒1, … , 𝑒𝑛) моду-
ля 𝐾𝑛. Если векторы 𝒖 образуют базис в 𝐾𝑛, то векторы 𝒆 линейно через них выражаются: 𝒆 =
= 𝒖𝐶𝒖𝒆, где𝐶𝒖𝒆 ∈ Mat𝑛(𝐾). Изформулы (5-18) вытекают равенства𝐶𝒆𝒆 = 𝐶𝒆𝒖𝐶𝒖𝒆 и𝐶𝒖𝒖 = 𝐶𝒖𝒆𝐶𝒆𝒖.
Так как оба набора векторов являются базисами, 𝐶𝒆𝒆 = 𝐶𝒖𝒖 = 𝐸. Поэтому матрицы 𝐶𝒖𝒆 и 𝐶𝒆𝒖
обратны друг другу. Наоборот, если матрица 𝐶𝒆𝒖 обратима, то умножая обе части равенства
𝒖 = 𝒆𝐶𝒆𝒖 справа на 𝐶−1

𝒆𝒖 , получаем линейное выражение 𝒆 = 𝒖𝐶−1
𝒆𝒖 векторов 𝒆 через векторы 𝒖.

Поэтому последние линейно порождаютмодуль𝐾𝑛. Пусть столбец 𝒙 = (𝑥1, … , 𝑥𝑛)𝑡 ∈ 𝐾𝑛 таков,
что 𝒖𝒙 = 0. Поскольку векторы 𝒆 составляют базис в 𝐾𝑛 и 𝒆 𝐶𝒆𝒖𝒙 = 𝒖𝒙 = 0, столбец 𝐶𝒆𝒖𝒙 ∈ 𝐾𝑛

является нулевым. Умножая его слева на 𝐶−1
𝒆𝒖 , заключаем, что и столбец 𝒙 нулевой, т. е. векто-

ры 𝒖 линейно независимы. □

Пример 5.17 (теорема об элементарных симметрических функциях)

Многочлен 𝑓 ∈ ℤ[𝑥1, … , 𝑥𝑛] называется симметрическим, если он не меняется при перестанов-
ках переменных, т. е. когда 𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝑔(1), … , 𝑥𝑔(𝑛)) для всех биекций

𝑔∶ {1, … , 𝑛} ⥲ {1, … , 𝑛} .
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Иначе говоря, многочлен 𝑓 симметрический если и только если вместе с каждым входящим в 𝑓
мономом 𝑥𝑚1

1 … 𝑥𝑚𝑛𝑛 с тем же самым коэффициентом в 𝑓 входят и все мономы 𝑥𝑚𝑔(1)
1 … 𝑥𝑚𝑔(𝑛)

𝑛 , ко-
торые получаются из него перестановками степеней. Так как среди них есть ровно один моном
𝑥𝜆11 … 𝑥𝜆𝑛𝑛 с невозрастающими показателями 𝜆1 ⩾ … ⩾ 𝜆𝑛, мы заключаем, что однородные сим-
метрические многочлены степени 𝑑 образуют свободный ℤ-модуль с базисом из многочленов

𝑚𝜆 = (сумма всех различных мономов вида 𝑥𝜆𝑔(1)
1 … 𝑥𝜆𝑔(𝑛)

𝑛 ) , (5-19)

где 𝜆 = (𝜆1, … , 𝜆𝑛) пробегает диаграммыЮнга1 из 𝑑 клеток и 𝑛 строк, часть из которых может
быть нулевой длины. Многочлен (5-19) называется мономиальным симметрическим.

Упражнение 5.26. Сколько слагаемых в правой части (5-19)?

Симметрические многочлены 𝑒0 = 1 и 𝑒𝑘(𝑥1, … , 𝑥𝑛) = ∑𝑖1<…<𝑖𝑘𝑥𝑖1 … 𝑥𝑖𝑘 , равный сумме всех
произведений из 𝑘 различных переменных, где 1 ⩽ 𝑘 ⩽ 𝑛, называются элементарными. Они
появляются в формулах Виета: если 𝛼1, … ,𝛼𝑛 — корни приведённого многочлена

𝑡𝑛 + 𝑎1𝑡𝑛−1 + … + 𝑎𝑛 =
𝑛

∏
𝑖=1

(𝑥 − 𝛼𝑖) , (5-20)

то 𝑎𝑖 = (−1)𝑖𝑒𝑖(𝛼1, … ,𝛼𝑛).
Упражнение 5.27. Убедитесь в этом.

Для каждой диаграммыЮнга 𝜇 = (𝜇1, … , 𝜇𝑛)положим 𝑒𝜇 ≝ 𝑒𝜇1 … 𝑒𝜇𝑛 . Это лишь другое обозна-

чение для монома 𝑒𝑚1
1 … 𝑒𝑚𝑛𝑛 , каждый показатель𝑚𝑖 в котором равен количеству строк длины 𝑖

в диаграмме 𝜇.
Упражнение 5.28. Убедитесь, что диаграмма Юнга 𝜇 и набор (𝑚1, … ,𝑚𝑛) ∈ ℤ𝑛⩾0 взаимно од-

нозначно определяют друг друга из равенства 𝑒𝜇1 … 𝑒𝜇𝑛 = 𝑒𝑚1
1 … 𝑒𝑚𝑛𝑛 .

Многочлен 𝑒𝜇 однороден степени 𝑚1 + 2𝑚2 + … + 𝑛𝑚𝑛, а его лексикографически старший
по переменным 𝑥1, … , 𝑥𝑛 мономом является произведением старших мономов 𝑥1 … 𝑥𝜇1 из 𝑒𝜇1 ,
𝑥1 … 𝑥𝜇2 из 𝑒𝜇2 и т. д. вплоть до 𝑥1 … 𝑥𝜇𝑛 из 𝑒𝜇𝑛 . Это произведение является результатом пере-
множения переменных 𝑥𝑖, вписанных в клетки диаграммыЮнга 𝜇 так, что номер переменной

совпадает с номером столбца, в котором она стоит, и равно 𝑥𝜇
𝑡
1

1 … 𝑥𝜇
𝑡
𝑛𝑛 , где 𝜇𝑡 = (𝜇𝑡1, … , 𝜇𝑡𝑛) —

транспонированная к 𝜇 диаграммаЮнга2. Таким образом, разложение многочлена 𝑒𝜇 по бази-
су (5-19) имеет вид:

𝑒𝜇 = 𝑚𝜇𝑡 + (лексикографически младшие члены). (5-21)

Если линейно упорядочить все диаграммы 𝜆 из 𝑑 клеток и не более, чем 𝑛 строк по лексико-
графическому возрастанию наборов чисел (𝜆1, … , 𝜆𝑛), а все диаграммы 𝜇 из 𝑑 клеток и не бо-
лее, чем𝑛 столбцов—полексикографическому возрастаниюнаборов чисел (𝜇𝑡1, … , 𝜇𝑡𝑛), равных
длинам строк транспонированных диаграмм 𝜇𝑡, то согласно формуле (5-21) матрица перехо-
да от многочленов 𝑒𝜇 к многочленам 𝑚𝜇 окажется верхней унитреугольной. В прим. 5.16 на
стр. 93 мы видели, что такая матрица обратима в алгебре целочисленных матриц. Тем самым,
по предл. 5.6 многочлены 𝑒𝜇 = 𝑒𝑚1

1 … 𝑒𝑚𝑛𝑛 , где 𝑚1 + 2𝑚2 + … + 𝑛𝑚𝑛 = 𝑑, тоже составляют

1См. прим. 0.3 на стр. 8.
2Её строками являются столбцы диаграммы 𝜇 также, как при транспонировании матриц.
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базис модуля однородных симметрических многочленов степени 𝑑 над ℤ. Это означает, что лю-
бой симметрический многочлен единственным образом представляется в виде многочлена от
элементарных симметрическихмногочленов 𝑒1, … , 𝑒𝑛. Иначе говоря, алгебра симметрических
многочленов совпадает с алгеброй многочленов ℤ[𝑒1, … , 𝑒𝑛].

Пример 5.18 (дискриминант)

Дискриминантом приведённого многочлена 𝑓(𝑥) = 𝑡𝑛 + 𝑎1𝑡𝑛−1 + … + 𝑎𝑛 = ∏𝑛
𝑖=1(𝑥 − 𝛼𝑖)

называется произведение 𝛥𝑓 = ∏𝑖<𝑗(𝛼𝑖 − 𝛼𝑗)2 квадратов разностей его корней, вычисленное
в любом кольце, над которым 𝑓 полностью раскладывается на линейные множители. Будучи
симметрическим многочленом от корней, 𝛥𝑓 является многочленом от 𝑒𝑖(𝛼1, … ,𝛼𝑛) = (−1)𝑖𝑎𝑖,
т. е. многочленом от коэффициентов уравнения. При этом 𝛥𝑓 = 0 если и только если 𝑓 не сепа-
рабелен. Так, дискриминант квадратного трёхчлена 𝑓(𝑥) = 𝑥2 + 𝑝𝑥+ 𝑞 = (𝑥−𝛼1)(𝑥−𝛼2) равен
(𝛼1 −𝑎2)2 = (𝛼1 +𝛼2)2 −4𝛼1𝛼2 = 𝑝2 −4𝑞. Он зануляется если и только если 𝑓 является полным
квадратом линейного двучлена, и если 𝛥𝑓 = 𝛿2 сам является квадратом, то корни 𝑓 находятся
из равенств 𝛼1 + 𝛼2 = −𝑝, 𝛼1 − 𝛼2 = ±𝛿.

Упражнение 5.29. Вычислите дискриминант кубического трёхчлена 𝑥3 + 𝑝𝑥 + 𝑞.
5.3.3. Матрицы линейных отображений. Пусть 𝐾-модули 𝑁 и 𝑀 линейно порождаются

наборами векторов 𝒖 = (𝑢1, … , 𝑢𝑛) и 𝒘 = (𝑤1, … ,𝑤𝑚) соответственно. Всякое 𝐾-линейное
отображение 𝐹∶ 𝑁 → 𝑀 однозначно задаётся набором 𝐹(𝒖) ≝ (𝐹(𝑢1), … ,𝐹(𝑢𝑛)) своих значе-
ний на порождающих векторах и действует на произвольный вектор 𝑣 = 𝒖𝒙, где 𝒙 ∈ 𝐾𝑛 —
столбец коэффициентов линейного выражения вектора 𝑣 через образующие 𝒖, по правилу

𝐹(𝒖𝒙) = 𝐹(
𝑛

∑
𝑖=1

𝑢𝑖𝑥𝑖) =
𝑛

∑
𝑖=1

𝐹(𝑢𝑖) 𝑥𝑖 = 𝐹(𝒖)𝒙 . (5-22)

Матрица перехода от набора векторов 𝐹(𝒖) к образующим𝒘 модуля𝑀 обозначается

𝐹𝒘𝒖 = 𝐶𝒘𝐹(𝒖) ∈ Mat𝑚×𝑛(𝐾)

иназываетсяматрицей отображения1 𝐹 в образующих𝒘и𝒖. Её 𝑗-й столбец состоит из коэффи-
циентов линейного выражения вектора 𝐹(𝑢𝑗) через векторы𝒘. Согласно (5-22) произвольный
вектор𝑣 = 𝒖𝒙 ∈ 𝑁, выражающийсячерез образующие𝒖 со столбцомкоэффициентов𝒙, перево-
дится отображением 𝐹 в вектор 𝐹(𝑣) = 𝒘𝐹𝒘𝒖𝒙 ∈ 𝑀, который выражается через образующие 𝒘
со столбцом коэффициентов 𝐹𝒘𝒖𝒙.

Вычисление (5-22) также показывает, что для любого набора векторов 𝒗 = (𝑣1, … , 𝑣𝑘) в 𝑁,
любой матрицы 𝐴 ∈ Mat𝓁×𝑘(𝐾) и любого 𝐾-линейного отображения 𝐹∶ 𝑁 → 𝑀 выполняется
равенство 𝐹(𝒗𝐴) = 𝐹(𝒗)𝐴.

Если 𝐾-модуль 𝐿 порождается векторами 𝒗 = (𝑣1, … , 𝑣𝓁) и 𝐾-линейные отображения

𝐹∶ 𝑁 → 𝐿 и 𝐺 ∶ 𝐿 → 𝑀

имеют матрицы 𝐹𝒗𝒖 и 𝐺𝒘𝒗, соответственно, в образующих 𝒗, 𝒖 и в образующих 𝒘, 𝒗, то компо-
зиция 𝐻 = 𝐺𝐹∶ 𝑁 → 𝑀 имеет в образующих𝒘, 𝒖 матрицу 𝐻𝒘𝒖 = 𝐺𝒘𝒗𝐹𝒗𝒖, поскольку

𝐻(𝒖) = 𝐺(𝐹(𝒖)) = 𝐺(𝒗𝐹𝒗𝒖) = 𝐺(𝒗)𝐹𝒗𝒖 = 𝒘𝐺𝒘𝒗𝐹𝒗𝒖 .
1Ср. с n∘ 5.2.1 на стр. 90.
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Предостережение 5.3. (некорректность обозначения 𝐹𝒘𝒖) Если образующие 𝒘 линейно зави-
симы, то как и в n∘ 5.3.2, матрица 𝐹𝒘𝒖 линейного отображения 𝐹 определяется образующими𝒘
и 𝒖 не однозначно, поскольку набор векторов 𝐹(𝒖) имеет много разных линейных выражений
через векторы 𝒘. Предыдущие формулы означают при этом, что если задано какое-то выраже-
ние 𝑣 = 𝒖𝒙 вектора 𝑣 через образующие 𝒖, то столбец коэффициентов 𝒚 = 𝐹𝒘𝒖𝒙 даёт одно из
возможных линейных выражений 𝐹(𝑣) = 𝒘𝒚 вектора 𝐹(𝑣) через образующие𝒘 и что получить
одну из возможных матриц для композиции отображений можно перемножив какие-нибудь из
матриц этих отображений в том же порядке, в каком берётся композиция.

Предостережение 5.4. (не все матрицы являются матрицами гомоморфизмов) Если образую-
щие 𝒖 линейно зависимы, то матрица 𝐹𝒘𝒖 не может быть произвольной: для любого линейного
соотношения 𝒖𝒙 = 0 между векторами 𝒖 в 𝑁 в модуле𝑀 должно выполняться соотношение

0 = 𝐹(0) = 𝐹(𝒖𝒙) = 𝒘𝐹𝒘𝒖𝒙 ,

т. е. отображение𝒙 ↦ 𝐹𝒘𝒖𝒙 должно переводить коэффициенты любого линейного соотношения
между образующими 𝒖 в коэффициенты линейного соотношения между образующими 𝒘. На-
оборот, если матрица 𝐹𝒘𝒖 обладает этим свойством, то правило 𝒖𝒙 ↦ 𝒘𝐹𝒘𝒖𝒙 корректно задаёт
𝐾-линейное отображение𝑁 → 𝑀, поскольку равенство 𝒖𝒙𝟏 = 𝒖𝒙𝟐 означает, что 𝒖(𝒙𝟏 − 𝒙𝟐) = 0,
откуда𝒘𝐹𝒘𝒖(𝒙𝟏 − 𝒙𝟐) = 0, и значит,𝒘𝐹𝒘𝒖𝒙𝟏 = 𝒘𝐹𝒘𝒖𝒙𝟐. Мы получаем

Предложение 5.7

Если модули 𝑁 = 𝐾𝑛 ∕𝑅𝑁 и 𝑀 = 𝐾𝑚 ∕𝑅𝑀 заданы при помощи образующих и соотношений,
как в прим. 5.12 на стр. 88, то матрица 𝐴 ∈ Mat𝑚×𝑛(𝐾) тогда и только тогда является матрицей
некоторого линейного отображения 𝐹∶ 𝑁 → 𝑀, когда для любого столбца 𝑥 ∈ 𝑅𝑁 столбец
𝐴𝑥 ∈ 𝑅𝑀. Две такие матрицы 𝐴 и 𝐵 задают одинаковые отображения𝑁 → 𝑀 если и только если
(𝐴 − 𝐵)𝑥 ∈ 𝑅𝑀 для всех 𝑥 ∈ 𝐾𝑛. □

Пример 5.19 (гомоморфизмы между аддитивными группами вычетов)

Как мы уже отмечали в прим. 5.4 на стр. 82, любые две абелевы группы 𝐴 и 𝐵 могут рассматри-
ваться как модули над кольцом ℤ.

Упражнение 5.30. Убедитесь, что отображение 𝐴 → 𝐵 является гомоморфизмом абелевых
групп1 если и только если оно ℤ-линейно.

В аддитивной группе вычетов ℤ∕(𝑚), рассматриваемой как ℤ-модуль, результатом умножения
класса [𝑘]𝑚 ∈ ℤ∕(𝑚) на число 𝑧 ∈ ℤ является класс [𝑧𝑘]𝑚. Поэтому класс [1]𝑚 порождает ℤ∕(𝑚)
надℤи отображениефакторизацииℤ ↠ ℤ∕(𝑚), 𝑧 ↦ [𝑧]𝑚, является сюрьективным гомоморфиз-
мом ℤ-модулей. Таким образом, ℤ∕(𝑚) является фактором свободного модуля ℤ по подмодулю
соотношений 𝑅 = (𝑚) ⊂ ℤ, который тоже свободен с базисом𝑚. По предл. 5.7 каждое ℤ-линей-
ное отображение ℤ∕(𝑛) → ℤ∕(𝑚) получается из некоторого ℤ-линейного отображения ℤ → ℤ,
отправляющего 𝑛 в подмодуль (𝑚) ⊂ ℤ. Но Endℤ(ℤ) ≃ Mat1(ℤ) ≃ ℤ, и числу 𝑎 ∈ ℤ отвеча-
ет при этом отождествлении эндоморфизм умножения на 𝑎∶ 𝑧 ↦ 𝑎𝑧. Так как 𝑎𝑛 ∈ (𝑚) если
и только если 𝑎𝑛 является общим кратным 𝑚 и 𝑛, мы заключаем, что 𝑎 = 𝑘 нок(𝑚, 𝑛)∕𝑛, где
𝑘 ∈ ℤ — любое. Два таких числа 𝑎1 = 𝑘1 нок(𝑚, 𝑛)∕𝑛 и 𝑎2 = 𝑘2 нок(𝑚, 𝑛)∕𝑛 задают одина-
ковые гомоморфизмы ℤ∕(𝑛) → ℤ∕(𝑚) если и только если они одинаково действуют на обра-
зующую [1]𝑛, т. е. тогда и только тогда, когда [𝑎1]𝑚 = [𝑎2]𝑚. Поскольку (𝑘1 − 𝑘2) нок(𝑚, 𝑛)∕𝑛

1См. n∘ 1.5 на стр. 30.
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делится на𝑚 если и только если 𝑘1 − 𝑘2 делится на𝑚𝑛∕нок(𝑚, 𝑛) = нод(𝑚, 𝑛), мы заключаем,
что Homℤ(ℤ∕(𝑛),ℤ∕(𝑚)) ≃ ℤ∕(нод(𝑚, 𝑛)). При этом изоморфизме классу [𝑘] ∈ ℤ∕(нод(𝑚, 𝑛))
отвечает гомоморфизм ℤ∕(𝑛) → ℤ∕(𝑚), [𝑧]𝑛 ↦ [𝑘𝑧 нок(𝑛,𝑚)∕𝑛]𝑚. В частности, для всех 𝑛,𝑚

Homℤ(ℤ∕(𝑛),ℤ∕(𝑚)) ≃ Homℤ(ℤ∕(𝑚),ℤ∕(𝑛)) ,

и если𝑚 и 𝑛 взаимно просты, то Homℤ(ℤ∕(𝑛),ℤ∕(𝑚)) ≃ ℤ∕(1) = 0.

Пример 5.20 (матрицы гомоморфизмов свободных модулей)

Если оба модуля 𝑁 и 𝑀 свободны и наборы векторов 𝒖 и 𝒘 являются их базисами, то, как мы
видели в n∘ 5.2.1 на стр. 90, сопоставление 𝐾-линейному отображению 𝐹∶ 𝑁 → 𝑀 его матри-
цы 𝐹𝒘𝒖 в этих базисах задаёт 𝐾-линейный изоморфизм Hom𝐾(𝑁,𝑀) ⥲ Mat𝑚×𝑛(𝐾), 𝐹 ↦ 𝐹𝒘𝒖. В
других базисах 𝒆 = 𝒘𝐶𝒘𝒆 и 𝒇 = 𝒖𝐶𝒖𝒇 матрица гомоморфизма 𝐹 примет вид

𝐹𝒇𝒆 = 𝐶𝒇𝒖𝐹𝒖𝒘𝐶𝒘𝒆 = 𝐶−1
𝒖𝒇 𝐹𝒖𝐶𝒘𝒆 = 𝐶𝒇𝒖𝐹𝒖𝐶−1

𝒆𝒘 , (5-23)

поскольку 𝐹(𝒆) = 𝐹(𝒘𝐶𝒘𝒆) = 𝐹(𝒘)𝐶𝒘𝒆 = 𝒖𝐹𝒖𝒘𝐶𝒖𝒘 = 𝒇𝐶𝒇𝒖𝐹𝒖𝒘𝐶𝒖𝒘.

Пример 5.21 (матрицы эндоморфизмов)

Пусть модуль𝑀 свободен и набор векторов 𝒖 составляет его базис. Матрица 𝐹𝒖𝒖 линейного эн-
доморфизма 𝐹∶ 𝑀 → 𝑀 в базисах 𝒖 и 𝒖 обозначается просто 𝐹𝒖 и называется матрицей эндо-
морфизма𝐹 в базисе𝒖. Поформуле (5-23) любомдругомбазисе𝒘 = 𝒖𝐶𝒖𝒘 матрица оператора𝐹
имеет вид

𝐹𝒘 = 𝐶𝒘𝒖𝐹𝒖𝐶𝒖𝒘 = 𝐶−1
𝒖𝒘𝐹𝒖𝐶𝒖𝒘 = 𝐶𝒘𝒖𝐹𝒖𝐶−1

𝒘𝒖 . (5-24)



Ответы и указания к некоторым упражнениям

Упр. 5.1. Пусть 0 ⋅𝑣 = 𝑤. Тогда𝑤+𝑣 = 0 ⋅𝑣+1 ⋅𝑣 = (0+1)⋅𝑣 = 1 ⋅𝑣 = 𝑣 . Прибавляя к обеим частям
этого равенства −𝑣, получаем 𝑤 = 0. Из равенства 0 ⋅ 𝑣 = 0 вытекает, что 𝑥 ⋅ 0 = 𝑥(0 ⋅ 𝑣) =
(𝑥 ⋅ 0) ⋅ 𝑣 = 0 ⋅ 𝑣 = 0. Наконец, равенство (−1) ⋅ 𝑣 + 𝑣 = (−1) ⋅ 𝑣 + 1 ⋅ 𝑣 = ((−1) + 1) ⋅ 𝑣 = 0 ⋅ 𝑣 = 0
означает, что (−1) ⋅ 𝑣 = −𝑣.

Упр. 5.2. Не вполне очевидно, разве что, самое первое равенство. Оно вытекает из коммутатив-
ности умножения в кольце 𝐾: (𝑣𝑦)𝑥 = 𝑥(𝑣𝑦) = 𝑥(𝑦𝑣) = (𝑥𝑦)𝑣 = 𝑣(𝑥𝑦) = 𝑣(𝑦𝑥).

Упр. 5.4. 𝜑𝜓(𝑥𝑢 + 𝑦𝑤) = 𝜑(𝑥𝜓(𝑢) + 𝑦𝜓(𝑤)) = 𝑥𝜑𝜓(𝑢) + 𝑦𝜑𝜓(𝑤).
Упр. 5.5. Сложите равенства 𝜑(𝜆𝑢 + 𝜇𝑤) = 𝜆𝜑(𝑢) + 𝜇𝜑(𝑤) и 𝜓(𝜆𝑢 + 𝜇𝑤) = 𝜆𝜓(𝑢) + 𝜇𝜓(𝑤), а также

умножьте первое из них на 𝑥.
Упр. 5.6. Ядро и образ любого гомоморфизма абелевых групп являются абелевыми подгруппами

согласно n∘ 1.5 на стр. 30. Если гомоморфизм 𝐾-линеен, то обе эти подгруппы выдерживают
умножение на элементы из 𝐾, поскольку 𝑥𝜑(𝑢) = 𝜑(𝑥𝑢) и 𝜑(𝑢) = 0 ⇒ 𝜑(𝑥𝑢) = 𝑥𝜑(𝑢) = 0.

Упр. 5.7. Сопоставьте семейству гомоморфизмов 𝜑𝜇 ∶ 𝑁 → 𝑀𝜇, в котором лишь конечное число
ненулевых гомоморфизмов, отображение⨁𝜇∈ℳ 𝜑𝜇 ∶ 𝑁 → ⨁𝜇∈ℳ𝑀𝜇, переводящее вектор𝑢 ∈
𝑁 в семейство векторов (𝜑𝜇(𝑢))𝜇∈ℳ с конечным числом ненулевых членов.

Упр. 5.8. Пусть 𝐴 ⊈ 𝐵—две подгруппы в абелевой группе. Выберем 𝑎 ∈ 𝐴 −𝐵. Если 𝐴∪𝐵 является
подгруппой, то ∀ 𝑏 ∈ 𝐵 𝑎 + 𝑏 ∈ 𝐴 ∪ 𝐵, но 𝑎 + 𝑏 ∉ 𝐵, поскольку 𝑎 ∉ 𝐵. Следовательно, 𝑎 + 𝑏 ∈ 𝐴,
откуда 𝑏 ∈ 𝐴, т. е. 𝐵 ⊆ 𝐴.

Упр. 5.9. Все проверки проводятся дословно также, как для классов вычетов по модулю идеала
коммутативного кольца (ср. с упр. 4.7 на стр. 70).

Упр. 5.10. Так как каждый вектор 𝑤 ∈ 𝑀 имеет единственное представление в виде 𝑤 = 𝑤𝑁 + 𝑤𝐿
с 𝑤𝑁 ∈ 𝑁 и 𝑤𝐿 ∈ 𝐿, корректно определены 𝐾-линейные сюрьекции 𝜋𝑁 ∶ 𝑀 ↠ 𝑁 и 𝜋𝐿 ∶ 𝑀 ↠ 𝐿,
переводящие𝑤𝑁 +𝑤𝐿 соответственно в𝑤𝑁 и в𝑤𝐿. Так как ker𝜋𝑁 = 𝐿 и ker𝜋𝐿 = 𝑁 отображения
𝜄𝜋𝑁 ∶ 𝑀∕𝐿 ⥲ 𝑁 и 𝜄𝜋𝐿 ∶ 𝑀∕𝑁 ⥲ 𝐿 из прим. 5.9 на стр. 86 являются искомыми изоморфизмами.

Упр. 5.13. Если 𝑥′ = 𝑥+𝑦 и𝑤′ = 𝑤+𝑢, где 𝑦 ∈ 𝐼, 𝑢 ∈ 𝐼𝑀, то [𝑥′𝑤′] = [𝑥𝑤+(𝑥𝑢+𝑦𝑤+𝑥𝑢)] = [𝑥𝑤],
так как сумма в круглых скобках лежит в 𝐼𝑀.

Упр. 5.14. Поскольку подмодули𝑁𝑖 линейно порождают𝑀, подмодули 𝐼𝑁𝑖 линейно порождают 𝐼𝑀.
Очевидно, что 𝐼𝑁𝑖 ⊂ 𝑁𝑖 ∩ 𝐼𝑀, и при этом каждый подмодуль𝑁𝑖 ∩ 𝐼𝑀 имеет нулевое пересечение
с суммой подмодулей 𝑁𝜈 ∩ 𝐼𝑀 по всем 𝜈 ≠ 𝑖, ибо 𝑁𝑖 ∩ ∑𝜈≠𝑖 𝑁𝜈 = 0.

Упр. 5.18. Ответ:

[𝐸𝑖𝑗,𝐸𝑘𝓁] ≝ 𝐸𝑖𝑗𝐸𝑘𝓁 − 𝐸𝑘𝓁𝐸𝑖𝑗 =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝐸𝑖𝑖 − 𝐸𝑗𝑗 при 𝑗 = 𝑘 и 𝑖 = 𝓁
𝐸𝑖𝓁 при 𝑗 = 𝑘 и 𝑖 ≠ 𝓁
−𝐸𝑘𝑗 при 𝑗 ≠ 𝑘 и 𝑖 = 𝓁
0 в остальных случаях.

Упр. 5.20. Прямая проверка:

(𝐴𝐵)∨ = ((
𝑎11 𝑎12
𝑎21 𝑎22) (

𝑏11 𝑏12
𝑏21 𝑏22))

∨
= (

𝑎11𝑏11 + 𝑎12𝑏21 𝑎11𝑏21 + 𝑎12𝑏22
𝑎21𝑏11 + 𝑎22𝑏21 𝑎21𝑏21 + 𝑎22𝑏22)

∨
=

= (
𝑎21𝑏21 + 𝑎22𝑏22 −𝑎11𝑏21 − 𝑎12𝑏22

−𝑎21𝑏11 − 𝑎22𝑏21 𝑎11𝑏11 + 𝑎12𝑏21 ) = (
𝑏22 −𝑏12

−𝑏21 𝑏11 ) (
𝑎22 −𝑎12

−𝑎21 𝑎11 ) = 𝐵∨𝐴∨
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Упр. 5.25. Оба равенства проверяются прямым вычислением.
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