§2. Многочлены и расширения полей

Всюду в этом параграфе мы обозначаем через K произвольное коммутативное кольцо с единицей, а через \mathbb{k} — произвольное поле.

2.1. Ряды и многочлены. Бесконечное выражение вида

$$f(x) = \sum_{\nu \geq 0} a_{\nu} x^{\nu} = a_0 + a_1 x + a_2 x^2 + \dots , \text{ где } a_i \in K, \tag{2-1}$$

называется формальным степенным рядом от x с коэффициентами в кольце K. Ряды

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots$$
(2-2)

равны, если $a_i=b_i$ для всех i. Сложение и умножение рядов (2-2) осуществляется по стандартным правилам раскрытия скобок и приведения подобных слагаемых: коэффициенты s_m и p_m рядов $s(x)=f(x)+g(x)=s_0+s_1x+s_2x^2+\dots$ и $p(x)=f(x)g(x)=p_0+p_1x+p_2x^2+\dots$ суть 1

$$s_{m} = a_{m} + b_{m}$$

$$p_{m} = \sum_{\alpha+\beta=m} a_{\alpha}b_{\beta} = a_{0}b_{m} + a_{1}b_{m-1} + \dots + a_{m-1}b_{1} + a_{m}b_{0}$$
(2-3)

Упражнение 2.1. Убедитесь, что эти две операции удовлетворяют аксиомам коммутативного кольца с единицей.

Кольцо формальных степенных рядов от переменной x с коэффициентами в кольце K обозначается через $K[\![x]\!]$. Начальный коэффициент a_0 ряда (2-1) называется csofodhum членом этого ряда. Самый левый ненулевой коэффициент в (2-1) называется mnaduum коэффициентом ряда f, а его номер — nopsdkom ряда f и обозначается ord f. Если в кольце K нет делителей нуля, mnaduum коэффициент произведения двух рядов равен произведению mnaduum коэффициентов сомножителей. Поэтому кольцо формальных степенных рядов с коэффициентами из целостного кольца тоже mnaduum и ord mnaduum0.

Кольцо $K\left[\!\left[x_{1},\ldots,x_{n}\right]\!\right]$ формальных степенных рядов от n переменных определяется по индукции: $K\left[\!\left[x_{1},\ldots,x_{n}\right]\!\right]\stackrel{\text{def}}{=} K\left[\!\left[x_{1},\ldots,x_{n-1}\right]\!\right]\left[\!\left[x_{n}\right]\!\right]$ представляет собою множество формальных сумм вида $F(x)=\sum_{\nu_{1},\ldots,\nu_{n}\in\mathbb{Z}_{\geqslant 0}}a_{\nu_{1}\ldots\nu_{n}}x_{1}^{\nu_{1}}\cdots x_{n}^{\nu_{n}}.$

2.1.1. Алгебраические операции над рядами. Назовём n-арной алгебраической операцией в $K[\![x]\!]$ правило, сопоставляющее n рядам f_1,\ldots,f_n новый ряд f так, что каждый коэффициент ряда f вычисляется по коэффициентам рядов f_1,\ldots,f_n при помощи конечного числа f0 операций в f0. Например, сложение и умножение рядов — это бинарные алгебраические операции, а подстановка вместо f1 численного значения f2 становка вместо f3 численного значения f3.

 $^{^{1}}$ Говоря формально, операции, о которых тут идёт речь, являются операциями над *последовательностями* (a_{v}) и (b_{v}) элементов кольца K. Буква x служит лишь для облегчения их восприятия.

²Которое может зависеть от номера коэффициента.

³Очевидным исключением из этого правила служит вычисление значения ряда f(x) при x=0, дающее в качестве результата свободный член этого ряда. Однако при произвольных α и f вычисление $f(\alpha)$ требует, вообще говоря, выполнения бесконечно большого количества сложений.

Пример 2.1 (замена переменной)

Подстановка в ряд (2-1) вместо x любого ряда $g(x) = b_1 x + b_2 x^2 + \dots$ с нулевым свободным членом является бинарной алгебраической операцией, дающей на выходе ряд

$$\begin{split} f(g(x)) &= a_0 + a_1(b_1x + b_2x^2 + \ldots) + a_2(b_1x + b_2x^2 + \ldots)^2 + a_3(b_1x + b_2x^2 + \ldots)^3 + \ldots = \\ &= a_0 + (a_1b_1) \cdot x + (a_1b_2 + a_2b_1^2) \cdot x^2 + (a_1b_3 + 2a_2b_1b_2 + a_3b_1^3) \cdot x^3 + \ldots \;, \end{split}$$

в котором на коэффициент при x^m влияют лишь начальные члены первых m слагаемых в f .

Пример 2.2 (Обращение)

Покажем, что ряд $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots \in K[x]$ обратим в K[x] если и только если его свободный член a_0 обратим в K, и в этом случае обращение $f \mapsto f^{-1}$ является унарной алгебраической операцией над обратимым рядом f. Пусть

$$(a_0 + a_1 x + a_2 x^2 + \dots) \cdot (b_0 + b_1 x + b_2 x^2 + \dots) = 1.$$

Приравнивая коэффициенты при одинаковых степенях x в левой и правой части, получаем бесконечную систему уравнений

$$a_0 b_0 = 1$$

$$a_0 b_1 + a_1 b_0 = 0$$

$$a_0 b_2 + a_1 b_1 + a_2 b_0 = 0$$

$$a_0 b_2 + a_1 b_1 + a_2 b_0 = 0$$
(2-4)

на коэффициенты b_i . Разрешимость первого уравнения равносильна обратимости a_0 , и в этом случае $b_0=a_0^{-1}$ и $b_k=-a_0^{-1}(a_1b_{k-1}+a_2b_{k-2}+\ldots+a_kb_0)$ при всех $k\geqslant 1$.

Упражнение 2.2. Вычислите в
$$\mathbb{Q}[x]$$
 A) $(1-x)^{-1}$ Б) $(1-x^2)^{-1}$ В) $(1-x)^{-2}$.

2.1.2. Многочлены. Ряды с конечным числом ненулевых коэффициентов называются *многочленами*. Многочлены от x_1, \ldots, x_n с коэффициентами в K образуют в кольце степенных рядов подкольцо, которое обозначается $K[x_1, \ldots, x_n] \subset K[x_1, \ldots, x_n]$. Многочлен от одной переменной x представляет собою формальное выражение вида $f(x) = a_0 + a_1 x + \ldots + a_n x^n$. Самый правый ненулевой коэффициент в нём называется cmapuum, а его номер — cmene многочлена f и обозначается deg f. Многочлены со старшим коэффициентом f называются f нами многочлены степени нуль — f константами.

Так как старший коэффициент произведения равен произведению старших коэффициентов сомножителей, для многочленов f_1 , f_2 с коэффициентами в целостном кольце K выполняется равенство $\deg(f_1f_2) = \deg(f_1) + \deg(f_2)$. В частности, кольцо K[x] тоже целостное, и обратимыми элементами в нём являются только обратимые константы.

Упражнение 2.3. Покажите, что $y^n - x^n$ делится в $\mathbb{Z}[x, y]$ на y - x и найдите частное.

2.1.3. Дифференциальное исчисление. Заменим в $f(x) = a_0 + a_1 x + a_2 x^2 + \dots$ переменную x на x + t, где t — ещё одна переменная. Получим ряд

$$f(x+t) = a_0 + a_1(x+t) + a_2(x+t)^2 + \dots \in K[[x,t]].$$

¹Т. е. с единицей и без делителей нуля.

Раскроем в нём все скобки, затем сгруппируем слагаемые по степеням переменной t и обозначим через $f_m(x) \in K[\![x]\!]$ ряд, возникающий как коэффициент при t^m :

$$f(x+t) = f_0(x) + f_1(x) \cdot t + f_2(x) \cdot t^2 + f_3(x) \cdot t^3 + \dots = \sum_{m \ge 0} f_m(x) \cdot t^m.$$
 (2-5)

Упражнение 2.4. Убедитесь, что $f_0(x) = f(x)$ совпадает с исходным рядом f.

Ряд $f_1(x)$ называется $npous Bod ho oldsymbol{u}$ от исходного ряда f и обозначается f' или $\frac{d}{dx}f$. Он однозначно определяется равенством

$$f(x + t) = f(x) + f'(x) \cdot t + ($$
члены, делящиеся на t^2)

и может быть вычислен при помощи упр. 2.3 как результат подстановки t=0 в ряд

$$\frac{f(x+t)-f(x)}{t} = \sum_{k \geq 1} a_k \frac{(x+t)^k - x^k}{t} = \sum_{k \geq 1} a_k \left((x+t)^{k-1} + (x+t)^{k-2} x + \dots + x^{k-1} \right),$$

что даёт

$$f'(x) = \sum_{k \ge 1} k \, a_k x^{k-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots \,. \tag{2-6}$$

Пример 2.3 (ряды с нулевой производной)

Из формулы (2-6) вытекает, что производная от константы равна нулю. Если 1 char K=0, то верно и обратное: f'=0 тогда и только тогда, когда $f=a_0$. Но если char K=p>0, то производная от каждого монома вида x^{kp} занулится, поскольку коэффициент m при x^{m-1} в формуле (2-6) представляет собою сумму m единиц кольца K. Мы заключаем, над целостным кольцом K характеристики p>0 равенство f'(x)=0 означает, что $f(x)=g(x^p)$ для некоторого $g\in K[\![x]\!]$.

Упражнение 2.5. Покажите, что при простом $p \in \mathbb{N}$ для любого ряда $g \in \mathbb{F}_p[\![x]\!]$ выполняется равенство $g(x^p) = g(x)^p$.

Предложение 2.1 (правила дифференцирования)

Для любого $\alpha \in K$ и любых $f,g \in K[x]$ справедливы равенства

$$(\alpha f)' = \alpha \cdot f', \quad (f+g)' = f'+g', \quad (fg)' = f' \cdot g + f \cdot g'.$$
 (2-7)

Кроме того, если ряд g не имеет свободного члена, то

$$(f(g(x)))' = g'(x) \cdot f'(g(x)), \qquad (2-8)$$

а если ряд f обратим, то

$$\frac{d}{dx}f^{-1} = -f'/f^2. {(2-9)}$$

Доказательство. Первые два равенства в (2-7) вытекают прямо из формулы (2-6). Для доказательства третьего перемножим ряды

$$f(x+t) = f(x) + t \cdot f'(x) + ($$
члены, делящиеся на t^2) $g(x+t) = g(x) + t \cdot g'(x) + ($ члены, делящиеся на t^2).

¹См. n° 1.5.5 на стр. 31.

С точностью до членов, делящихся на t^2 , получим

$$f(x+t)g(x+t) = f(x)g(x) + t \cdot (f'(x)g(x) + f(x)g'(x)) + ($$
члены, делящиеся на t^2),

откуда $(fg)' = f' \cdot g + f \cdot g'$. Формула (2-8) доказывается похожим образом: подставляя в f(x) вместо x ряд g(x+t), получаем $f\left(g(x+t)\right) = f\left(g(x) + t \cdot g'(x) + ($ члены, делящиеся на t^2)). Полагая $\tau(x,t) \stackrel{\text{def}}{=} g(x+t) - g(x) = t \cdot g'(x) + ($ члены, делящиеся на t^2) и переписывая правую часть предыдущего ряда как

$$\begin{split} f\big(g(x+t)\big) &= f\big(g(x) + \tau(x,t)\big) = \\ &= f(g(x)) + \tau(x,t) \cdot f'(g(x)) + (\text{члены, делящиеся на } \tau(x,t)^2) = \\ &= f(g(x)) + t \cdot g'(x) \cdot f'(g(x)) + (\text{члены, делящиеся на } t^2) \,, \end{split}$$

заключаем, что $\left(f(g(x))' = g'(x) \cdot f'(g(x))\right)$. Для доказательства формулы (2-9) достаточно продифференцировать обе части равенства $f \cdot f^{-1} = 1$.

Упражнение 2.6. Покажите, что при char $\Bbbk=0$ в разложении (2-5) каждый ряд $f_m(x)$ равен $\frac{1}{m!} \left(\frac{d}{dx}\right)^m f(x)$, где $\left(\frac{d}{dx}\right)^m$ означает m-кратное применение операции $\frac{d}{dx}$.

2.2. Делимость в кольце многочленов. Школьный алгоритм «деления уголком» работает для многочленов с коэффициентами в произвольном коммутативном кольце с единицей при условии, что многочлен-делитель имеет обратимый старший коэффициент.

Предложение 2.2 (деление с остатком)

Пусть K — произвольное коммутативное кольцо с единицей, и старший коэффициент многочлена $u \in K[x]$ обратим. Тогда для любого $f \in K[x]$ существуют такие $q, r \in K[x]$, что f = uq + r и $\deg(r) < \deg(u)$ или r = 0. Если кольцо K целостное, то q и r однозначно определяются этими свойствами по f и u.

Доказательство. Пусть $f=a_nx^n+\ldots+a_1x+a_0$ и $u=b_kx^k+\ldots+b_1x+b_0$, где b_k обратим. Если n< k, можно взять q=0 и r=f. Если k=0, т. е. $u=b_0$, можно взять r=0, $q=b_0^{-1}f$. Пусть $n\geqslant k>0$ и предложение справедливо для всех многочленов f с $\deg f< n$. Тогда многочлен $f-a_nb_k^{-1}x^{n-k}u$ имеет степень, строго меньшую чем n, и по индукции представляется в виде qu+r, где $\deg r<\deg u$ или r=0. Тем самым, $f=(q+a_nb_k^{-1}x^{n-k})\cdot u+r$, как и утверждалось. Если кольцо K целостное и $p,s\in K[x]$ таковы, что $\deg(s)<\deg(u)$ и up+s=f=uq+r, то u(q-p)=r-s. При $p-q\neq 0$ степень левой части не менее $\deg u$, что строго больше степени правой. Поэтому, p-q=0, откуда и r-s=0.

Определение 2.1

Многочлены q и r, удовлетворяющие условиям предл. 2.2 называются неполным частным и остатком от деления f на u в K[x].

Следствие 2.1

Для любых многочленов f, g с коэффициентами в любом поле \Bbbk существует единственная такая пара многочленов $q,r \in \Bbbk[x]$, что $f=g\cdot q+r$ и $\deg(r)<\deg(g)$ или r=0.

Пример 2.4 (вычисление значения многочлена в точке)

Остаток от деления многочлена $f(x) = a_n x^n + ... + a_1 x + a_0$ на линейный двучлен $x - \alpha$ имеет степень нуль и равен значению $f(\alpha)$ многочлена f при $x = \alpha$, в чём легко убедиться, подставляя

 $x=\alpha$ в равенство $f(x)=(x-\alpha)\cdot q(x)+r$. При «делении уголком» значение $f(\alpha)$ вычисляется в виде

$$f(\alpha) = \alpha \Big(\dots \alpha \Big(\alpha (\alpha a_n + a_{n-1}) + a_{n-2} \Big) + \dots \Big) + a_0,$$

что гораздо эффективнее «лобовой подстановки» значения $x = \alpha$ в $a_n x^n + ... + a_1 x + a_0$.

Предложение 2.3

Над произвольным полем \Bbbk для любого набора многочленов $f_1, \ldots, f_n \in \Bbbk[x]$ существует единственный приведённый многочлен $d \in \Bbbk[x]$, который делит каждый из многочленов f_i и делится на любой многочлен, делящий каждый из многочленов f_i . Он представляется в виде

$$d = f_1 h_1 + \dots + f_n h_n$$
, где $h_i \in \mathbb{k}[x]$. (2-10)

Произвольный многочлен $g \in \mathbb{k}[x]$ представим в виде (2-10) если и только если $d \mid g$.

Доказательство. Единственность очевидна: два многочлена, каждый из которых делится на другой, имеют равные степени и могут различаться лишь постоянным множителем, который равен единице, коль скоро оба многочлена приведены. Существование доказывается тем же рассуждением, что и в \mathfrak{n}° 1.4.2 на стр. 27. Обозначим множество всех многочленов $g \in \mathbb{k}[x]$, представимых в виде (2-10), через $(f_1,\ldots,f_n) \stackrel{\mathrm{def}}{=} \{f_1h_1+\ldots+f_nh_n \mid h_i \in \mathbb{k}[x]\}$. Это подкольцо в $\mathbb{k}[x]$, содержащее вместе с каждым многочленом g и все кратные ему многочлены hg с любым $h \in \mathbb{k}[x]$. Кроме того, (f_1,\ldots,f_n) содержит каждый из многочленов f_i , и все многочлены из (f_1,\ldots,f_n) делятся на любой общий делитель всех многочленов f_i . Возьмём в качестве d приведённый многочлен наименьшей степени в (f_1,\ldots,f_n) . Для любого $g \in (f_1,\ldots,f_n)$ остаток r=g-qd от деления g на d лежит в (f_1,\ldots,f_n) , и так как неравенство $\deg r < \deg d$ невозможно, мы заключаем, что r=0, т. е. все $g \in (f_1,\ldots,f_n)$ делятся на d.

Определение 2.2

Многочлен d из предл. 2.3 называется наибольшим общим делителем f_i многочленов f_i и обозначается нод (f_1, \ldots, f_n) .

2.2.1. Взаимная простота. Из предл. 2.3 вытекает, что для любого поля \mathbbm{k} взаимная простота многочленов $f_1,\ldots,f_m\in\mathbbm{k}[x]$, т. е. наличие таких $h_1,\ldots,h_m\in\mathbbm{k}[x]$, что $h_1f_1+\ldots+h_nf_n=1$, равносильна отсутствию у многочленов f_1,\ldots,f_n общих делителей положительной степени — точно также, как это происходит в кольце целых чисел \mathbbm{Z} .

Определение 2.3

Необратимый многочлен $f \in K[x]$ с коэффициентами в целостном³ кольце K называется h неприводимым, если из равенства f = gh вытекает, что g или h является обратимой константой.

Упражнение 2.7. Пусть \Bbbk — любое поле. Пользуясь лем. 1.3, докажите следующую теорему об однозначности разложения на простые множители в кольце $\Bbbk[x]$: каждый многочлен f положительной степени является произведением конечного числа неприводимых многочленов, причём в любых двух таких представлениях $p_1 \dots p_k = f = q_1 \dots q_m$ одинаковое количество множителей k = m, и их можно перенумеровать так, чтобы $p_i = \lambda_i q_i$ при всех i для некоторых ненулевых констант $\lambda_i \in \Bbbk$.

¹Ср. с зам. 1.3. на стр. 26.

²См. опр. 1.2 на стр. 26.

 $^{^{3}}$ Т. е. с единицей и без делителей нуля.

2.2.2. Алгоритм Евклида – Гаусса из n° 1.2.2 также применим к многочленам с коэффициентами из любого поля k. Покажем, как он работает, вычислив нод(f,g) для

$$f = x^7 + 3x^6 + 4x^5 + x^4 + 5x^2 + 3x^3 + 3x + 4$$
 и $g = x^5 + 5x^4 + 11x^3 + 12x^2 + 7x + 4$.

Как и в n° 1.2.2 на стр. 24, составляем таблицу

$$\begin{pmatrix} f & 1 & 0 \\ g & 0 & 1 \end{pmatrix} = \begin{pmatrix} x^7 + 3x^6 + 4x^5 + x^4 + 3x^3 + 5x^2 + 3x + 4 & 1 & 0 \\ x^5 + 5x^4 + 11x^3 + 12x^2 + 7x + 4 & 0 & 1 \end{pmatrix} \; .$$

и преобразуем её строки, умножая какую-нибудь из них на ненулевую константу и прибавляя к результату другую строку, умноженную на подходящий многочлен, так, чтобы степень одного из многочленов в левом столбце строго уменьшалась, пока один из них не обнулится:

из многочленов в левом столоце строго уменьшалась, пока один из них не обнулитея:
$$(1) \mapsto (1) - x^2(2) : \begin{pmatrix} -2x^6 - 7x^5 - 11x^4 - 4x^3 + x^2 + 3x + 4 & 1 & -x^2 \\ x^5 + 5x^4 + 11x^3 + 12x^2 + 7x + 4 & 0 & 1 \end{pmatrix}$$

$$(1) \mapsto (1) + 2x(2) : \begin{pmatrix} 3x^5 + 11x^4 + 20x^3 + 15x^2 + 11x + 4 & 1 & -x^2 + 2x \\ x^5 + 5x^4 + 11x^3 + 12x^2 + 7x + 4 & 0 & 1 \end{pmatrix}$$

$$(1) \mapsto (1) - 3(2) : \begin{pmatrix} -4x^4 - 13x^3 - 21x^2 - 10x - 8 & 1 & -x^2 + 2x - 3 \\ 7x^5 + 5x^4 + 11x^3 + 12x^2 + 7x + 4 & 0 & 1 \end{pmatrix}$$

$$(2) \mapsto 4(2) + x(1) : \begin{pmatrix} -4x^4 - 13x^3 - 21x^2 - 10x - 8 & 1 & -x^2 + 2x - 3 \\ 7x^4 + 23x^3 + 38x^2 + 20x + 16 & x - x^3 + 2x^2 - 3x + 4 \end{pmatrix}$$

$$(2) \mapsto 4(2) + 7(1) : \begin{pmatrix} -4x^4 - 13x^3 - 21x^2 - 10x - 8 & 1 & -x^2 + 2x - 3 \\ x^3 + 5x^2 + 10x + 8 & 4x + 7 & -4x^3 + x^2 + 2x - 5 \end{pmatrix}$$

$$(1) \mapsto (1) + 4x(2) : \begin{pmatrix} 7x^3 + 19x^2 + 22x - 8 & 16x^2 + 28x + 1 & -16x^4 + 4x^3 + 7x^2 - 18x - 3 \\ x^3 + 5x^2 + 10x + 8 & 4x + 7 & -4x^3 + x^2 + 2x - 5 \end{pmatrix}$$

$$(1) \mapsto (1) - 7(2) : \begin{pmatrix} -16x^2 - 48x - 64 & 16x^2 - 48 & -16x^4 + 32x^3 - 32x + 32 \\ x^3 + 5x^2 + 10x + 8 & 4x + 7 & -4x^3 + x^2 + 2x - 5 \end{pmatrix}$$

$$(2) \mapsto (2) + x(1)/16 : \begin{pmatrix} x^2 + 3x + 4 & -x^2 + 3 & x^4 - 2x^3 + 2x - 2 \\ 2x^2 + 6x + 8 & x^3 + x + 7 & -x^5 + 2x^4 - 4x^3 - x^2 + 4x - 5 \end{pmatrix}$$

$$(2) \mapsto (2) - 2(1) : \begin{pmatrix} x^2 + 3x + 4 & -x^2 + 3 & x^4 - 2x^3 + 2x - 2 \\ 0 & x^3 + 2x^2 + x + 1 & -x^5 - x^2 - 1 \end{pmatrix}$$

Полученный результат означает, что нод $(f,g)=x^2+3x+4=-(x^2-3)\cdot f+(x^4-2x^3+2x-2)\cdot g$, а нок $(f,g)=(x^3+2x^2+x+1)\cdot f=(x^5+x^2+1)\cdot g$.

Упражнение 2.8. Убедитесь, что в каждой возникающей по ходу вычисления таблице

$$\begin{pmatrix} p & r & s \\ q & u & w \end{pmatrix}$$

выполняются равенства p=rf+sg, q=uf+wg, а многочлен rw-us является ненулевой константой, и выведите из них, что в итоговой таблице вида

$$\begin{pmatrix} d' & h_1 & h_2 \\ 0 & m_1 & m_2 \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} 0 & m_1 & m_2 \\ d' & h_1 & h_2 \end{pmatrix}$$

многочлен $d'=fh_1+gh_2$ делит f и g, а многочлен $c'=fm_1=-gm_2$ делит любое общее кратное f и g.

2.3. Корни многочленов. Число $\alpha \in K$ называется *корнем* многочлена $f \in K[x]$, если $f(\alpha) = 0$. Как мы видели в прим. 2.4 на стр. 39, это равносильно тому, что f(x) делится в K[x] на $x - \alpha$.

Упражнение 2.9. Пусть \Bbbk — поле. Проверьте, что многочлен степени 2 или 3 неприводим в $\Bbbk[x]$ если и только если у него нет корней в поле \Bbbk .

Предложение 2.4

Пусть K — целостное кольцо и $f \in K[x]$ имеет s различных корней $\alpha_1, \ldots, \alpha_s \in K$. Тогда f делится в K[x] на произведение $\prod_i (x - \alpha_i)$. В частности, $\deg(f) \geqslant s$ или f = 0.

Доказательство. Так как в K нет делителей нуля и $(\alpha_i - \alpha_1) \neq 0$ при $i \neq 1$, подставляя в равенство $f(x) = (x - \alpha_1) \cdot q(x)$ значения $x = \alpha_2, \ldots, \alpha_s$, убеждаемся, что они являются корнями многочлена q(x), и применяем индукцию.

Следствие 2.2

Пусть кольцо K целостное, и $f,g\in K[x]$ имеют степени, не превосходящие n. Если $f(\alpha_i)=g(\alpha_i)$ для более, чем n попарно разных $\alpha_i\in K$, то f=g в K[x].

Доказательство. Так как $\deg(f-g) \leqslant n$, и у f-g больше n корней, f-g=0.

Пример 2.5 (интерполяционный многочлен Лагранжа)

Пусть \Bbbk — поле. По сл. 2.2 для любых наборов из n+1 различных чисел $a_0,a_1,\ldots,a_n\in \Bbbk$ и произвольных значений $b_0,b_1,\ldots,b_n\in \Bbbk$ имеется не более одного многочлена $f\in \Bbbk[x]$ степени $\leqslant n$ со значениями $f(a_i)=b_i$ при всех i. Единственный такой многочлен всегда существует и называется интерполяционным многочленом Лагранжа. Чтобы выписать его явно заметим, что произведение $\prod_{v\neq i}(x-a_v)$ зануляется во всех точках a_v кроме i-той, где его значение отлично от нуля. Деля на него, получаем многочлен $f_i(x)=\prod_{v\neq i}(x-a_v)/\prod_{v\neq i}(a_i-a_v)$ со значениями $f_i(a_v)=0$ при $v\neq i$ и $f_i(a_i)=1$. Искомый многочлен Лагранжа имеет вид

$$\sum_{i=0}^{n} b_i f_i(x) = \sum_{i=0}^{n} b_i \prod_{\nu \neq i} \frac{x - a_{\nu}}{a_i - a_{\nu}}.$$

2.3.1. Присоединение корней. Зафиксируем произвольный отличный от константы многочлен $f \in \mathbb{k}[x]$. Кольцо вычетов $\mathbb{k}[x]/(f)$ определяется аналогично кольцу $\mathbb{Z}/(n)$. А именно, обозначим через $(f) = \{fh \mid h \in \mathbb{k}[x]\}$ подкольцо в $\mathbb{k}[x]$, состоящее из всех многочленов, делящихся на f. Сдвиги этого подкольца на всевозможные элементы $g \in \mathbb{k}[x]$ обозначаются

$$[g]_f = g + (f) = \{g + fh \mid h \in \mathbb{k}[x]\}$$

и называются классами вычетов по модулю f. Два таких класса $[g_1]_f$ и $[g_2]_f$ либо не пересекаются, либо совпадают, причём последнее означает, что $g_1-g_2\in (f)$.

Упражнение 2.10. Убедитесь, что отношение $g_1 \equiv g_2 \pmod{f}$, означающее, что $g_1 - g_2 \in (f)$, является эквивалентностью².

Множество классов вычетов обозначается через $\mathbb{k}[x]/(f)$. Сложение и умножение в нём задаётся формулами $[g]_f + [h]_f \stackrel{\text{def}}{=} [g+h]_f$, $[g]_f \cdot [h]_f \stackrel{\text{def}}{=} [gh]_f$.

¹См. n° 1.4 на стр. 27.

²См. опр. 0.1 на стр. 9.

Упражнение 2.11. Проверьте корректность 1 этого определения и выполнение в $\mathbb{k}[x]/(f)$ всех аксиом коммутативного кольца с единицей.

Нулём кольца $\Bbbk[x]/(f)$ является класс $[0]_f=(f)$, единицей — класс $[1]_f=1+(f)$. Так как константы не делятся на многочлены положительной степени, классы всех констант $c\in \Bbbk$ различны по модулю f. Иначе говоря, поле \Bbbk гомоморфно вкладывается в кольцо $\Bbbk[x]/(f)$ в качестве подполя, образованного классами констант. Поэтому классы чисел $c\in \Bbbk$ обычно записываются как c, а не $[c]_f$.

Упражнение 2.12. Покажите, что для любого $\alpha \in \mathbb{k}$ кольцо $\mathbb{k}[x]/(x-\alpha)$ изоморфно полю \mathbb{k} .

Каждый многочлен $g \in \Bbbk[x]$ однозначно представляется в виде g = fh + r, где $\deg r < \deg f$. Поэтому в каждом классе $[g]_f$ есть ровно один многочлен $r \in [g]_f$ с $\deg(r) < \deg(f)$. Таким образом, каждый элемент кольца $\Bbbk[x]/(f)$ однозначно записывается в виде

$$[a_0+a_1x+\ldots+a_{n-1}x^{n-1}]_f=a_0+a_1\vartheta+\ldots+a_{n-1}\vartheta^{n-1}\,, \ \mathrm{rge}\ \vartheta=[x]_f\ \mathrm{u}\ a_i\in \Bbbk\,.$$

Класс $\vartheta = [x]_f$ удовлетворяет в кольце $\mathbb{k}[x]/(f)$ уравнению $f(\vartheta) = 0$, ибо

$$f(\vartheta) = f([x]_f) = [f(x)]_f = [0]_f$$
.

В таких обозначениях сложение и умножение вычетов представляет собою формальное сложение и умножение записей $a_0+a_1\vartheta+\ldots+a_{n-1}\vartheta^{n-1}$ по стандартным правилам раскрытия скобок и приведения подобных слагаемых с учётом соотношения $f(\vartheta)=0$. По этой причине кольцо $\Bbbk[x]/(f)$ часто обозначают через $\Bbbk[\vartheta]$, где $f(\vartheta)=0$, и называют расширением поля \Bbbk путём присоединения к нему корня ϑ многочлена $f\in \Bbbk[x]$.

Например, кольцо $\mathbb{Q}[x]/(x^2-2)$ можно воспринимать как множество формальных записей вида $a+b\sqrt{2}$, где $\sqrt{2} \stackrel{\mathrm{def}}{=} [x]$. Сложение и умножение таких записей происходит по стандартным правилам раскрытия скобок с учётом того, что $\sqrt{2}\cdot\sqrt{2}=2$:

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2}$$
$$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (cb+ad)\sqrt{2}.$$

Упражнение 2.13. Проверьте, что $\mathbb{Q}[\sqrt{2}]$ является полем, и выясните, являются ли полями кольца $\mathbb{Q}[\vartheta]$, в которых A) $\vartheta^3 + 1 = 0$ Б) $\vartheta^3 + 2 = 0$.

Предложение 2.5

Пусть \Bbbk — произвольное поле и $f \in \Bbbk[x]$. Кольцо $\Bbbk[x]/(f)$ является полем если и только если f неприводим в $\Bbbk[x]$.

Доказательство. Если f = gh, где степени f и g строго меньше $\deg f$, ненулевые классы [g], [h] являются делителями нуля в кольце $\mathbb{k}[x]/(f)$, что невозможно в поле. Если f неприводим, то нод(f,g)=1 для любого $g\notin (f)$, и значит, fh+gq=1 для некоторых $h,q\in \mathbb{k}[x]$, откуда $[q]\cdot [g]=[1]$, т. е. класс [g] обратим в $\mathbb{k}[x]/(f)$.

Упражнение 2.14. Найдите $(1 + \vartheta)^{-1}$ в поле $\mathbb{Q}[\vartheta]$, где $\vartheta^2 + \vartheta + 1 = 0$.

 $^{^1}$ Т. е. независимость классов $[g+h]_f$ и $[gh]_f$ от выбора представителей $g\in [g]_f$ и $h\in [h]_f$.

Теорема 2.1

Для любого поля \mathbb{K} и произвольного $f \in \mathbb{K}[x]$ существует такое поле $\mathbb{F} \supset \mathbb{K}$, что в кольце $\mathbb{F}[x]$ многочлен f разлагается в произведение $\deg f$ линейных множителей.

Доказательство. Индукция по $n=\deg f$. Пусть для любого поля \Bbbk и каждого многочлена степени < n из $\Bbbk[x]$ искомое поле имеется 1 . Рассмотрим многочлен f степени n. Если он приводим, т. е. f=gh и $\deg g$, $\deg h < n$, то по индуктивному предположению существует поле $\mathbb{L} \supset \Bbbk$ над которым g полностью разлагается на линейные множители, а также поле $\mathbb{F} \supset \mathbb{L}$ над которым полностью разлагается h, а с ним и f. Если f неприводим, рассмотрим поле $\mathbb{L} = \Bbbk[x]/(f)$. Оно содержит \Bbbk в качестве классов констант, и многочлен f делится в $\mathbb{L}[x]$ на $(x-\vartheta)$, где $\vartheta = [x]_f \in \mathbb{L}$. Частное от этого деления имеет степень n-1 и по индукции раскладывается на линейные множители над некоторым полем $\mathbb{F} \supset \mathbb{L}$. Тем самым и f полностью раскладывается над \mathbb{F} .

Теорема 2.2 (китайская теорема об остатках)

Пусть многочлен $f = f_1 \dots f_m \in \mathbb{k}[x]$ является произведением m попарно взаимно простых многочленов $f_i \in \mathbb{k}[x]$. Тогда отображение

$$\varphi: \frac{\mathbb{k}[x]}{(f)} \to \frac{\mathbb{k}[x]}{(f_1)} \times \dots \times \frac{\mathbb{k}[x]}{(f_m)}, \quad [g]_f \mapsto ([g]_{f_1}, \dots, [g]_{f_m}), \tag{2-11}$$

корректно определено и является изоморфизмом колец.

Доказательство. Проверка того, что отображение (2-11) корректно определено², является гомоморфизмом колец и имеет нулевое ядро, дословно та же, что в n° 1.7 на стр. 34, и мы оставляем её читателям. Докажем, что гомоморфизм (2-11) сюрьективен. Для каждого i обозначим через $F_i = f/f_i$ произведение всех многочленов f_v кроме i-го. Так как f_i взаимно прост с каждым f_v при $v \neq i$, многочлены F_i и f_i взаимно просты по лем. 1.3 на стр. 26. Поэтому существует такой многочлен $h_i \in \mathbb{k}[x]$, что $[1]_{f_i} = [F_i]_{f_i}[h_i]_{f_i} = [F_ih_i]_{f_i}$ в $\mathbb{k}[x]/(f_i)$. Мы заключаем, что класс многочлена F_ih_i нулевой во всех кольцах $\mathbb{k}[x]/(f_v)$ с $v \neq i$ и равен единице в $\mathbb{k}[x]/(f_i)$. Поэтому для любого набора классов $[r_i]_{f_i} \in \mathbb{k}[x]/(f_i)$ многочлен $g = \sum_i r_i F_i h_i$ таков, что $[g]_{f_i} = [r_i]_{f_i}$ сразу для всех i.

- **2.3.2.** Общие корни нескольких многочленов $f_1, \ldots, f_m \in \mathbb{k}[x]$ с коэффициентами в поле \mathbb{k} искать обычно проще, чем корни каждого из многочленов f_i в отдельности, так как общие корни являются корнями многочлена нод (f_1, \ldots, f_m) , который находится при помощи алгоритма Евклида и как правило имеет меньшую степень, чем любой из f_i . Отметим, что при нод $(f_1, \ldots, f_m) = 1$ многочлены f_i не имеют общих корней не только в поле \mathbb{k} , но и ни в каком большем кольце $K \supset \mathbb{k}$, поскольку существуют такие $h_i \in \mathbb{k}[x]$, что $f_1h_1 + \ldots + f_mh_m = 1$.
- **2.3.3. Кратные корни.** Пусть & произвольное поле. Число $\alpha \in \&$ называется m-кратным корнем многочлена $f \in \&[x]$, если $f(x) = (x \alpha)^m \cdot g(x)$ и $g(\alpha) \neq 0$. Корни кратности m = 1 называются *простыми*, а более высоких кратностей кратными.

Предложение 2.6

Число α является кратным корнем многочлена f если и только если $f(\alpha)=f'(\alpha)=0$.

 $^{^1}$ Заметим, что при n=2 это так: достаточно взять $\mathbb{F}=\Bbbk.$

 $^{^2}$ Т. е. $\varphi([g]_f) = \varphi([h]_f)$ при $[g]_f = [h]_f$.

Доказательство. Если корень α кратный, то $f(x) = (x - \alpha)^2 g(x)$. Дифференцируя, получаем

$$f'(x) = (x - \alpha) \left(2g(x) + (x - \alpha)g'(x) \right),$$

откуда $f'(\alpha) = 0$. Если корень α не кратный, то $f(x) = (x - \alpha)g(x)$, где $g(\alpha) \neq 0$. Подставляя $x = \alpha$ в $f'(x) = (x - \alpha)g'(x) + g(x)$, получаем $f'(\alpha) = g(\alpha) \neq 0$.

Предложение 2.7

Если char $\mathbb{k}=0$, то $\alpha\in\mathbb{k}$ является m-кратным корнем многочлена $f\in\mathbb{k}[x]$ если и только если

$$f(\alpha) = \frac{d}{dx} f(\alpha) = \ldots = \frac{d^{m-1}}{dx^{m-1}} f(\alpha) = 0 \quad \text{if} \quad \frac{d^m}{dx^m} f(\alpha) \neq 0 \, .$$

Доказательство. Если $f(x) = (x - \alpha)^m g(x)$, то $f'(x) = (x - \alpha)^{m-1} (mg(x) + (x - \alpha)g'(x))$. При $g(\alpha) \neq 0$ второй множитель в последнем равенстве ненулевой при $x = \alpha$. Поэтому α является m-кратным корнем f если и только если α является (m-1)-кратным корнем f'.

2.3.4. Сепарабельность. Многочлен $f \in \Bbbk[x]$ называется сепарабельным, если он взаимно прост со своей производной. Это равносильно отсутствию у f кратных корней в любом кольце $K\supset \Bbbk$. В самом деле, если \deg нод $(f,f')\geqslant 1$ или f'=0, то по теор. 2.1 нод(f,f') или, соответственно, сам f имеет корень в некотором поле $\mathbb{F}\supset \Bbbk$, и по предл. 2.6 этот корень кратный для f. Наоборот, если нод(f,f')=1, то pf+qf'=1 для подходящих $p,q\in \Bbbk[x]$, и поэтому f и f' не могут одновременно обратиться в нуль ни в каком расширении $K\supset \Bbbk$.

Пример 2.6 (сепарабельность и несепарабельность неприводимых многочленов)

Если многочлен $f \in \Bbbk[x]$ неприводим, то он взаимно прост со всеми ненулевыми многочленами меньшей степени. Поэтому нод(f,f')=1, если $f'\neq 0$ в $\Bbbk[x]$. Поскольку над полем характеристики нуль каждый многочлен положительной степени имеет ненулевую производную, все неприводимые многочлены над таким полем сепарабельны. Если char $\Bbbk=p>0$, то f'=0 если и только если $\sharp f(x)=g(x^p)$ для некоторого $g(x)=b_mx^m+\ldots+b_1x+b_0\in \Bbbk[x]$. Так как в характеристике p возведение в p-тую степень является гомоморфизмом колец $\sharp f(x)=0$ и тождественно действует на простом поле $\sharp f(x)=0$ для любого многочлена f(x)=0 с коэффициентами в простом конечном поле f(x)=0 выполняются равенства

$$\begin{split} g(x^p) &= b_m x^{pm} + \ldots + b_1 x^p + b_0 = b_m^p x^{pm} + \ldots + b_1^p x^p + b_0^p = \\ &= (b_m x^m + \ldots + b_1 x + b_0)^p = g^p(x) \,. \end{split}$$

Поэтому в $\mathbb{F}_p[x]$ каждый многочлен с нулевой производной является чистой p-той степенью и тем самым приводим. Мы заключаем, что в $\mathbb{F}_p[x]$ все неприводимые многочлены тоже сепарабельны.

Упражнение 2.15^* . Покажите, что неприводимый многочлен над любым конечным полем сепарабелен.

Неприводимый многочлен над бесконечным полем положительной характеристики не обязательно сепарабелен. Например, можно показать, что над полем $\mathbb{K} = \mathbb{F}_p(t)$ рациональных функций от одной переменной t с коэффициентами в поле \mathbb{F}_p многочлен $f(x) = x^p - t$ неприводим, но поскольку f' = 0, многочлен f не сепарабелен.

¹См. прим. 2.3 на стр. 38.

²См. прим. 1.7 на стр. 28.

2.4. Поле комплексных чисел $\mathbb{C} \stackrel{\text{def}}{=} \mathbb{R}[t]/(t^2+1)$ получается из поля \mathbb{R} присоединением корня неприводимого над \mathbb{R} многочлена $t^2+1=0$ и состоит из элементов x+iy, где $x,y\in\mathbb{R}$, а $i\stackrel{\text{def}}{=}[t]$ удовлетворяет соотношению $i^2=-1$. Обратным к ненулевому числу x+yi является число

$$\frac{1}{x+yi} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2} \cdot i.$$

Комплексное число z=x+yi удобно изображать на плоскости \mathbb{R}^2 с фиксированной прямоугольной системой координат (x,y) радиус вектором z, ведущим из начала координат в точку z=(x,y), как на рис. $2 \diamond 1$. Координаты (x,y) называются действительной и мнимой частями числа $z \in \mathbb{C}$ и обозначаются через $\mathrm{Re}(z)$ и $\mathrm{Im}(z)$, а длина $|z| \stackrel{\mathrm{def}}{=} \sqrt{x^2+y^2}$ называется модулем или абсолютной величиной комплексного числа z. Множество всех таких $\vartheta \in \mathbb{R}$, что поворот плоскости вокруг нуля на угол ϑ совмещает направление координатной оси x с направлением вектора z, называется аргументом числа z и обозначается $\mathrm{Arg}(z) = \{\alpha + 2\pi k \mid k \in \mathbb{Z}\}$, где $\alpha \in \mathbb{R}$ — ориентированная длина какой-нибудь дуги единичной окружности, ведущей из точки (1,0) в точку |z| |z|. Таким образом, каждое комплексное число имеет вид |z| |z|

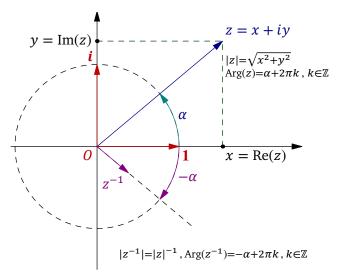


Рис. 2 \diamond **1.** Числа $z = |z| \cdot (\cos \alpha + i \sin \alpha)$ и $z^{-1} = |z|^{-1} (\cos \alpha - i \sin \alpha)$.

На множестве векторов в \mathbb{R}^2 имеется своя внутренняя операция сложения векторов, относительно которой радиус векторы точек $z \in \mathbb{R}^2$ образуют абелеву группу. Зададим на множестве векторов в \mathbb{R}^2 операцию умножения требованием, чтобы длины перемножаемых векторов перемножались, а аргументы — складывались, т. е.

$$\begin{split} |z_1z_2| &= |z_1|\cdot|z_2| \\ \operatorname{Arg}(z_1z_2) &= \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) \stackrel{\text{def}}{=} \left\{ \vartheta_1 + \vartheta_2 \mid \vartheta_1 \in \operatorname{Arg}(z_1) \,, \; \vartheta_2 \in \operatorname{Arg}(z_2) \right\}. \end{split} \tag{2-12}$$

Упражнение 2.16. Проверьте корректность нижней формулы, т. е. убедитесь, что любые два числа в правом множестве отличаются на целое кратное 2π .

¹Любые две таких дуги отличаются друг от друга на целое число оборотов, а «ориентированность» означает, что длину дуги следует брать со знаком «+», если движение вдоль неё происходит против часовой стрелки, и со знаком «–» если по часовой стрелке.

Лемма 2.1

Множество радиус векторов точек z евклидовой координатной плоскости \mathbb{R}^2 с описанными выше сложением и умножением является полем. Отображение $\mathbb{C} \to \mathbb{R}^2$, сопоставляющее комплексному числу $x+iy \in \mathbb{C}$ точку $z=(x,y) \in \mathbb{R}^2$, является изоморфизмом полей.

Доказательство. Радиус векторы точек плоскости образуют абелеву группу по сложению. Очевидно также, что ненулевые векторы образуют абелеву группу относительно операции умножения, задаваемой формулами (2-12). Единицей этой группы служит единичный направляющий вектор оси x, а обратный к ненулевому z вектор z^{-1} имеет $|z^{-1}| = 1/|z|$ и $\text{Arg}(z^{-1}) = -\text{Arg}(z)$ (см. рис. 2 \diamond 1). Для проверки дистрибутивности заметим, что для любого $a \in \mathbb{R}^2$ отображение

$$a: \mathbb{R}^2 \to \mathbb{R}^2, \quad z \mapsto az,$$

состоящее в умножении всех векторов на a по формулам (2-12), представляет собою $nosopom-hyo \ zomomemuo^1$ плоскости \mathbb{R}^2 относительно начала координат на угол $\operatorname{Arg}(a)$ с коэффициентом |a|. Аксиома дистрибутивности a(b+c)=ab+ac утверждает, что поворотная гомотетия перестановочна со сложением векторов 2 . Но это действительно так, поскольку и повороты и гомотетии переводят параллелограммы в параллелограммы. Таким образом, радиус векторы точек евклидовой координатной плоскости \mathbb{R}^2 образуют поле. Векторы, параллельные горизонтальной координатной оси, составляют в нём подполе, изоморфное полю \mathbb{R} . Если обозначить через i единичный направляющий вектор вертикальной координатной оси, то радиус вектор каждой точки $z=(x,y)\in\mathbb{R}^2$ однозначно запишется в виде z=x+iy, где числа $x,y\in\mathbb{R}$ понимаются как векторы, параллельные горизонтальной координатной оси, а сложение и умножение происходят по правилам поля \mathbb{R}^2 . При этом $i^2=-1$ и для любых векторов $z_1=x_1+iy_1$ и $z_2=x_2+iy_2$ выполняются равенства $z_1+z_2=(x_1+x_2)+i(y_1+y_2)$ и

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1),$$

которыми описывается сложение и умножение вычетов [x+yt] в поле $\mathbb{C}=\mathbb{R}[t]/(t^2+1)$.

- **2.4.1.** Комплексное сопряжение. Числа z=x+iy и $\overline{z}\stackrel{\text{def}}{=} x-iy$ называются комплексно сопряженными. В терминах комплексного сопряжения обратное к ненулевому $z\in\mathbb{C}$ число можно записать как $z^{-1}=\overline{z}/|z|^2$. На геометрическом языке комплексное сопряжение $z\mapsto\overline{z}$ представляет собою симметрию комплексной плоскости относительно вещественной оси x. С алгебраической точки зрения сопряжение является инволютивным автоморфизмом поля \mathbb{C} , т. е. $\overline{\overline{z}}=z$ для всех $z\in\mathbb{C}$, и $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$, $\overline{z_1}\overline{z_2}=\overline{z_1}\overline{z_2}$ для всех $z_1,z_2\in\mathbb{C}$.
- **2.4.2. Тригонометрия.** Почти вся школьная тригонометрия представляет собою трудно для восприятия закодированную запись заурядных алгебраических вычислений с комплексными числами, лежащими на единичной окружности.

Пример 2.7 (формулы сложения аргументов)

Произведение z_1z_2 чисел $z_1=\cos\varphi_1+i\sin\varphi_1$ и $z_2=\cos\varphi_2+i\sin\varphi_2$ согласно лем. 2.1 равно $\cos(\varphi_1+\varphi_2)+i\sin(\varphi_1+\varphi_2)$, а лобовое перемножение этих чисел путём раскрытия скобок

 $^{^1}$ Поворотной гомотетией относительно точки 0 на угол α с коэффициентом $\varrho>0$ называется композиция поворота на угол α вокруг точки 0 и растяжения в ϱ раз относительно 0. Так такие растяжения и повороты коммутируют друг с другом, неважно в каком порядке выполняется эта композиция.

²Т. е. является гомоморфизмом аддитивных групп.

³Эндоморфизм $\iota: X \to X$ произвольного множества X называется *инволюцие* \check{u} , если $\iota \circ \iota = \operatorname{Id}_X$. По предл. 0.4 на стр. 14 всякая инволюция автоматически биективна.

даёт $z_1z_2=(\cos\varphi_1\cos\varphi_2-\sin\varphi_1\sin\varphi_2)+i(\cos\varphi_1\sin\varphi_2+\sin\varphi_1\cos\varphi_2)$, откуда $\cos(\varphi_1+\varphi_2)=\cos\varphi_1\cos\varphi_2-\sin\varphi_1\sin\varphi_2$ и $\sin(\varphi_1+\varphi_2)=\cos\varphi_1\sin\varphi_2+\sin\varphi_1\cos\varphi_2$. Таким образом мы доказали тригонометрические формулы сложения аргументов.

Пример 2.8 (тригонометрические функции кратных углов)

По лем. 2.1 число $z=\cos\varphi+i\sin\varphi\in\mathbb{C}$ имеет $z^n=\cos(n\varphi)+i\sin(n\varphi)$. Раскрывая скобки в биноме $(\cos\varphi+i\sin\varphi)^n$ по форм. (0-8) на стр. 7, получаем равенство

$$\begin{split} \cos(n\varphi) + i\sin(n\varphi) &= (\cos\varphi + i\sin\varphi)^n = \\ &= \cos^n\varphi + i\binom{n}{1}\cos^{n-1}\varphi\sin\varphi - \binom{n}{2}\cos^{n-2}\varphi\sin^2\varphi - i\binom{n}{3}\cos^{n-3}\varphi\sin^3\varphi + \dots = \\ &= \left(\binom{n}{0}\cos^n\varphi - \binom{n}{2}\cos^{n-2}\varphi\sin^2\varphi + \binom{n}{4}\cos^{n-4}\varphi\sin^4\varphi - \dots\right) + \\ &+ i\cdot\left(\binom{n}{1}\cos^{n-1}\varphi\sin\varphi - \binom{n}{3}\cos^{n-3}\varphi\sin^3\varphi + \binom{n}{5}\cos^{n-5}\varphi\sin^5\varphi - \dots\right) \end{split}$$

заключающее в себе сразу все мыслимые формулы для кратных углов:

$$\cos(n\varphi) = \binom{n}{0}\cos^n\varphi - \binom{n}{2}\cos^{n-2}\varphi\sin^2\varphi + \binom{n}{4}\cos^{n-4}\varphi\sin^4\varphi - \cdots$$
$$\sin(n\varphi) = \binom{n}{1}\cos^{n-1}\varphi\sin\varphi - \binom{n}{3}\cos^{n-3}\varphi\sin^3\varphi + \binom{n}{5}\cos^{n-5}\varphi\sin^5\varphi - \cdots$$

Например, $\cos 3\varphi = \cos^3 \varphi - 3\cos \varphi \cdot \sin^2 \varphi = 4\cos^3 \varphi - 3\cos^2 \varphi$.

Упражнение 2.17. Выразите $\sin(2\pi/5)$ и $\cos(2\pi/5)$ через радикалы от рациональных чисел.

2.4.3. Корни из единицы и круговые многочлены. Решим в поле $\mathbb C$ уравнение $z^n=1$. Сравнивая модули левой и правой части, заключаем, что |z|=1. Сравнивая аргументы, получаем $n \operatorname{Arg}(z)=\operatorname{Arg}(1)=\{2\pi k\mid k\in\mathbb Z\}$. С точностью до прибавления целых кратных 2π существует ровно n различных вещественных чисел, попадающих при умножении на n в множество $\{2\pi k\mid k\in\mathbb Z\}$. Это все геометрически различные углы $2\pi k/n$ с $0\leqslant k\leqslant n-1$. Мы заключаем, что уравнение $z^n=1$ имеет ровно n корней

$$\zeta_k = \cos(2\pi k/n) + i\sin(2\pi k/n), \quad \text{где} \quad k = 0, 1, \dots, (n-1),$$
 (2-13)

расположенных в вершинах правильного n-угольника, вписанного в единичную окружность так, что его вершина ζ_0 находится в точке 1, см. рис. 2 \diamond 2 и рис. 2 \diamond 3.

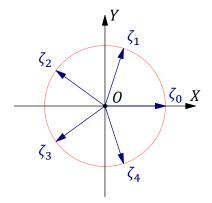


Рис. 2<2. Группа **µ**₅.

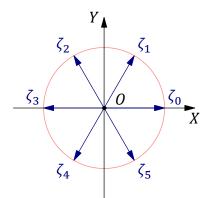


Рис. 2◊3. Группа **µ**₆.

2.5. Конечные поля 49

Корни (2-13) образуют абелеву группу относительно операции умножения. Эта группа обозначается μ_n и называется *группой корней п-й степени из единицы*. Корень $\zeta \in \mu_n$ называются *первообразным корнем* степени n из единицы, если все остальные элементы группы μ_n представляются в виде ζ^k с $k \in \mathbb{N}$. Например, первообразным является корень $\zeta_1 = \cos(2\pi/n) + i \sin(2\pi/n)$, имеющий наименьший положительный аргумент. Но бывают и другие: на рис. $2 \diamond 2$ все четыре отличных от 1 элемента группы μ_5 являются первообразными корнями, тогда как в группе μ_6 на рис. $2 \diamond 3$ первообразными являются только ζ_1 и $\zeta_5 = \zeta_1^{-1} = \zeta_1^5$. Множество всех первообразных корней обозначается через $R_n \subset \mu_n$.

Упражнение 2.18. Покажите, что $\zeta_1^k = \cos(2\pi k/n) + i\sin(2\pi k/n) \in R_n$ если и только если нод(k,n)=1.

Приведённый многочлен $\Phi_n(z) = \prod_{\zeta \in R_n} (z-\zeta)$, корнями которого являются все первообразные корни n-й степени из единицы и только они, называется n-тым κp уговым или μu имклотомическим многочленом. Например, пятый и шестой круговые многочлены имеют вид

$$\begin{split} \Phi_5(z) &= (z-\zeta_1)(z-\zeta_2)(z-\zeta_3)(z-\zeta_4) = z^4 + z^3 + z^2 + z + 1 \\ \Phi_6(z) &= (z-\zeta_1)(z-\zeta_4) = z^2 - z + 1 \,. \end{split}$$

Упражнение 2.19*. Попытайтесь доказать, что при всех $n \in \mathbb{N}$ многочлен Φ_n имеет целые коэффициенты и неприводим $\mathbb{Q}[x]$.

Пример 2.9 (уравнение $z^n = a$)

Число $z=|z|\cdot(\cos\varphi+i\sin\varphi)\in\mathbb{C}$ является корнем уравнения $z^n=a$ если и только если $|z|^n=|a|$ и $n\varphi\in\operatorname{Arg}(a)$. При $a\neq 0$ имеется ровно n таких чисел. Они выражаются через r=|a| и $\alpha\in\operatorname{Arg} a$ по формуле

$$z_k = \sqrt[n]{r} \cdot \left(\cos \frac{\alpha + 2\pi k}{n} + i \sin \frac{\alpha + 2\pi k}{n}\right), \quad 0 \leqslant k \leqslant n - 1,$$

и располагаются в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{r}$ с центром в нуле так, что радиус вектор одной из его вершин образует с осью x угол α/n .

2.5. Конечные поля можно строить присоединяя к $\mathbb{F}_p = \mathbb{Z}/(p)$ корень какого-нибудь неприводимого многочлена $f \in \mathbb{F}_p[x]$. Если $\deg f = n$, то получающееся таким образом поле вычетов $\mathbb{F}_p[x]/(f)$ состоит из p^n элементов вида $a_0 + a_1\vartheta + \ldots + a_{n-1}\vartheta^{n-1}$, где $a_i \in \mathbb{F}_p$ и $f(\vartheta) = 0$.

Пример 2.10 (поле \mathbb{F}_{9})

Многочлен $x^2+1\in \mathbb{F}_3[x]$ неприводим, так как не имеет корней в \mathbb{F}_3 . Присоединяя к \mathbb{F}_3 его корень, получаем поле $\mathbb{F}_9\stackrel{\mathrm{def}}{=} \mathbb{F}_3[x]/(x^2+1)$, состоящее из девяти элементов вида a+bi, где $a,b\in \mathbb{F}_3=\{-1,0,1\}$ и $i^2=-1$. Расширение $\mathbb{F}_3\subset \mathbb{F}_9$ похоже на расширение $\mathbb{R}\subset \mathbb{C}$. Аналогом комплексного сопряжения в поле \mathbb{F}_9 является гомоморфизм Фробениуса $^2F_3:\mathbb{F}_9\to \mathbb{F}_9,z\mapsto z^3$, тождественно действующий на простом подполе $\mathbb{F}_3\subset \mathbb{F}_9$ и переводящий i в -i.

Упражнение 2.20. Составьте для поля \mathbb{F}_9 таблицы умножения и обратных элементов, перечислите в \mathbb{F}_9 все квадраты и кубы и убедитесь, что мультипликативная группа \mathbb{F}_9^\times изоморфна $\pmb{\mu}_8$.

 $^{^{1}}$ Т. е. не являются произведениями многочленов строго меньшей степени.

²См. прим. 1.10 на стр. 32.

Пример 2.11 (поле \mathbb{F}_{4})

Многочлен $x^2+x+1\in \mathbb{F}_2[x]$ неприводим, так как не имеет корней в \mathbb{F}_2 . Присоединяя к \mathbb{F}_2 его корень, получаем поле $\mathbb{F}_4\stackrel{\mathrm{def}}{=}\mathbb{F}_2[x]/(x^2+x+1)$, состоящее из $0,1,\omega=[x]$ и $1+\omega=\omega^2=\omega^{-1}$, причём 1 $\omega^2+\omega+1=0$. Расширение $\mathbb{F}_2\subset\mathbb{F}_4$ тоже похоже на $\mathbb{R}\subset\mathbb{C}$, если понимать второе расширение как результат присоединения к \mathbb{R} первообразного комплексного кубического корня ω из единицы, который также удовлетворяет уравнению $\omega^2+\omega+1=0$. В поле \mathbb{F}_4 аналогом комплексного сопряжения $\mathbb{C}\to\mathbb{C}$, переводящего $\omega\in\mathbb{C}$ в $\overline{\omega}=\omega^2$, также является гомоморфизм Фробениуса 2 F_2 : $\mathbb{F}_4\to\mathbb{F}_4$, $z\mapsto z^2$, который тождественно действует на простом подполе $\mathbb{F}_2\subset\mathbb{F}_4$ и переводит корни многочлена x^2+x+1 друг в друга.

Упражнение 2.21. Убедитесь, что мультипликативная группа \mathbb{F}_4^{\times} изоморфна $\pmb{\mu}_3$.

Теорема 2.3

Для каждого $n\in\mathbb{N}$ и простого $p\in\mathbb{N}$ существует конечное поле \mathbb{F}_q из $q=p^n$ элементов.

Доказательство. Рассмотрим в $\mathbb{F}_p[x]$ многочлен $f(x)=x^q-x$. По теор. 2.1 существует такое поле $\mathbb{F}\supset\mathbb{F}_p$, что f полностью раскладывается в $\mathbb{F}[x]$ в произведение q линейных множителей. Так как f'(x)=-1, многочлен f сепарабелен 3 , и все эти множители различны. Таким образом, в поле \mathbb{F} имеется ровно q таких чисел α , что $\alpha^q=\alpha$. Обозначим множество этих чисел через \mathbb{F}_q и покажем, что $\mathbb{F}_q\subset\mathbb{F}$ является подполем. Очевидно, что $0,1\in\mathbb{F}$ лежат в \mathbb{F}_q . Если $\alpha\in\mathbb{F}_q$, то $\alpha^{-1}\in\mathbb{F}_q$, так как $\left(\alpha^{-1}\right)^q=\left(\alpha^q\right)^{-1}=\alpha^{-1}$, и $-\alpha\in\mathbb{F}_q$, так как $(-\alpha)^q=-\alpha^q=-\alpha$ при $p\neq 2$, а в характеристике два $-\alpha=\alpha$. Если $\alpha,\beta\in\mathbb{F}_q$, то $(\alpha\beta)^q=\alpha^q\beta^q=\alpha\beta$, т. е. $\alpha\beta\in\mathbb{F}_q$. Поскольку сhar $\mathbb{F}=p$, в поле \mathbb{F} выполняется равенство $(\alpha+\beta)^p=\alpha^p+\beta^p$. Применяя его n раз, заключаем, что $(\alpha+\beta)^q=(\alpha+\beta)^{p^n}=\alpha^{p^n}+\beta^{p^n}=\alpha+\beta$ для всех $\alpha,\beta\in\mathbb{F}_q$, откуда $\alpha+\beta\in\mathbb{F}_q$.

Упражнение 2.22. Покажите, что число элементов в любом конечном поле является степенью его характеристики.

2.5.1. Конечные мультипликативные подгруппы поля. Рассмотрим абелеву группу A, операцию в которой будем записывать мультипликативно. Если группа A конечна, то среди степеней любого элемента $b \in A$ встречаются одинаковые, скажем $b^n = b^k$ с n > k. Умножая обе части этого равенства на b^{-k} , заключаем, что $b^{n-k} = 1$. Таким образом, для каждого $b \in A$ существует такое $m \in \mathbb{N}$, что $b^m = 1$. Наименьшее из этих m называется порядком элемента b и обозначается ord b. Если ord b = n, то элементы $b^0 = 1$, $b^1 = b$, b^2 , ..., b^{n-1} попарно различны, и каждая целая степень b^k совпадает с одним из них: если k = nq + r, где r — остаток от деления k на n, то $b^k = (b^n)^q b^r = b^r$. В частности, $b^m = 0$ если и только если m \vdots ord b.

Упражнение 2.23. Покажите, что порядок любого элемента из конечной абелевой группы A делит |A|.

Группа A называется *циклической*, если она исчерпывается целыми степенями какого-нибудь элемента $a \in A$, т. е. $A = \{a^n \mid n \in \mathbb{Z}\}$. Для конечной группы A это равносильно равенству ord a = |A|. Каждый обладающий этим свойством элемент $a \in A$ называется *образующей* циклической группы A. Например, группа $\mu_n \subset \mathbb{C}$ комплексных корней n-й степени из единицы 5 циклическая, и её образующими являются первообразные корни.

¹Отметим, что −1 = 1 в \mathbb{F}_2 , что позволяет обходиться без минусов.

²См. прим. 1.10 на стр. 32.

³См. n° 2.3.4 на стр. 45.

⁴См. прим. 1.10 на стр. 32.

⁵См. n° 2.4.3 на стр. 48.

2.5. Конечные поля 51

Предложение 2.8

Если порядки элементов мультипликативной абелевой группы A ограничены сверху, то максимальный из них делится на порядок любого элемента $a \in A$.

Доказательство. Достаточно для любых двух элементов $a_1,a_2\in A$, имеющих порядки m_1,m_2 , построить элемент $b\in A$, порядок которого равен нок (m_1,m_2) . Если нод $(m_1,m_2)=1$, положим $b=a_1a_2$. Тогда $b^{m_1m_2}=a_1^{m_1m_2}a_2^{m_2m_1}=1$. Если $b^k=1$, то $a_1^k=a_2^{-k}$, откуда $1=a_1^{km_1}=a_2^{-km_1}$, и значит, $km_1 \ \vdots \ m_2$. Так как m_1 и m_2 взаимно просты, $k \ \vdots \ m_2$. Меня ролями a_1 и a_2 , заключаем, что $k \ \vdots \ m_1$, а значит, $k \ \vdots \ m_1m_2$. Тем самым, $\operatorname{ord}(b)=m_1m_2=\operatorname{нок}(m_1,m_2)$.

Пусть нод $(m_1,m_2) \neq 1$. Для каждого простого $p \in \mathbb{N}$ обозначим через $v_i(p)$ показатель, с которым p входит в разложение числа m_i на простые множители 1 . Тогда

$$\operatorname{HOK}(m_1,m_2) = \prod\nolimits_p p^{\max(\nu_1(p),\nu_2(p))} \, .$$

Положим $\ell_1 = \prod p^{\nu_1(p)}$ по всем простым $p \in \mathbb{N}$ с $\nu_1(p) > \nu_2(p)$, и $\ell_2 = \operatorname{Hok}(m_1, m_2)/\ell_1$. Тогда $\operatorname{Hod}(\ell_1, \ell_2) = 1$ и $m_1 = k_1\ell_1$, $m_2 = k_2\ell_2$ для некоторых $k_1, k_2 \in \mathbb{N}$. Элементы $b_1 = a_1^{k_1}$, $b_2 = a_2^{k_2}$ имеют взаимно простые порядки ℓ_1, ℓ_2 , и по уже доказанному их произведение $b = b_1b_2$ имеет порядок $\ell_1\ell_2 = \operatorname{Hok}(m_1, m_2)$.

Следствие 2.3

Любая конечная подгруппа A в мультипликативной группе \mathbb{k}^{\times} произвольного поля \mathbb{k} является циклической.

Доказательство. Обозначим через m максимальный из порядков элементов группы A. Согласно предл. 2.8, все элементы группы A являются корнями многочлена $x^m - 1 = 0$. Поэтому их не более m и все они исчерпываются степенями имеющегося в A элемента m-того порядка. \square

Теорема 2.4

Всякое конечное поле изоморфно одному из полей \mathbb{F}_q , построенных в теор. 2.3 на стр. 50.

Доказательство. Пусть поле $\mathbb F$ имеет характеристику p и состоит из q элементов. По сл. 2.3 мультипликативная группа $\mathbb F^{\times}$ является циклической. Обозначим её образующую через $\zeta \in \mathbb F^{\times}$. Тогда $\mathbb F = \{0,1,\zeta,\zeta^2,\dots,\zeta^{q-2}\}$ и $\zeta^{q-1} = 1$. Чтобы доказать теорему, построим ещё одно поле из q элементов, изоморфное как полю $\mathbb F$, так и подходящему полю из теор. 2.3. Для этого обозначим через $g \in \mathbb F_p[x]$ приведённый многочлен минимальной степени с корнем ζ .

Упражнение 2.24. Убедитесь, что такой многочлен g существует, неприводим в $\mathbb{F}_p[x]$ и делит все многочлены $f \in \mathbb{F}_n[x]$ с корнем ζ .

Из упражнения вытекает, что кольцо $\mathbb{F}_p[x]/(g)$ является полем, а правило $[h]_g \mapsto h(\zeta)$ корректно задаёт ненулевой гомоморфизм колец $\mathbb{F}_p[x]/(g) \to \mathbb{F}$. Он инъективен по предл. 1.3 на стр. 31 и сюрьективен, так как все ζ^m содержатся в его образе. Тем самым, $\mathbb{F} \simeq \mathbb{F}_p[x]/(g)$. В частности, поле \mathbb{F} состоит из $q=p^n$ элементов $a_{n-1}\zeta^{n-1}+\ldots+a_1\zeta+a_0$, где $a_i\in\mathbb{F}_p$, $n=\deg g$.

Так как ζ является корнем многочлена $f(x)=x^q-x$, из упр. 2.24 вытекает, что f=gu для некоторого $u\in \mathbb{F}_p[x]$. Подставляя в это равенство q элементов поля \mathbb{F}_q , построенного в теор. 2.3 и состоящего в точности из q корней многочлена f, мы заключаем, что хотя бы один

¹См. упр. 1.8 на стр. 26.

из них — назовём его $\xi \in \mathbb{F}_q$ — является корнем многочлена g . Правило $[h]_g \mapsto h(\xi)$ корре	кт-
но задаёт вложение полей $\mathbb{F}_p[x]/(g) \hookrightarrow \mathbb{F}_q$, сюрьективное, поскольку оба поля состоят и	ıз <i>q</i>
элементов. Тем самым, $\mathbb{F}_p[x]/(g) \simeq \mathbb{F}_q$.	
Следствие 2.4 (из доказательства теор. 2.4)	
Для каждого $n\in\mathbb{N}$ и простого $p\in\mathbb{N}$ в $\mathbb{F}_p[x]$ имеется неприводимый многочлен степени $n.$	
Следствие 2.5	
Каждое конечное поле $\mathbb F$ состоит из p^n элементов, где простое $p=$ char $\mathbb F$, и для каждого $n\in$	≣Ν
и простого p имеется единственное с точностью до изоморфизма поле из p^n элементов.	

Ответы и указания к некоторым упражнениям

Упр. 2.3. Ответ: $(y^n - x^n)/(y - x) = y^{n-1} + y^{n-2}x + y^{n-3}x^2 + \dots + yx^{n-2} + x^{n-1}$.

Упр. 2.5. $\left(a_0+a_1x+a_2x^2+\ldots\right)^p=a_0^p+a_1^px^p+a_2^px^{2p}+\ldots=a_0+a_1x^p+a_2x^{2p}+\ldots$ (первое равенство справедливо, поскольку возведение в p-тую степень перестановочно со сложением, второе — по малой теореме Ферма).

Упр. 2.6. Если
$$f(x) = \sum a_k x^k$$
, то $f(x+t) = \sum_{k,\nu} a_k \binom{k}{\nu} \cdot x^{k-\nu} t^{\nu} = \sum_{\nu} t^{\nu} \cdot f_{\nu}(x)$, где

$$f_{\nu}(x) = \sum_{k \geq \nu} a_k \binom{k}{\nu} \cdot x^{k-\nu} = \frac{1}{\nu!} \frac{d^k}{dx^k} \sum_{k \geq 0} a_k x^k \,.$$

Упр. 2.7. Годятся дословно те же аргументы, что и в упр. 1.8.

Существование. Если f неприводим, то сам он и является своим разложением. Если f приводим, то он раскладывается в произведение многочленов строго меньшей степени, которые в свою очередь или неприводимы или являются произведениями многочленов строго меньшей степени и т. д. Поскольку степень не может бесконечно уменьшаться, в конце концов получится требуемое разложение.

Единственность. Для неприводимого $p \in \mathbb{k}[x]$ и любого $g \in \mathbb{k}[x]$ имеется следующая альтернатива: либо нод $(p,g)=\lambda p$, где $\lambda \in \mathbb{k}^{\times}$ — ненулевая константа, и в этом случае g делится на p, либо нод(p,g)=1, и тогда g взаимно прост с p. Пусть все сомножители в равенстве $p_1\dots p_k=q_1\dots q_m$ неприводимы. Поскольку $\prod q_i$ делится на p_1 , многочлен p_1 , не может быть взаимно прост с каждым q_i в силу лем. 1.3 на стр. 26. Поэтому найдётся q_i , делящийся на p_1 . После надлежащей перенумерации можно считать, что это q_1 . Так как q_1 неприводим, $q_1=\lambda p_1$, где λ — ненулевая константа. Сокращаем первый множитель и повторяем рассуждение.

Упр. 2.8. При умножении любой из строк таблицы $\begin{pmatrix} p & r & s \\ q & u & w \end{pmatrix}$ на ненулевую константу равенства p = rf + sg, q = uf + wg сохраняются, а многочлен rw - us умножается на эту константу. Если заменить любую строку таблицы на её сумму с другой строкой, умноженной на любой многочлен, равенства p = rf + sg, q = uf + wg сохранятся, а многочлен rw - us вообще не поменяется (ср. с упр. 1.6 на стр. 25). Пусть в итоговой таблице

$$\begin{pmatrix} d' & h_1 & h_2 \\ 0 & m_1 & m_2 \end{pmatrix}$$

 $h_1m_2-h_2m_1=\delta\in \mathbb{k}^{\times}$. Умножая это равенство на f и на g и пользуясь тем, что $d'=fh_1+gh_2$, а $fm_1=-gm_2$, получаем

$$\begin{split} \delta f &= f h_1 m_2 - f h_2 m_1 = f h_1 m_2 + g h_2 m_2 = d' m_2 \\ \delta g &= g h_1 m_2 - g h_2 m_1 = -f h_1 m_1 - g h_2 m_1 = -d' m_1 \,. \end{split}$$

Поэтому $f=d'm_2\delta^{-1}$ и $g=-d'm_1\delta^{-1}$ делятся на d' . Для любого q=fs=gt из равенства

$$\delta q = qh_1m_2 - qh_2m_1 = gth_1m_2 - fsh_2m_1 = -c'(th_1 + sh_2),$$

где $c' = fm_1 = -gm_2$, заключаем, что $q = -c'(th_1 + sh_2)\delta^{-1}$ делится на c'.

Упр. 2.9. Если многочлен степени \leq 3 приводим, то у него есть делитель первой степени, корень которого будет корнем исходного многочлена.

Упр. 2.11. См. упр. 0.9 на стр. 10.

Упр. 2.12. Вложение $\varphi : \mathbb{k} \hookrightarrow \mathbb{k}[x]/(x-\alpha)$ в качестве констант сюрьективно, поскольку число $\alpha \in \mathbb{k}$ переходит в класс[x], и значит, для любого $g \in \mathbb{k}[x]$ число $g(\alpha)$ переходит в класс[g].

Упр. 2.13. Обратным элементом к произвольному ненулевому $a+b\sqrt{2}\in\mathbb{Q}[\sqrt{2}]$ является $\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}$. Кольцо в (а) содержит делители нуля: $[t+1]\cdot[t^2-t+1]=[0]$ и, тем самым, не является полем. Кольцо в (б) является полем: многочлен $p=\vartheta^3+2$ не имеет корней в \mathbb{Q} , и значит, не делится в $\mathbb{Q}[x]$ ни на какой многочлен первой или второй степени; следовательно, p взаимно прост со всеми $g\in\mathbb{Q}[x]$, не делящимися на p, т. е. для любого $[g]\neq[0]$ существуют $h_1,h_2\in\mathbb{Q}[x]$, такие что $h_1g+h_2p=1$; тем самым, $[h_1]=[g]^{-1}$.

Упр. 2.14. Ответ: $(1 + \vartheta)^{-1} = -\vartheta$.

Упр. 2.15. Решение этой задачи опирается на теор. 2.3 на стр. 50 и теор. 2.4 на стр. 51. Обозначим через \mathbb{F}_q конечное поле из q элементов 1 . Пусть $f \in \mathbb{F}_q[x]$ неприводим. Из доказательства теор. 2.1 на стр. 44 вытекает, что существует такое конечное поле $\mathbb{F}_r \supset \mathbb{F}_q$, что f полностью раскладывается на линейные множители в $\mathbb{F}_r[x]$. Так как поле \mathbb{F}_r состоит из корней многочлена $g = x^r - x$, этот многочлен имеет общие корни с f, откуда нод $(f,g) \neq 1$ в $\mathbb{F}_q[x]$. Так как f неприводим, $g \colon f$ в $\mathbb{F}_q[x]$. А поскольку g сепарабелен, f тоже сепарабелен.

Упр. 2.17. Число $\zeta = \cos(2\pi/5) + i \cdot \sin(2\pi/5)$ является корнем многочлена

$$z^5 - 1 = (z - 1)(z^4 + z^3 + z^2 + z + 1)$$
.

Уравнение $z^4 + z^3 + z^2 + z + 1 = 0$ можно решить в радикалах, деля обе части на z^2 и вводя новую переменную $t = z + z^{-1}$.

Упр. 2.18. Пусть $\zeta = \cos(2\pi/n) + i\sin(2\pi/n)$ — первообразный корень с наименьшим положительным аргументом, и $\xi = \zeta^k$. Так как равенство $\zeta^m = \xi^x$ означает, что m = kx + ny для некоторого $y \in \mathbb{Z}$, среди целых степеней корня ξ встречаются те и только те степени первообразного корня ζ , которые делятся на $\log(k,n)$.

Упр. 2.19. См. листок $2\frac{1}{2}$.

Упр. 2.22. Конечное поле $\mathbb F$ характеристики p является векторным пространством над своим простым подполем $\mathbb F_p\subset\mathbb F$, и в нём имеются такие векторы v_1,\dots,v_m , что любой вектор $w\in\mathbb F$ линейно выражается через них в виде $w=x_1v_1+\dots+x_mv_m$, где все $x_i\in\mathbb F_p$. Удаляя из набора v_1,\dots,v_m все векторы, которые линейно выражаются через оставшиеся, мы получим такой набор векторов $\{e_1,\dots,e_n\}\subset\{v_1,\dots,v_m\}$, через который каждый вектор $w\in\mathbb F$ выражается единственным способом, так как равенство $x_1e_1+\dots+x_ne_n=y_1e_1+\dots+y_ne_n$, в котором $x_i\neq y_i$ для какого-нибудь i, позволяет выразить e_i через остальные векторы как $e_i=\sum_{v\neq i}e_v(y_v-x_v)/(x_i-y_i)$, что невозможно. Коль скоро каждый элемент поля $\mathbb F$ однозначно записывается в виде $x_1e_1+\dots+x_ne_n$, где каждый коэффициент x_i независимо принимает p значений, мы заключаем, что $|\mathbb F|=p^n$.

Упр. 2.23. См. доказательство теоремы Эйлера из прим. 1.6 на стр. 28.

 $^{^1}$ Согласно теор. 2.3 и теор. 2.4 такое поле единственно с точностью до изоморфизма и состоит из корней многочлена x^q-x в таком расширении простого подполя поля \mathbb{F}_q , над которым этот многочлен полностью раскладывается на линейные множители.

Упр. 2.24. Отображение ev_ζ : $\mathbb{F}_p[x] \to \mathbb{F}, f \mapsto f(\zeta)$, является гомоморфизмом колец. Поскольку поле \mathbb{F} конечно, а кольцо многочленов $\mathbb{F}_p[x]$ бесконечно, у этого гомоморфизма ненулевое ядро. Многочлен g — это приведённый многочлен минимальной степени в $\ker \operatorname{ev}_\zeta$. Если $g(x) = h_1(x) h_2(x)$, то $h_1(\zeta) = 0$ или $h_2(\zeta) = 0$, что по выбору g невозможно при $\deg h_1$, $\deg h_2 < \deg g$. Пусть $f(\zeta) = 0$ для f = gh + r, где $\deg r < \deg g$ или r = 0. Подставляя $x = \zeta$, получаем $r(\zeta) = 0$, откуда r = 0.