Модули и матрицы

- AC5 \$1. Модуль с одной образующей называется циклическим. Докажите, что
 - а) всякий циклический \mathbb{Z} -модуль изоморфен либо \mathbb{Z} , либо $\mathbb{Z}/(n)$
 - **б)** всякий подмодуль циклического **Z**-модуля является циклическим
 - в) \mathbb{Z} -модуль $\mathbb{Z}/(n) \oplus \mathbb{Z}/(m)$ циклический если и только если $\mathrm{HOJ}(m,n)=1.$
- **AC5\diamond2.** Являются ли циклическими \mathbb{Z} -модули **a)** \mathbb{Z}^2 **б)** $\mathbb{Z} \oplus \mathbb{Z}/(n)$?
- **АС5\diamond3.** Опишите \mathbb{Z} -модули **a)** $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(12),\mathbb{Z}/(18))$ **6)** $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(18),\mathbb{Z}/(12))$
 - в) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(4),\mathbb{Z}/(16))$ г) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(2)\oplus\mathbb{Z}/(2),\mathbb{Z}/(8))$ д) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(16),\mathbb{Z}/(4)\oplus\mathbb{Z}/(8))$.
- **AC54.** Модуль M называется *полупростым*, если для любого подмодуля $N \subset M$ существует такой подмодуль $L \subset M$, что $M = L \oplus N$. Полупросты ли \mathbb{Z} -модули: **a)** \mathbb{Z}^k **б)** $(\mathbb{Z}/(p))^k$ **в)** $\mathbb{Z}/(p^k)$, где p простое?
- **АС5\diamond5.** Существует ли такой \mathbb{Z} -подмодуль $M \subset \mathbb{Z}^3$, что $\mathbb{Z}^3 = L \oplus M$, где \mathbb{Z} -подмодуль $L \subset \mathbb{Z}^3$ порождается столбцами матрицы: **a**) $\begin{pmatrix} 14 & -16 & 13 \\ 9 & -6 & 3 \\ 6 & 0 & -3 \end{pmatrix}$ **6**) $\begin{pmatrix} -10 & -2 & 4 \\ -13 & 0 & 4 \\ 0 & 2 & -1 \end{pmatrix}$ **B**) $\begin{pmatrix} -19 & -13 & -3 \\ -1 & -1 & 0 \\ -11 & -7 & -2 \end{pmatrix}$?
- **АС5 6.** Пусть матрица A имеет столбцы (слева направо) c_1 , c_2 , c_3 и строки (сверху вниз) r_1 , r_2 , r_3 , r_4 . На какую матрицу и с какой стороны надлежит умножить матрицу A, чтобы получилась матрица **a)** со строками (сверху вниз) $r_3 + 2r_4$, $3r_1 + 2r_2 + r_3$, $r_1 r_2 + r_3 r_4$ **6)** со столбцами (слева направо) $c_1 + 2c_2$, $2c_2 + 3c_3$, $3c_3 + 4c_1$, $5c_1 + 6c_2$, $c_1 + c_2 + c_3$?
- **AC5\diamond7.** Пусть K коммутативное кольцо с единицей. Обозначим через $E_{ij} \in \operatorname{Mat}_n(K)$ матрицу с единицей в клетке (i,j) и нулями в остальных клетках. Составьте таблицу:
 - а) произведений $E_{ij}E_{k\ell}$ б) коммутаторов $[E_{ij},E_{k\ell}]\stackrel{\text{def}}{=} E_{ij}E_{k\ell}-E_{k\ell}E_{ij}$ и
- в) опишите центр¹ алгебры $\mathrm{Mat}_n(K)$. $\mathbf{AC5} \diamond \mathbf{8}$. Укажите в $\mathrm{Mat}_3(\mathbb{Q})$ какую-нибудь матрицу X с $X^3 = \begin{pmatrix} 8 & 16 & 32 \\ 0 & 8 & 16 \\ 0 & 0 & 8 \end{pmatrix}$.

AC5 \diamond 9. Найдите: a) $\begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}^{2022}$ 6) $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1}$.

- **AC5\diamond10** (унипотентные матрицы). Матрица $A \in \operatorname{Mat}_n(\Bbbk)$, где \Bbbk поле, называется унипотентной, если A = E + N, где N нильпотентна. Покажите, что **a**) при char $\Bbbk > 0$ для любой унипотентной матрицы A найдётся такое $n \in \mathbb{N}$, что $A^n = E$ **6**) при char $\Bbbk = 0$ унипотентность A равносильна наличию такой нильпотентной матрицы B, что $A = e^B$.
- **AC5** \diamond **11.** Покажите, что однородные симметрические многочлены $f \in \mathbb{Z}[x_1,\dots,x_m]$ степени n образуют свободный \mathbb{Z} -модуль и найдите его ранг для всех $2 \leqslant m,n \leqslant 5$.
- AC5 \diamond 12. Выясните, являются ли многочлены а) $\sum_{i \neq j} x_i^2 x_j$ б) $\sum_{j < k} \sum_{i \notin \{j,k\}} x_i (x_j x_k)^2$
 - **B)** $(x_1 + x_2 x_3 x_4)(x_1 x_2 + x_3 x_4)(x_1 x_2 x_3 + x_4)$
 - **r)** $(x_1 + x_2)(x_2 + x_3)(x_3 + x_4)(x_1 + x_3)(x_2 + x_4)(x_1 + x_4)$

симметрическими, и если да, выразите их через $e_k = \sum_{i_1 < \ldots < i_k} x_{i_1} \ldots x_{i_k}$.

- **АС5\diamond13.** Выразите дискриминант³ кубического трёхчлена $x^3 + px + q$ через p и q.
- **AC514.** Найдите все комплексные решения системы уравнений

$$x_1 + x_2 + x_3 = x_1^2 + x_2^2 + x_3^2 = 0$$
, $x_1^3 + x_2^3 + x_3^3 = 24$.

AC5\diamond15. Найдите сумму 4-х степеней комплексных корней многочлена $x^3 - 3x - 1$.

 $^{^{1}}$ Центром алгебры A называется подалгебра $Z(A) = \{a \in A \mid \forall b \in A \ ab = ba\}.$

 $^{^2}$ Многочлен $f \in K[x_1, \dots, x_m]$ называется симметрическим, если $f(x_1, \dots, x_m) = f(x_{g(1)}, \dots, x_{g(m)})$ для любой биекции $g: \{1, \dots, m\} \xrightarrow{\sim} \{1, \dots, m\}$.

 $^{^3}$ Дискриминантом приведённого многочлена $f(x) = \prod_i (x - \alpha_i)$ называется произведение $\prod_{i < i} (\alpha_i - \alpha_i)^2$.