О множествах и отображениях

В этом разделе собраны некоторые факты о множествах и отображениях, которые будут использоваться в нашем курсе. Я надеюсь, что многие из них знакомы читателю из школы, ну а те, что не знакомы, будут в самое ближайшее время изучены в параллельном нашему курсе теории множеств и топологии. Нет нужды «учить» данный раздел перед тем, как браться за курс алгебры. Но к нему стоит выборочно обращаться всякий раз, когда Вы почувствуете себя неуверенно в тех или иных рассуждениях, использующих множества, отображения, отношения или незнакомую Вам комбинаторику.

0.1. Множества. В наши цели не входит построение логически строгой теории множеств. Для понимания этого курса достаточно школьного интуитивного представления о множестве как «абстрактной совокупности элементов произвольной природы». Элементы множеств мы часто будем называть *точками*. Все точки в любом множестве, по определению, различны.

Множество X задано, как только про любой объект можно сказать, является он элементом множества X или нет. Принадлежность точки x множеству X записывается как $x \in X$. Два множества pавны, если они состоят из одних и тех же элементов. Существует единственное множество, не содержащее ни одного элемента. Оно называется nустым и обозначается \emptyset . Если множество X конечно, то мы обозначаем через |X| количество точек в нём.

Множество X называется *подмножеством* множества Y, если каждый его элемент $x \in X$ лежит также и в Y. В этом случае пишут $X \subset Y$. Отметим, что пустое множество является подмножеством любого множества и всякое множество является подмножеством самого себя. Подмножества, отличные от всего множества, называются *собственными*. В частности, пустое подмножество непустого множества собственное. Если надо указать, что X является собственным подмножеством в Y, используется обозначение $X \subsetneq Y$.

Упражнение о.і. Сколько всего подмножеств (включая пустое и несобственное) имеется у множества, состоящего из n элементов?

Для заданных множеств X, Y их объединение $X \cup Y$ состоит из всех элементов, принадлежащих хотя бы одному из множеств X, Y; пересечение $X \cap Y$ состоит из всех элементов, принадлежащих одновременно каждому из множеств X, Y; разность $X \setminus Y$ состоит из всех элементов множества X, которые не содержатся в Y.

Упражнение о.2. Проверьте, что операция пересечения выражается через разность по формуле $X \cap Y = X \setminus (X \setminus Y)$. Можно ли выразить разность через пересечение и объединение?

Если множество X является объединением непересекающихся подмножеств Y и Z, то говорят, что X является дизъюнктным объединением Y и Z и пишут $X = Y \sqcup Z$.

Множество $X \times Y$, элементами которого по определению являются всевозможные пары (x,y) с $x \in X$, $y \in Y$, называется декартовым (или прямым) произведением множеств X и Y.

0.2. Отображения. Отображение $f: X \to Y$ из множества X в множество Y есть правило, однозначно сопоставляющее каждой точке $x \in X$ некоторую точку $y = f(x) \in Y$, которая называется *образом* точки x при отображении f. Множество всех таких точек $x \in X$, образ которых равен заданной точке $y \in Y$, называется *полным прообразом* точки y или *слоем* отображения f над y и обозначается

$$f^{-1}(y) \stackrel{\text{def}}{=} \{x \in X \mid f(x) = y\}.$$

Полные прообразы различных точек не пересекаются и могут быть как пустыми, так и состоять из многих точек. Множество всех $y \in Y$, имеющих непустой прообраз, называется *образом отображения* $f: X \to Y$ и обозначается

$$im(f) \stackrel{\text{def}}{=} \{ y \in Y \mid f^{-1}(y) \neq \emptyset \} = \{ y \in Y \mid \exists x \in X : f(x) = y \}.$$

Два отображения $f: X \to Y$ и $g: X \to Y$ равны, если f(x) = g(x) для всех $x \in X$. Множество всех отображений из множества X в множество Y обозначается Y Нотима.

Отображение $f: X \to Y$ называется наложением (а также сюрьекцией или эпиморфизмом), если $\mathrm{im}(f) = Y$, т. е. когда прообраз каждой точки $y \in Y$ не пуст. Мы будем изображать сюрьективные отображения стрелками $X \twoheadrightarrow Y$. Отображение f называется вложением (а также инъекцией, или мономорфизмом), если $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$, т. е. когда прообраз каждой точки $y \in Y$ содержит не более одного элемента. Инъективные отображения изображаются стрелками $X \hookrightarrow Y$.

Упражнение 0.3. Перечислите все отображения $\{0, 1, 2\} \rightarrow \{0, 1\}$ и $\{0, 1\} \rightarrow \{0, 1, 2\}$. Сколько среди них вложений и сколько наложений?

Отображение $f: X \to Y$, которое является одновременно и вложением и наложением, называется взаимно однозначным (а также биекцией или изоморфизмом). Биективность отображения f означает, что для каждого $y \in Y$ существует единственный такой $x \in X$, что f(x) = y. Мы будем обозначать биекции стрелками $X \cong Y$.

Упражнение о.4. Из отображений: A) $\mathbb{N} \to \mathbb{N}$: $x \mapsto x^2$ б) $\mathbb{Z} \to \mathbb{Z}$: $x \mapsto x^2$ в) $\mathbb{Z} \to \mathbb{Z}$: $x \mapsto 7x$ г) $\mathbb{Q} \to \mathbb{Q}$: $x \mapsto 7x$ выделите все инъекции, все сюрьекции и все биекции.

Отображения $X \to X$ из множества X в себя обычно называют эндоморфизмами множества X. Множество всех эндоморфизмов обозначается $\operatorname{End}(X) \stackrel{\text{def}}{=} \operatorname{Hom}(X,X)$.

Упражнение о.5 (принцип Дирихле). Покажите, что следующие три условия на множество X равносильны: A) X бесконечно $\mathfrak b$) существует вложение $X \hookrightarrow X$, не являющееся наложением $\mathfrak b$) существует наложение $X \twoheadrightarrow X$, не являющееся вложением.

Взаимно однозначные эндоморфизмы $X \cong X$ называются автоморфизмами X. Множество всех автоморфизмов обозначается через $\mathrm{Aut}(X)$. Автоморфизмы можно воспринимать как перестановки элементов множества X. У всякого множества X имеется тождественный автоморфизм $\mathrm{Id}_X: X \to X$, который переводит каждый элемент в самого себя: $\forall \, x \in X \, \mathrm{Id}_X(x) = x$.

Упражнение о.6. Счётно 1 ли множество Aut(\mathbb{N})?

 $^{^1}$ Множество M называется cчётным если существует биекция $\mathbb{N} \cong M$.

0.2. Отображения 5

Пример о.і (запись отображений словами)

Рассмотрим множества $X = \{1, 2, ..., n\}$ и $Y = \{1, 2, ..., m\}$, сопоставим каждому отображению $f: X \to Y$ последовательность его значений:

$$w(f) \stackrel{\text{def}}{=} (f(x_1), f(x_2), \dots, f(x_n))$$

$$(0-1)$$

и будем воспринимать её как n-буквенное слово, написанное при помощи m-буквенного алфавита Y. Так, отображениям $f:\{1,2\}\to\{1,2,3\}$ и $g:\{1,2,3\}\to\{1,2,3\}$, действующим по правилам f(1)=3, f(2)=2 и g(1)=1, g(2)=2, g(3)=2, сопоставятся слова w(f)=(3,2) и w(g)=(1,2,2), составленные из букв алфавита $\{1,2,3\}$. Запись отображения словом задаёт биекцию

$$w: \operatorname{Hom}(X,Y) \cong \{$$
слова из $|X|$ букв в алфавите $Y\}$, $f \mapsto w(f)$. (0-2)

Инъективные отображения записываются при этом словами, в которых нет повторяющихся букв, а сюрьективные отображения — словами, в которых используются все без исключения буквы алфавита Y. Взаимно однозначным отображениям отвечают слова, в которых каждая буква алфавита Y встречается ровно один раз.

Предложение о.1

Если множества X и Y конечны, то $|\operatorname{Hom}(X,Y)| = |Y|^{|X|}$.

Доказательство. Пусть X состоит из n элементов, а Y — из m, как в прим. 0.1 выше. Нас интересует количество всех n-буквенных слов, которые можно написать при помощи алфавита из m букв. Обозначим его через $W_m(n)$ и выпишем все эти слова на m страницах, поместив на i-ю страницу все слова, начинающиеся на i-ю букву алфавита. В результате на каждой странице окажется ровно по $W_m(n-1)$ слов. Поэтому $W_m(n) = m \cdot W_m(n-1) = m^2 \cdot W(n-2) = \dots = m^{n-1} \cdot W_m(1) = m^n$.

Замечание о.і. В виду предл. 0.1 множество $\operatorname{Hom}(X,Y)$ всех отображений $X \to Y$ часто обозначают Y^X . В доказательстве предл. 0.1 мы молчаливо предполагали, что оба множества непусты. Если $X = \emptyset$, то для любого множества Y множество $\operatorname{Hom}(\emptyset,Y)$ по определению состоит из единственного элемента — вложения \emptyset в Y в качестве пустого подмножества или, что то же самое, пустого слова в алфавите Y. В этом случае предл. 0.1 остаётся в силе: $|\operatorname{Hom}(\emptyset,Y)| = 1 = |Y|^0$. В частности, $\operatorname{Hom}(\emptyset,\emptyset)$ тоже состоит из одного элемента $X \to Y$ то тождественного автоморфизма $X \to Y \to Y$ то $X \to$

Предложение 0.2

Если
$$|X| = n$$
, то $|\operatorname{Aut}(X)| = n! \stackrel{\text{def}}{=} n \cdot (n-1) \cdot \ldots \cdot 1$.

Доказательство. Пусть $X=\{x_1,\dots,x_n\}$. Биекции $X \cong X$ записываются n-буквенными словами в n-буквеном алфавите x_1,\dots,x_n , содержащими каждую букву x_i ровно по одному разу. Обозначим количество таких слов через V(n) и выпишем их по алфавиту на n

 $^{^{1}\}text{T.\,e.}~0^{0}$ в этом контексте оказывается равным 1.

страницах, поместив на i-тую страницу все слова, начинающиеся на x_i . Тогда на каждой странице будет ровно V(n-1) слов, откуда $V(n) = n \cdot V(n-1) = n \cdot (n-1) \cdot V(n-2) = \dots = n \cdot (n-1) \cdot \dots \cdot 2 \cdot V(1) = n!$.

Замечание о.2. Число $n! = n \cdot (n-1) \cdot \ldots \cdot 1$ называется n-факториал. Так как множество $\mathrm{Aut}(\varnothing)$ состоит из одного элемента Id_\varnothing , мы полагаем $0! \stackrel{\mathrm{def}}{=} 1$.

0.3. Слои отображений. Задание отображения $f: X \to Y$ равносильно указанию подмножества $\operatorname{im}(f) \subset Y$ и разбиению множества X в дизъюнктное объединение непустых подмножеств $f^{-1}(y)$, занумерованных точками $y \in \operatorname{im}(f)$:

$$X = \bigsqcup_{y \in \operatorname{im}(f)} f^{-1}(y). \tag{0-3}$$

Такой взгляд на отображения часто оказывается полезным при подсчёте количества элементов в том или ином множестве. Например, когда все непустые слои отображения $f: X \to Y$ состоят из одного и того же числа точек $m = |f^{-1}(y)|$, число элементов в образе отображения f связано с числом элементов в множестве X соотношением

$$|X| = m \cdot |\operatorname{im} f|, \tag{0-4}$$

которое при всей своей простоте имеет много разнообразных применений.

Пример 0.2 (мультиномиальные коэффициенты)

При раскрытии скобок в выражении $(a_1+\ldots+a_m)^n$ получится сумма одночленов вида $a_1^{k_1}\ldots a_m^{k_m}$, где каждый показатель k_i заключён в пределах $0\leqslant k_i\leqslant n$, а общая степень $k_1+\ldots+k_m=n$. Коэффициент, возникающий при таком одночлене после приведения подобных слагаемых, называется мультиномиальным коэффициентом и обозначается $\binom{n}{k_1\ldots k_m}$. Таким образом,

$$(a_1 + \dots + a_m)^n = \sum_{\substack{k_1 + \dots + k_m = n \\ \forall i \ 0 \le k_i \le n}} \binom{n}{k_1 \dots k_m} \cdot a_1^{k_1} \dots a_m^{k_m},$$
 (0-5)

Чтобы явно выразить $\binom{n}{k_1 \dots k_m}$ через k_1, \dots, k_m , заметим, что раскрытие n скобок

$$(a_1 + \ldots + a_m)(a_1 + \ldots + a_m) \ldots (a_1 + \ldots + a_m)$$

заключается в выборе внутри каждой из скобок какой-нибудь одной буквы и выписывании их слева направо друг за другом в одно n-буквенное слово. Это надо сделать всеми возможными способами и сложить все полученные слова. Подобные слагаемые, вносящие вклад в коэффициент при $a_1^{k_1}a_2^{k_2}\dots a_m^{k_m}$, суть слова, состоящие ровно из k_1 букв a_1 , k_2 букв a_2,\dots,k_m букв a_m . Количество таких слов легко подсчитать по формуле (0-4). А именно, сделаем на время k_1 букв a_1 попарно разными, снабдив каждую из них дополнительным верхним индексом; аналогично поступим с k_2 буквами a_2,k_3 буквами

 a_3 и т. д. В результате получим $n=k_1+\ldots+k_m$ попарно разных букв:

$$\underbrace{a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(k_1)}}_{k_1 \text{ меченых букв } a_1}, \underbrace{a_2^{(1)}, a_2^{(2)}, \dots, a_2^{(k_2)}}_{k_2 \text{ меченых букв } a_2}, \dots \dots, \underbrace{a_m^{(1)}, a_m^{(2)}, \dots, a_m^{(k_m)}}_{k_m \text{ меченых букв } a_m}.$$

Обозначим через X множество всех n-буквенных слов, которые можно написать этими n различными буквами, используя каждую букву ровно по одному разу. Как мы уже знаем, |X|=n!. В качестве Y возьмём интересующее нас множество слов из k_1 одинаковых букв a_1 , k_2 одинаковых букв a_2 , и т. д. и рассмотрим отображение $f:X\to Y$, стирающее верхние индексы у всех букв. Оно эпиморфно, и полный прообраз каждого слова $y\in Y$ состоит из $k_1!\cdot k_2!\cdot\ldots\cdot k_m!$ слов, которые получаются из y всевозможными расстановками k_1 верхних индексов у букв a_1 , k_2 верхних индексов у букв a_2 , и т. д. По формуле (0-4)

$$\binom{n}{k_1 \dots k_m} = \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_m!}.$$
 (0-6)

Тем самым, разложение (0-5) имеет вид

$$(a_1 + \dots + a_m)^n = \sum_{\substack{k_1 + \dots + k_m = n \\ \forall i \ 0 \le k_i \le n}} \frac{n! \cdot a_1^{k_1} \dots a_m^{k_m}}{k_1! \cdot \dots \cdot k_m!}.$$
 (0-7)

Упражнение о.7. Сколько всего слагаемых в правой части формулы (0-7)?

В частности, при m=2 мы получаем известную формулу для раскрытия бинома с натуральным показателем¹:

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^k b^{n-k}.$$
 (0-8)

При m=2 мультиномиальный коэффициент $\binom{n}{k,n-k}$ принято обозначать $\binom{n}{k}$ или C_n^k и называть k-тым биномиальным коэффициентом степени n или числом сочетаний из n по k. Он равен

$$\binom{n}{k} = C_n^k = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1}$$

(сверху и снизу стоит по k последовательно убывающих сомножителей).

Пример 0.3 (диаграммы Юнга)

Разбиение конечного множества $X = \{1, \, 2, \, \dots, \, n\}$ в объединение непересекающихся подмножеств

$$X = X_1 \sqcup X_2 \sqcup \ldots \sqcup X_k \tag{0-9}$$

 $^{^1}$ Это частный случай ϕ ормулы Hьютона, которую мы обсудим в полной общности, когда будем заниматься степенными рядами.

можно кодировать следующим образом. Занумеруем подмножества в порядке нестрогого убывания их размера и обозначим количество элементов в i-том подмножестве через $\lambda_i = |X_i|$. Получим невозрастающую последовательность чисел

$$\lambda = (\lambda_1, \dots, \lambda_k), \quad \lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_k$$

которая называется ϕ ормой разбиения (0-9). Форму разбиения удобно изображать ∂ иа-граммой \mathcal{O} нга — картинкой вида

составленной из выровненных по левому краю горизонтальных клетчатых полосок, занумерованных сверху вниз, так что в i-й сверху полоске λ_i клеток. Общее число клеток в диаграмме λ называется её весом и обозначается $|\lambda|$, а количество строк называется d линой и обозначается $\ell(\lambda)$. Так, диаграмма Юнга (0-10) отвечает разбиению формы $\lambda = (6, 5, 5, 3, 1)$, имеет вес $|\lambda| = 20$ и длину $\ell(\lambda) = 5$.

Упражнение о.8. Подсчитайте количество всех диаграмм Юнга, умещающихся в прямоугольнике размером $k \times n$ клеток (включая пустую диаграмму и сам прямоугольник).

Будем называть *заполнением* диаграммы λ множеством X из $|X| = |\lambda|$ элементов произвольную расстановку этих элементов в клетки диаграммы по одному элементу в каждую клетку. Таким образом, всякая диаграмма λ веса n имеет n! различных заполнений заданным n-элементным множеством X.

Объединяя элементы, стоящие в i-й строке диаграммы в одно подмножество X_i , мы получаем разбиение множества X в дизъюнктное объединение k непересекающихся подмножеств X_1,\ldots,X_k . Поскольку любое разбиение (0-9) заданной формы λ можно получить таким образом, возникает сюрьективное отображение из множества заполнений диаграммы λ в множество разбиений множества X формы λ . Покажем, что все слои этого отображения состоят из одного и того же числа элементов. Два заполнения приводят к одинаковым разбиениям тогда и только тогда, когда они получаются друг из друга перестановками элементов внутри строк и перестановками строк одинаковой длины между собою как единого целого. Если обозначить через $m_i = m_i(\lambda)$ число строк длины i в диаграмме λ , то перестановок первого типа будет $\prod \lambda_i! = \prod_{i=1}^n (i!)^{m_i}$ штук, а второго типа — $\prod_{i=1}^n m_i!$ штук. Так как все эти перестановки действуют независимо друг от друга, каждый слой нашего отображения состоит из $\prod_{i=1}^n (i!)^{m_i} m_i!$ элементов. Из формулы (0-4) вытекает

Предложение 0.3

Число разбиений n-элементного множества X в дизъюнктное объединение m_1 1-элементных, m_2 2-элементных, ... , m_n n-элементных подмножеств равно

$$\frac{n!}{\prod_{i=1}^{n} m_i! \cdot (i!)^{m_i}}.$$
 (0-11)

 $^{^1}$ Отметим, что многие $m_i=0,$ поскольку $|\lambda|=n=m_1+2m_2+\ldots+nm_n.$

0.4. Классы эквивалентности. Альтернативный способ разбить заданное множество *X* в дизъюнктное объединение подмножеств состоит в том, чтобы объявить элементы, входящие в одно подмножество такого разбиения «эквивалентными». Формализуется это так. Назовём бинарным отношением на множестве *X* любое подмножество

$$R \subset X \times X = \{(x_1, x_2) \mid x_1, x_2 \in X\}.$$

Принадлежность пары (x_1,x_2) отношению R обычно записывают как $x_1 \underset{R}{\sim} x_2.$

Например, на множестве целых чисел $X=\mathbb{Z}$ имеются бинарные отношения

равенство
$$x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\iff} x_1 = x_2$$
 (0-12)

неравенство
$$x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\Longleftrightarrow} x_1 \leqslant x_2$$
 (0-13)

делимость
$$x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\Longleftrightarrow} x_1 | x_2$$
 (0-14)

сравнимость по модулю
$$n$$
 $x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\Longleftrightarrow} x_1 \equiv x_2 \pmod{n}$ (0-15)

(последнее условие $x_1 \equiv x_2 \pmod n$) читается как « x_1 сравнимо с x_2 по модулю n» и по определению означает, что x_1-x_2 делится на n).

Определение о.1

Бинарное отношение $\underset{R}{\sim}$ называется эквивалентностью, если оно обладает следующими тремя свойствами:

рефлексивность: $\forall x \in X x \sim_R x$

транзитивность : $\forall \, x_1, x_2, x_3 \in X$ из $x_1 \mathop{\sim}_R x_2$ и $x_2 \mathop{\sim}_R x_3$ вытекает $x_1 \mathop{\sim}_R x_3$

симметричность: $\forall x_1, x_2 \in X \ x_1 \underset{R}{\sim} x_2 \iff x_2 \underset{R}{\sim} x_1$.

Среди бинарных отношений (0-12) - (0-15) первое и последнее являются эквивалентностями, а (0-13) и (0-14) не являются (они не симметричны).

Если множество X разбито в объединение непересекающихся подмножеств, то отношение $x_1 \sim x_2$, означающее, что x_1 и x_2 лежат в одном и том же подмножестве этого разбиения, очевидно, является эквивалентностью.

Наоборот, пусть на множестве X задано отношение эквивалентности R. Рассмотрим для каждого $x \in X$ подмножество в X, состоящее из всех элементов, эквивалентных x. Оно называется *классом эквивалентности* элемента x и обозначается

$$[x]_R = \{ z \in X \mid x \underset{R}{\sim} z \} = \{ z \in X \mid z \underset{R}{\sim} x \}$$

(второе равенство выполняется благодаря симметричности отношения R). Любые два класса $[x]_R$ и $[y]_R$ либо вообще не пересекаются, либо полностью совпадают. В самом

деле, если существует элемент z, эквивалентный и x и y, то в силу симметричности и транзитивности отношения $\underset{R}{\sim}$ элементы x и y будут эквивалентны между собой, а значит, любой элемент, эквивалентный x, будет эквивалентен также и y, и наоборот. Таким образом, множество X распадается в дизъюнктное объединение различных классов эквивалентности.

Множество классов эквивалентности по отношению $R \subset X \times X$ обозначается X / R и называется ϕ актором множества X по эквивалентности R. Сюрьекия

$$f: X \to X/R, \quad x \mapsto [x]_R,$$
 (0-16)

сопоставляющая каждому элементу $x \in X$ его класс эквивалентности $[x]_R \in X/R$, называется *отображением факторизации*. Слои этого отображения суть классы эквивалентных элементов. Наоборот, любое сюрьективное отображение $f: X \twoheadrightarrow Y$ является отображением факторизации по отношению эквивалентности $x_1 \sim x_2$, означающему, что $f(x_1) = f(x_2)$.

Пример 0.4 (классы вычетов)

Фиксируем ненулевое целое число $n \in \mathbb{Z}$. Фактор множества целых чисел \mathbb{Z} по отношению сравнимости по модулю n из (0-15) обозначается $\mathbb{Z}/(n)$. Мы будем записывать его элементы символами $[z]_n$, где $z \in \mathbb{Z}$, и опускать индекс n, когда понятно чему он равен. Класс эквивалентности

$$[z]_n \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid (z - x) : n\}$$
 (0-17)

называется классом вычетов по модулю п. Отображение факторизации

$$\mathbb{Z} \twoheadrightarrow \mathbb{Z}/(n), \quad z \mapsto [z]_n$$

называется приведением по модулю n. Множество $\mathbb{Z}/(n)$ состоит из n различных классов

$$[0]_n$$
, $[1]_n$, ..., $[n-1]_n$.

При желании их можно воспринимать как остатки от деления на n, но в практических вычислениях удобнее работать с ними именно как с nodmhoжecmвamu в \mathbb{Z} , поскольку возможность по-разному записывать один и тот же класс часто упрощает вычисления. Например, остаток от деления 12^{100} на 13 можно искать как

$$[12^{100}]_{13} = [12]_{13}^{100} = [-1]_{13}^{100} = [(-1)^{100}]_{13} = [1]_{13}.$$
 (0-18)

Упражнение о.9. Докажите правомочность этого вычисления: проверьте, что классы вычетов $[x+y]_n$ и $[xy]_n$ не зависят от выбора чисел $x \in [x]_n$ и $y \in [y]_n$, т. е. правила

$$[x]_n + [y]_n \stackrel{\text{def}}{=} [x + y]_n$$
 (0-19)

$$[x]_n \cdot [y]_n \stackrel{\text{def}}{=} [xy]_n \tag{0-20}$$

корректно определяют на множестве $\mathbb{Z}/(n)$ операции сложения и умножения¹.

 $^{^{1}}$ Именно такое умножение $[12]^{100} = \underbrace{[12] \cdot [12] \cdot \dots \cdot [12]}_{120} = \underbrace{[12^{100}]}_{120}$ было использовано в (0-18).

0.4.1. Неявное задание эквивалентности. Для любого семейства отношений эквивалентности $R_{\nu} \subset X \times X$ пересечение $\bigcap_{\nu} R_{\nu} \subset X \times X$ также является отношением эквивалентности. В самом деле, если каждое из множеств $R_{\nu} \subset X \times X$ содержит диагональ

$$\Delta = \{(x, x) \mid x \in X\} \subset X \times X,$$

переходит в себя при симметрии $(x,y) \leftrightarrows (y,x)$ и вместе с каждой парой точек вида (x,y),(y,z) содержит также и точку (x,z), то этими свойствами обладает и пересечение $\bigcap_{\nu} R_{\nu}$ всех этих множеств. Поэтому для любого подмножества $R \subset X \times X$ существует наименьшее по включению отношение эквивалентности \overline{R} , содержащее R, а именно, пересечение всех содержащих R отношений эквивалентности. Отношение \overline{R} называется эквивалентностью, порождённой отношением R.

Упражнение о.10. Проверьте, что $(x,y)\in\overline{R}$ если и только если в X существует такая конечная последовательность точек $x=z_0,\,z_1,\,z_2,\,\ldots\,,\,z_n=y,$ что $(x_{i-1},x_i)\in R$ или $(x_i,x_{i-1})\in R$ при каждом $i=1,2,\ldots,n$.

К сожалению, по данному подмножеству $R \subset X \times X$ не всегда легко судить о том, как устроена порождённая им эквивалентность \overline{R} . Даже выяснить, не окажутся ли в результате все точки эквивалентными друг другу может быть не просто.

Пример 0.5 (дроби)

Множество рациональных чисел \mathbb{Q} обычно определяют как множество дробей a/b с $a,b\in\mathbb{Z}$ и $b\neq 0$. При этом под *дробью* понимается класс эквивалентности упорядоченных пар (a,b), где $a\in\mathbb{Z}$, $b\in\mathbb{Z}\setminus 0$, по минимальному отношению эквивалентности, содержащему все отождествления

$$(a,b) \sim (ac,bc)$$
 с произвольными $c \in \mathbb{Z} \setminus \{0\}$. (0-21)

Отношения (0-21) выражают собою равенства дробей a/b=(ac)/(bc), но сами по себе не образуют эквивалентности. Например, при $a_1b_2=a_2b_1$ в двухшаговой цепочке отождествлений $(a_1,b_1)\sim (a_1b_2,b_1b_2)=(a_2b_1,b_1b_2)\sim (a_2,b_2)$ самый левый и самый правый элементы могут не отождествляться напрямую по правилу (0-21), как, например, 3/6 и 5/10. Поэтому эквивалентность, порождённая отождествлениями (0-21), обязана содержать все отождествления

$$(a_1, b_1) \sim (a_2, b_2)$$
 при $a_1 b_2 = a_2 b_1$. (0-22)

Оказывается, что к этим отношениям больше уже ничего добавлять не надо.

Упражнение о.11. Проверьте, что набор отношений (0-22) рефлексивен, симметричен и транзитивен.

Тем самым, он является минимальным отношением эквивалентности, содержащим все отождествления (0-21). Отметим, что если в отношениях (0-21) разрешить нулевые c, то все пары (a,b) окажутся эквивалентны паре (0,0).

0.5. Композиции отображений. Отображение $X \to Z$, получающееся в результате последовательного выполнения двух отображений $f: X \to Y$ и $g: Y \to Z$ называется композицией отображений g и f и обозначается $g \circ f$ или просто gf. Таким образом, композиция gf определена если и только если образ f содержится в множестве, на котором определено отображение g, и $gf: X \to Z$, $x \mapsto g(f(x))$.

Хотя композицию и принято записывать точно так же, как умножение чисел, единственным общим свойством этих операций является их ассоциативность или сочетательный закон: композиция трёх последовательных отображений

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T$$
,

как и произведение трёх чисел, не зависит от того, в каком порядке перемножаются последовательные пары элементов, т. е. (hg)f = h(gf), если хотя бы одна из двух частей этого равенства определена. Действительно, в этом случае вторая часть тоже определена, и обе части действуют на каждую точку $x \in X$ по правилу $x \mapsto h(g(f(x)))$.

В остальном алгебраические свойства композиции весьма далеки от привычных свойств умножения чисел. Если композиция fg определена, то противоположная композиция gf часто бывает не определена. Даже если $f,g:X\to X$ являются эндоморфизмами одного и того же множества X, так что обе композиции fg и gf определены, равенство fg=gf может не выполняться.

Упражнение о.12. Рассмотрим на плоскости пару различных прямых ℓ_1 , ℓ_2 , пересекающихся в точке 0, и обозначим через σ_1 и σ_2 осевые симметрии относительно этих прямых. Явно опишите движения плоскости, задаваемые композициями $\sigma_1\sigma_2$ и $\sigma_2\sigma_1$. При каком условии на прямые выполняется равенство $\sigma_1\sigma_2=\sigma_2\sigma_1$?

Общие множители тоже бывает нельзя сокращать, т. е. ни равенство fg = fh, ни равенство gf = hf, вообще говоря, не влекут равенства g = h.

Пример о.6 (эндоморфизмы двухэлементного множества)

Двухэлементное множество $X=\{1,2\}$ имеет ровно четыре эндоморфизма. Если кодировать отображение $f:X\to X$ двубуквенным словом (f(1),f(2)), как в прим. 0.1 на стр. 5, то эти четыре эндоморфизма запишутся словами $(1,1),(1,2)=\mathrm{Id}_X,(2,1)$ и (2,2). Все композиции между ними определены, и таблица композиций gf имеет вид:

Обратите внимание на то, что $(2,2) \circ (1,1) \neq (1,1) \circ (2,2)$ и что $(1,1) \circ (1,2) = (1,1) \circ (2,1)$, хотя $(1,2) \neq (2,1)$, и $(1,1) \circ (2,2) = (2,1) \circ (2,2)$, хотя $(1,1) \neq (2,1)$.

ЛЕММА О.І (ЛЕВЫЕ ОБРАТНЫЕ ОТОБРАЖЕНИЯ)

Если $X \neq \emptyset$, то следующие условия на отображение $f: X \to Y$ эквивалентны:

- f инъективно
- 2) существует такое отображение $g:Y\to X$, что $gf=\operatorname{Id}_X$
- 3) для любых отображений $g_1, g_2: Z \to X$ из равенства $fg_1 = fg_2$ вытекает равенство $g_1 = g_2$.

Доказательство. Импликация (1) \Rightarrow (2): для точек $y = f(x) \in \text{im } f$ положим g(y) = x, а в точках $y \notin \text{im } f$ зададим g как угодно¹. Импликация (2) \Rightarrow (3): если $fg_1 = fg_2$, то умножая обе части слева на любое такое отображение $g: Y \to X$, что $gf = \text{Id}_X$, получаем $g_1 = g_2$. Импликация (3) \Rightarrow (1) доказывается от противного. Пусть $x_1 \neq x_2$, но $f(x_1) = f(x_2)$. Положим $g_1 = \text{Id}_X$, и пусть $g_2: X \to X$ переставляет между собою точки x_1, x_2 , а все остальные точки оставляет на месте. Тогда $g_1 \neq g_2$, но $fg_1 = fg_2$. \square

Определение 0.2

Отображение $f: X \to Y$, удовлетворяющее лем. 0.1, называется обратимым слева, и всякое такое отображение $g: Y \to X$, что $gf = \mathrm{Id}_X$, называется левым обратным к f или ретракцией Y на f(X).

Упражнение о.13. В условиях лем. 0.1 убедитесь, что вложение f тогда и только тогда имеет несколько различных левых обратных, когда оно не сюрьективно.

- **0.5.1.** Правое обратное отображение и аксиома выбора. Стремление к гармонии вызывает желание иметь «правую» версию лем. 0.1 хочется, чтобы следующие три свойства отображения $f: X \to Y$ тоже были эквивалентны:
 - 1) f сюрьективно
 - 2) существует такое отображение $g: Y \to X$, что $fg = \mathrm{Id}_Y$
 - 3) для любых отображений $g_1, g_2: Y \to Z$ из равенства $g_1 f = g_2 f$ вытекает равенство $g_1 = g_2.$

Отображение f, удовлетворяющее свойству (2), называется обратимым справа, а такое отображение $g: Y \to X$, что $fg = \operatorname{Id}_Y$, называется правым обратным к f или сечением эпиморфизма f. Второе название связано с тем, что отображение g, удовлетворяющее свойству (2), переводит каждую точку $y \in Y$ в точку $g(y) \in f^{-1}(y)$, лежащую в слое отображения f над точкой y.

В строгой теории множеств, углубления в которую мы пытаемся избежать, импликация $(1) \Rightarrow (2)$ постулируется в качестве одной из аксиом. Эта аксиома называется *аксиомой выбора* и утверждает, что в каждом слое любого сюрьективного отображения можно выбрать по элементу².

 $^{^{1}}$ Например, отобразим их все в одну и ту же произвольно выбранную точку $x \in X$.

 $^{^2}$ Иными словами, если имеется множество попарно непересекающихся множеств, то в каждом из них можно выбрать по элементу.

Доказательство импликации (2) \Rightarrow (3) полностью симметрично доказательству аналогичной импликации из лем. 0.1: применяя отображения, стоящие в обеих частях равенства $g_1f=g_2f$, вслед за таким отображением $g:Y\to X$, что $fg=\mathrm{Id}_Y$, получаем равенство $g_1=g_2$.

Импликация (3) \Rightarrow (1), как и в лем. 0.1, доказывается от противного: если $y \notin \text{im } f$, то свойство (3) не выполняется для отображения $g_1 = \text{Id}_Y$ и любого отображения $g_2 : Y \to Y$, переводящего точку y в какую-нибудь точку из im f и оставляющего на месте все остальные точки.

Таким образом, перечисленные выше свойства (1) – (3) действительно эквивалентны друг другу, если включить аксиому выбора в список свойств, определяющих множества.

0.5.2. Обратимые отображения. Если отображение $g: X \to Y$ биективно, то прообраз $g^{-1}(y) \subset X$ каждой точки $y \in Y$ состоит ровно из одной точки. В этом случае правило $y \mapsto g^{-1}(y)$ определяет отображение $g^{-1}: Y \to X$, которое является одновременно и левым, и правым обратным к g в смысле опр. 0.2 и n° 0.5.1, т. е.

$$g \circ g^{-1} = \mathrm{Id}_Y \qquad \text{if} \qquad g^{-1} \circ g = \mathrm{Id}_X \tag{0-24}$$

Отображение g^{-1} называется *обратным* к биективному отображению g.

Предложение 0.4

Следующие условия на отображение $g: X \to Y$ эквивалентны друг другу:

- 1) g взаимно однозначно
- 2) существует такое отображение $g': Y \to X$, что $g \circ g' = \mathrm{Id}_Y$ и $g' \circ g = \mathrm{Id}_X$
- 3) g обладает левым и правым обратными отображениями².

При выполнении этих условий все левые и правые обратные к g отображения равны друг другу и отображению g^{-1} , описанному перед формулировкой предложения.

Доказательство. Импликация $(1)\Rightarrow (2)$ уже была установлена. Очевидно, что $(2)\Rightarrow (3)$. Докажем, что $(3)\Rightarrow (2)$. Если у отображения $g:X\to Y$ есть левое обратное $f:Y\to X$ и правое обратное $h:Y\to X$, то $f=f\circ \operatorname{Id}_Y=f\circ (g\circ h)=(f\circ g)\circ h=\operatorname{Id}_X\circ h=h$ и условие (2) выполнено для g'=f=h. Остаётся показать, что $(2)\Rightarrow (1)$, и $g'=g^{-1}$. Так как g(g'(y))=y для любого $y\in Y$, прообраз $g^{-1}(y)$ каждой точки $y\in Y$ содержит точку g'(y). С другой стороны, поскольку для всех $x\in g^{-1}(y)$ выполнено равенство $x=\operatorname{Id}_X(x)=g'(g(x))=g'(y)$, прообраз $f^{-1}(y)$ состоит из единственной точки g'(y), т. е. g — биекция, и $g'=g^{-1}$.

 $^{^{1}}$ Т. е. g' двусторонне обратно к g.

 $^{^2}$ Обратите внимание, что совпадения левого обратного отображения с правым обратным отображением не требуется.

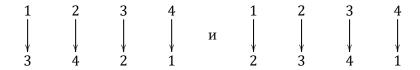
0.6. Группы преобразований. Непустой набор G взаимно однозначных отображений множества X в себя называется $\mathit{группой}$ $\mathit{преобразований}$ множества X, если вместе с каждым отображением $g \in G$ в G лежит и обратное к нему отображение g^{-1} , а вместе с каждыми двумя отображениями $f,g \in G$ в G лежит и их композиция fg. Эти условия гарантируют, что тождественное преобразование Id_X тоже лежит в G, поскольку $\mathrm{Id}_X = g^{-1}g$ для любого $g \in G$. Если группа преобразований G конечна, число элементов в ней обозначается |G| и называется $\mathit{nopadkom}$ группы G. Если подмножество $H \subset G$ тоже является группой, то H называются $\mathit{nodapynnoй}$ группы G.

Пример 0.7 (группы перестановок)

Множество $\mathrm{Aut}(X)$ всех взаимно однозначных отображений $X \to X$ является группой. Эта группа называется симметрической группой или группой перестановок множества X. Все прочие группы преобразований множества X являются подгруппами этой группы. Группа перестановок n-элементного множества $\{1, 2, \ldots, n\}$ обозначается S_n и называется n-й симметрической группой. Согласно предл. 0.2 на стр. 5 порядок $|S_n| = n!$. Перестановки

$$\sigma: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$$

принято записывать строчками $\sigma=(\sigma_1,\ldots,\sigma_n)$ их значений $\sigma_i\stackrel{\text{def}}{=} \sigma(i)$, как в прим. 0.1 на стр. 5. Например, перестановки $\sigma=(3,4,2,1)$ и $\tau=(2,3,4,1)$ представляют собою отображения



а их композиции записываются как $\sigma \tau = (4, 2, 1, 3)$ и $\tau \sigma = (4, 1, 3, 2)$.

Упражнение о.14. Составьте таблицу умножения шести элементов группы S_3 , аналогичную таблице (0-23) на стр. 12.

Пример о.8 (абелевы группы)

Группа G, в которой любые два элемента $f,g\in G$ перестановочны, т. е. удовлетворяют соотношению fg=gf, называется коммутативной или абелевой. Примерами абелевых групп являются группы параллельных переносов плоскости или пространства, а также группа SO_2 поворотов плоскости вокруг фиксированной точки. Для каждого натурального $n\geqslant 2$ повороты на углы, кратные $2\pi/n$, образуют в группе SO_2 конечную подгруппу. Она называется циклической группой порядка n.

0.7. Частично упорядоченные множества. Бинарное отношение $x \le y$ на множестве Z называется *частичным порядком*, если оно рефлексивно и транзитивно $x \in y$, но в отличие от эквивалентности не симметрично, а *кососимметрично*, т. е. из $x \in y$ и $y \in x$ вытекает равенство x = y. Если на множестве задан частичный порядок, мы пишем

¹См. n° 0.4 на стр. 9.

²Ср. с опр. 0.1 на стр. 9.

x < y, когда $x \leqslant y$ и $x \ne y$. Частичный порядок на множестве Z называется линейным (или просто $nopsd\kappa om$), если любые два элемента сравнимы, т. е. для всех $x,y \in Z$ выполняется одно из трёх альтернативных условий: или x < y, или x = y, или y < x. Например, обычное неравенство между числами является линейным порядком на множестве натуральных чисел \mathbb{N} , тогда как отношение делимости $n \mid m$, означающее, что n делит m, задаёт на \mathbb{N} частичный порядок, который не является линейным. Другим важным примером частичного, но не линейного порядка является отношение включения $X \subseteq Y$ на множестве $\mathcal{S}(M)$ всех подмножеств заданного множества M.

Упражнение о.15 (предпорядок). *Предпорядком* на множестве Z называется любое рефлексивное транзитивное бинарное отношение x < y. Убедитесь, что для каждого предпорядка бинарное отношение $x \sim y$, означающее, что одновременно x < y и y < x, является отношением эквивалентности, и на факторе Z/\sim корректно определено бинарное отношение $[x] \leq [y]$, означающее, что $x \lesssim y$, которое является частичным порядком. Продумайте, как всё это работает для отношения делимости $n \mid m$ на множестве целых чисел \mathbb{Z} .

Множество P с зафиксированным на нём частичным порядком называется *частично упорядоченным множеством*, сокращённо — чумом. Если порядок линейный, чум P называется линейно *упорядоченным*. Всякое подмножество X любого чума P также является чумом по отношению к частичному порядку, имеющемуся на P. Если этот индуцированный с P порядок на X оказывается линейным, подмножество $X \subset P$ называют *цепью* в чуме P. Элементы x, y чума P называются *сравнимыми*, если $x \leqslant y$ или $y \leqslant x$. Если же ни одно из этих условий не выполняется, то x и y называются *несравнимыми*. Несравнимые элементы автоматически различны. Частичный порядок линеен тогда и только тогда, когда любые два элемента сравнимы.

Отображение $f: M \to N$ между чумами M, N называется сохраняющим порядок или морфизмом чумов, если $f(x) \leqslant f(y)$ для всех $x \leqslant y$. Два чума M, N называются изоморфными, если имеется сохраняющая порядок биекция $M \cong N$. В таком случае мы пишем $M \cong N$. Отображение f называется строго возрастающим, если f(x) < f(y) для всех x < y. Всякое сохраняющее порядок вложение является строго возрастающим. Обратное справедливо для возрастающих отображений из линейного упорядоченного множества, однако неверно в общем случае.

Элемент y чума P называется верхней гранью подмножества $X \subset P$, если $x \leqslant y$ для всех $x \in X$. Если при этом $y \notin X$, то верхняя грань y называется внешней. В таком случае для всех $x \in X$ выполнено строгое неравенство x < y.

Элемент $m^* \in X$ называется максимальным в подмножестве $X \subset P$, если для $x \in X$ неравенство $m^* \leqslant x$ выполняется только при $x = m^*$. Заметьте, что максимальный элемент не обязан быть сравним со всеми элементами $x \in X$ и, тем самым, может не являться верхней гранью для X. Частично упорядоченное множество может иметь несколько различных максимальных элементов или не иметь их вовсе, как, например, чум $\mathbb N$ по отношению к делимости или к обычному неравенству между числами. Линей-

¹Т. е. выполнение или невыполнение условия $x \lesssim y$ не зависит от выбора представителей x и y в классах [x] и [y].

²А также неубывающим или нестрого возрастающим.

но упорядоченный чум имеет не более одного максимального элемента, и если такой элемент существует, то он является верхней гранью.

Симметричным образом, элемент $m_* \in X$ называется минимальным в X, если для $x \in X$ неравенство $m_* \geqslant x$ выполняется только при $x = m_*$. Аналогично определяются и нижние грани, и всё сказанное выше о максимальных элементах и верхних гранях в равной степени относится и к минимальным элементам и нижним граням.

0.8. Вполне упорядоченные множества. Линейно упорядоченное множество W называется вполне упорядоченным, если каждое непустое подмножество $S \subset W$ содержит такой элемент $s_* \in S$, что $s_* \leqslant s$ для всех $s \in S$. Этот элемент автоматически единствен и называется начальным элементом подмножества S. Например, множество натуральных чисел $\mathbb N$ со стандартным отношением неравенства между числами вполне упорядочено, как и любое дизъюнктное объединение вида $\mathbb N \sqcup \mathbb N \sqcup \mathbb N \sqcup \mathbb N$, в котором все элементы каждой копии множества $\mathbb N$ полагаются строго большими всех элементов всех предыдущих копий. Пустое множество тоже вполне упорядочено. Напротив, множество $\mathbb Q$ со стандартным отношением неравенства между числами не является вполне упорядоченным.

Вполне упорядоченные множества замечательны тем, что их элементы можно рекурсивно перебрать точно также, как и элементы множества $\mathbb N$. А именно, пусть некоторое утверждение $\Phi(w)$ зависит от элемента w вполне упорядоченного множества W. Если $\Phi(w)$ истинно для начального элемента w_* множества W, и для каждого $w \in W$ истинность утверждения $\Phi(x)$ при всех x < w влечёт за собою истинность утверждения $\Phi(w)$, то $\Phi(w)$ истинно для всех $w \in W$.

Упражнение о.16. Убедитесь в этом.

Такой способ доказательства утверждения $\Phi(w)$ для всех $w \in W$ называется $mpanc \phi u$ нитной индукцией. Используемые для индуктивного перехода подмножества, состоящие из всех элементов, предшествующих данному элементу w, называются uнитервалами частично упорядоченного множества u0 обозначаются

$$[w) \stackrel{\text{def}}{=} \{ x \in W \mid x < w \} .$$

Элемент $w \in W$ называется *точной верхней гранью* начального интервала $[w) \subset W$ и однозначно восстанавливается по интервалу [w) как начальный элемент множества $W \setminus [w)$. Отметим, что начальный элемент $w_* \in W$ является точной верхней гранью пустого начального интервала $[w_*) = \emptyset$.

Упражнение о.17. Покажите, что собственное подмножество $I \subsetneq W$ тогда и только тогда является начальным интервалом вполне упорядоченного множества W, когда $[x) \subset I$ для каждого $x \in I$, и в этом случае точная верхняя грань интервала I однозначно восстанавливается по I как начальный элемент дополнения $W \setminus I$.

Между вполне упорядоченными множествами имеется отношение порядка $U\leqslant W$, означающее, что U можно биективно и с сохранением порядка отобразить на W или на какой-нибудь начальный интервал $[w)\subset W$. Если при этом U и W не изоморфны, мы пишем U< W. Хорошим упражнением на трансфинитную индукцию является

Упражнение о.18. Убедитесь, что для любой пары вполне упорядоченных множеств U, W выполнено ровно одно из соотношений: или U < W, или $U \simeq W$, или W < U.

Классы изоморфных вполне упорядоченных множеств называют *ординалами*. Множество $\mathbb N$ со стандартным порядком можно воспринимать как множество всех конечных ординалов. Все остальные ординалы, включая $\mathbb N$, называются *трансфинитными*.

0.9. Лемма Цорна. Рассмотрим произвольное частично упорядоченное множество P и обозначим через $\mathcal{W}(P)$ множество всех подмножеств $W \subset P$, которые вполне упорядочены имеющимся на P отношением $x \leq y$. Множество $\mathcal{W}(P)$ непусто и содержит пустое подмножество $\emptyset \subset P$, а также все конечные цепи $^1 \ \mathcal{C} \subset P$, в частности, все элементы множества P.

Лемма 0.2

Не существует такого отображения $\varrho: \mathcal{W}(P) \to P$, что $\varrho(W) > w$ для всех $W \in \mathcal{W}(P)$ и $w \in W$.

Доказательство. Пусть такое отображение ϱ существует. Назовём вполне упорядоченное подмножество $W \subset P$ рекурсивным, если $\varrho([w)) = w$ для всех $w \in W$. Например, подмножество

$$\Big\{\varrho(\varnothing),\,\varrho\big(\{\varrho(\varnothing)\}\big),\,\varrho\big(\big\{\varrho(\varnothing),\,\varrho(\{\varrho(\varnothing)\})\big\}\big),\,\dots\,\Big\}$$

рекурсивно и его можно расширять дальше вправо, пока P не исчерпается, что противоречит наложенному на ϱ условию. Уточним сказанное. Если два рекурсивных вполне упорядоченных подмножества имеют общий начальный элемент, то либо они совпадают, либо одно из них является начальным интервалом другого.

Упражнение о.19. Докажите это.

Обозначим через $U \subset P$ объединение всех рекурсивных вполне упорядоченных подмножеств в P с начальным элементом $\varrho(\emptyset)$.

Упражнение о.20. Убедитесь, что подмножество $U \subset P$ вполне упорядочено и рекурсивно.

Поскольку элемент $\varrho(U)$ строго больше всех элементов из U, он не лежит в U. С другой стороны, множество $W = U \cup \{\varrho(U)\}$ вполне упорядочено, рекурсивно, и его начальным элементом является $\varrho(\emptyset)$. Следовательно, $W \subset U$, откуда $\varrho(U) \in U$. Противоречие. \square

Предложение 0.5

Если каждое вполне упорядоченное подмножество чума P имеет верхнюю грань², то в P есть максимальный элемент³ (возможно не единственный).

Доказательство. Если максимального элемента нет, то для любого $p \in P$ имеется такой элемент $p' \in P$, что p < p'. Тогда для каждого вполне упорядоченного подмножества $W \subset P$ найдётся такой элемент $w^* \in P$, что $w < w^*$ для всех $w \in W$. Сопоставляя каждому $W \in \mathcal{W}$ один⁴ из таких элементов w^* , мы получаем отображение $\varrho : \mathcal{W} \to P$,

¹Т. е. конечные линейно упорядоченные подмножества.

 $^{^2}$ T. е. для любого вполне упорядоченного $W\subset P$ найдётся такой $p\in P$, что $w\leqslant p$ для всех $w\in W$.

³Т. е. такой $p^* \in P$, что неравенство $p^* \leqslant x$ выполняется в P только для $x = p^*$, см. последние два абзаца перед n° 0.8 на стр. 17.

 $^{^4}$ Для этого придётся воспользоваться аксиомой выбора из n° 0.5.1 на стр. 13.

0.9. Лемма Цорна

Упражнение о.22 (теорема Цермелло). Докажите, что каждое множество можно вполне упорядочить.

Упражнение 0.23 (теорема Хаусдорфа о максимальной цепи). Докажите, что в любом чуме каждая цепь содержится в некоторой максимальной по включению цепи.

Ответы и указания к некоторым упражнениям

- Упр. о.і. Ответ: 2^n .
- Упр. о.2. Ответ на второй вопрос нет. Пусть $X = \{1, 2\}$, $Y = \{2\}$. Все их парные пересечения и объединения суть $X \cap Y = Y \cap Y = Y \cup Y = Y$ и $X \cup Y = X \cup X = X \cap X = X$, и любая формула, составленная из X, Y, \cap, \cup , даст на выходе или $X = \{1, 2\}$, или $Y = \{2\}$, тогда как $X \setminus Y = \{1\}$.
- Упр. о.3. В первом случае имеется 6 наложений и ни одного вложения, во втором 6 вложений и ни одного наложения.
- Упр. о.5. Если X конечно, то инъективное или сюрьективное отображение $X \to X$ автоматически биективно. Если X бесконечно, то в X есть подмножество, изоморфное \mathbb{N} . Инъекция $\mathbb{N} \hookrightarrow \mathbb{N}$, $n \mapsto (n+1)$, и сюрьекция $\mathbb{N} \twoheadrightarrow \mathbb{N}$, $n \mapsto \max(1,(n-1))$, обе не биективны и продолжаются до точно таких же отображений $X \to X$ тождественным действием на $X \setminus \mathbb{N}$.
- Упр. о.б. Ответ: нет. Воспользуйтесь «диагональным трюком» Кантора: пусть все биекции $\mathbb{N} \to \mathbb{N}$ занумерованы натуральными числами; глядя на этот список, постройте биекцию, которая при каждом $k=1,\,2,\,3,\,\dots$ отображает некоторое число $n_k\in\mathbb{N}$ не туда, куда его отображает k-тая биекция из списка.
- Упр. 0.7. Ответ: $\binom{n+m-1}{m-1} = \binom{n+m-1}{n} = \frac{(n+m-1)!}{n!(m-1)!}$. Указание: слагаемых столько же, сколько имеется упорядоченных наборов неотрицательных целых чисел (k_1,\dots,k_m) с суммой $\sum k_i=n$. Такой набор можно закодировать словом, составленным из (m-1) букв 0 и n букв 1: сначала пишем k_1 единиц, потом нуль, потом k_2 единиц, потом нуль, и т. д. (слово кончится k_m единицами, стоящими следом за последним, (m-1)-м нулём).
- Упр. о.8. Ответ: $\binom{n+k}{k}$. Каждая такая диаграмма представляет собою ломаную, ведущую из левого нижнего угла прямоугольника в правый верхний. В такой ломаной ровно n горизонтальных звеньев и ровно k вертикальных.
- Упр. о.9. Пусть $[x']_n = [x]_n$ и $[y']_n = [y]_n$, т. е. x' = x + nk, $y' = y + n\ell$ с некоторыми $k, \ell \in \mathbb{Z}$. Тогда $x' + y' = x + y + n(k + \ell)$ и $x'y' = xy + n(\ell x + ky + k\ell n)$ сравнимы по модулю n с x + y и xy соответственно, т. е. $[x' + y']_n = [x + y]_n$ и $[x'y']_n = [xy]_n$.
- Упр. о.10. Положим $x \sim y$, если существует конечная последовательность точек

$$x = z_0, z_1, z_2, \dots, z_n = y$$

как в условии задачи. Проверьте, что это отношение эквивалентности и что оно содержится в любой эквивалентности $S \subset X \times X$, содержащей R.

- Упр. о.п. Рефлексивность и симметричность очевидны. Транзитивность: если $(p,q) \sim (r,s)$ и $(r,s) \sim (u,w)$, т. е. ps-rq=0=us-rw, то psw-rqw=0=usq-rwq, откуда s(pw-uq)=0, и pw=uq, т. е. $(p,q) \sim (u,w)$.
- Упр. о.12. Если прямые ℓ_1 и ℓ_2 пересекаются в точке 0 под углом $0<\alpha\leqslant\pi/2$, то отражение относительно ℓ_1 , за которым следует отражение относительно ℓ_2 , это поворот вокруг точки 0 на угол 2α в направлении от первой прямой ко второй. Таким образом, отражения относительно пересекающихся прямых коммутируют тогда и только тогда, когда прямые перпендикулярны.
- Упр. о.14. Таблица композиций gf в симметрической группе S_3 :

$g \setminus f$	(1, 2, 3)	(1, 3, 2)	(3, 2, 1)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)
(1, 2, 3)	(1, 2, 3)	(1, 3, 2)	(3, 2, 1)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)
(1, 3, 2)	(1, 3, 2)	(1, 2, 3)	(3, 1, 2)	(2, 3, 1)	(2, 1, 3)	(3, 2, 1)
(3, 2, 1)	(3, 2, 1)	(2, 3, 1)	(1, 2, 3)	(3, 1, 2)	(1, 3, 2)	(2, 1, 3)
		(3, 1, 2)				
		(3, 2, 1)				
(3, 1, 2)	(3,1,2)	(2, 1, 3)	(1, 3, 2)	(3, 2, 1)	(1, 2, 3)	(2, 3, 1)

- Упр. о.15. Отношение $n \mid m$ на множестве \mathbb{Z} не кососимметрично: $n \mid m$ и $m \mid n$ если и только если $m = \pm n$. Фактор множества \mathbb{Z} по этому отношению эквивалентности можно отождествить с множеством $\mathbb{Z}_{\geqslant 0}$ неотрицательных целых чисел, на котором отношение $n \mid m$ является частичным порядком (обратите внимание, что нуль является нижней гранью этого множества, т. е. делит все элементы.)
- Упр. о.16. Пусть множество $S \subset W$ состоит из всех таких элементов $z \in W$, что утверждение $\Phi(z)$ ложно. Если $S \neq \emptyset$, то в нём есть начальный элемент $s_* \in S$. Поскольку утверждение $\Phi(w)$ истинно для всех $w < s_*$, утверждение $\Psi(s_*)$ тоже истинно, т. е. $s_* \notin S$. Противоречие.
- Упр. о.17. Обозначим через x_I начальный элемент дополнения $W \setminus I$. Начальный интервал $[x_I) \subset W$ является объединением начальных интервалов $[y) \subset W$ по всем $y < x_I$. Так как I содержит все интервалы [y) с $y < x_I$, мы заключаем, что $I \supseteq [x_I)$, откуда $I = [x_I)$.
- Упр. о.18. Пусть соотношение $U\geqslant W$ не выполняется. Покажем, что любой начальный отрезок $[u)\subset U$ изоморфен некоторому начальному отрезку $[w)\subset W$, где w=w(u) однозначно восстанавливается по u. Это верно для пустого начального отрезка $\varnothing=[u_*)$, где $u_*\in U$ минимальный элемент. Пусть это верно для всех начальных отрезков $[y)\subset U$ с y<u. Тогда $[u)=\bigcup_{y<u}[y)$ изоморфен объединению вложенных отрезков $\bigcup_{y<u}[w(y))\subset W$. Если это объединение исчерпывает всё множество W, то $W\simeq[y)$, т. е. $W\leqslant U$ вопреки предположению. Положим $w(u)\in W$ равным минимальному элементу, не содержащемуся в $\bigcup_{y<u}[w(y))$. Проверьте, что $\bigcup_{y<u}[w(y))=[w(u))$ и что отображение $u\mapsto w(u)$ устанавливает изоморфизм множества U либо со всем множеством W, либо с некоторым его начальным отрезком.
- Упр. о.19. Пусть рекурсивные подмножества $W_1, W_2 \subset P$ имеют общий начальный элемент. Рассмотрим подмножество $Z \subseteq W_1$, состоящее из всех таких $z \in W_1$, что начальный интервал $[z)_1$ в множестве W_1 совпадает с начальным интервалом $[z)_2$ в множестве W_2 . Множество Z не пусто, поскольку содержит общий начальный элемент множеств W_1 и W_2 . В силу рекурсивности W_1 и W_2 множество Z содержится в $W_1 \cap W_2$, являясь, по упр. 0.17 на стр. 17, начальным интервалом как в W_1 , так и в W_2 . Если $Z \neq W_1$ и $Z \neq W_2$, то точные верхние грани Z в W_1 и W_2 , с одной стороны, не лежат в Z и поэтому различны, а с другой стороны обе равны $\varrho(Z)$ в силу рекурсивности W_1 и W_2 . Тем самым, $Z = W_1$ или $Z = W_2$.
- Упр. 0.20. Каждое подмножество $S \subset U$ имеет непустое пересечение с каким-нибудь рекурсивным вполне упорядоченным подмножеством $W \subset P$ с начальным элементом $\varrho(\emptyset)$. По упр. 0.19 подмножество W является начальным интервалом всех содержащих W рекурсивных вполне упорядоченных подмножеств с начальным элементом $\varrho(\emptyset)$. Поэтому начальный элемент пересечения $S \cap W$ не зависит от выбора такого W, что $W \cap S \neq \emptyset$, и является начальным элементом подмножества S. Каждый начальный интервал $[u) \subset U$ является начальным интервалом любого содержащего u множества W из цепи. В силу рекурсивности W элемент $\varrho[u) = u$.

- Упр. о.21. Пользуясь аксиомой выбора, зафиксируем для каждого $W \in \mathcal{W}(P)$ какую-нибудь верхнюю грань $b(W) \in P$. Если f(x) > x для всех $x \in P$, то отображение β : $\mathcal{W}(P) \to P$, $W \mapsto f(b(W))$ противоречит лем. 0.2 на стр. 18.
- Упр. 0.22. Обозначим через $\mathcal{S}(X)$ множество всех непустых подмножеств данного множества X, включая само X. При помощи аксиомы выбора постройте такое отображение $\mu: \mathcal{S}(X) \to X$, что $\mu(Z) \in Z$ для всех $Z \in \mathcal{S}(X)$. Обозначим через $\mathcal{W}(X)$ множество всех $W \in \mathcal{S}(X)$, которые можно вполне упорядочить так, что $\mu(X \setminus [w)) = w$ для всех $w \in W$. Вдохновляясь лем. 0.2 на стр. 18 покажите, что $\mathcal{W}(X) \neq \emptyset$, и убедитесь, что $X \in \mathcal{W}(X)$.
- Упр. 0.23. Убедитесь, что множество всех цепей, содержащих данную цепь, является полным чумом относительно отношения включения, и примените лемму Цорна.