§10. Пространство с оператором

10.1. Классификация пространств с оператором. Пусть \Bbbk — произвольное поле, V — конечномерное векторное пространство над \Bbbk , а $F:V\to V$ — линейный эндоморфизм пространства V. Мы будем называть пару (F,V) пространством c оператором или просто оператором над \Bbbk . Линейное отображение $C:U_1\to U_2$ между пространствами c операторами (F_1,U_1) и (F_2,U_2) называется гомоморфизмом, если $F_2\circ C=C\circ F_1$. В этом случае говорят, что диаграмма

$$\begin{array}{c|c} U_1 & \xrightarrow{C} & U_2 \\ F_1 & & & & \downarrow F_2 \\ U_1 & \xrightarrow{C} & U_2 \end{array}$$

коммутативна 1 . Если гомоморфизм C биективен, операторы $F_1:U_1\to U_1$ и $F_2:U_2\to U_2$ называются изоморфными или подобными. Поскольку в этом случае $F_2=CF_1C^{-1}$, то говорят, что оператор F_2 получается из F_1 сопряжением посредством изоморфизма C.

Подпространство $U\subset V$ называется F-инвариантным, если $F(U)\subset U$. В этом случае пара $(F|_U,U)$ тоже является пространством с оператором и вложение $U\hookrightarrow V$ представляет собою гомоморфизмом пространств с операторами. Оператор, не имеющий инвариантных подпространств, отличных от нуля и всего пространства, называется неприводимым или простым.

Упражнение то.т. Покажите, что оператор умножения на класс [t] в фактор кольце $\mathbb{R}[t]/(t^2+1)$ неприводим.

Оператор $F:V\to V$ называется разложимым, если V раскладывается в прямую сумму двух ненулевых F-инвариантных подпространств, и *неразложимым* — в противном случае. Все простые операторы неразложимы.

Упражнение 10.2. Покажите, что оператор умножения на класс [t] в фактор кольце $\mathbb{k}[t]/(t^n)$ при всех n>1 приводим, но неразложим.

Таким образом, над любым полем \Bbbk имеются неразложимые пространства с оператором любой размерности. Очевидно, что всякое пространство с оператором является прямой суммой неразложимых.

10.1.1. Пространство с оператором как $\mathbb{k}[t]$ -модуль. Задание на пространстве V линейного оператора $F:V\to V$ эквивалентно заданию на V структуры модуля над кольцом многочленов $\mathbb{k}[t]$. В самом деле, структура $\mathbb{k}[t]$ -модуля включает в себя операцию умножения векторов на переменную $t:v\mapsto tv$, которая является линейным отображением $V\to V$. Если обозначить его буквой F, то умножение векторов на произвольный многочлен $f(t)=a_0+a_1t+\cdots+a_mt^m$ происходит по правилу f(t) $v=a_0v+a_1Fv+\ldots+a_mF^mv=f(F)v$, где

$$f(F) = a_0 \mathrm{Id}_V + a_1 F + \dots + a_m F^m$$

есть результат вычисления многочлена f на элементе F в \mathbb{k} -алгебре $\operatorname{End}(V)$. Наоборот, каждый линейный оператор $F:V\to V$ задаёт на V структуру $\mathbb{k}[t]$ -модуля, в котором умножение вектора $v\in V$ на многочлен $f(t)\in \mathbb{k}[t]$ происходит по формуле f(t) $v\stackrel{\mathrm{def}}{=} f(F)$ v. Мы будем обозначать такой $\mathbb{k}[t]$ -модуль через V_F .

¹ произвольная диаграмма отображений называется *коммутативной*, если композиции отображений вдоль любых двух путей с общим началом и концом одинаковы

Гомоморфизм $\mathbb{k}[t]$ -модулей $C:V_F\to W_G$, построенных по операторам $F:V\to V$ и $G:W\to W$ — это линейное отображение $C:V\to W$, перестановочное с умножением векторов на t, т. е. такое что $C\circ F=F\circ C$. Поэтому операторы F и G изоморфны тогда и только тогда, когда изоморфны $\mathbb{k}[t]$ -модули V_F и W_G .

Векторное подпространство $U \subset V$ является $\mathbb{k}[t]$ -подмодулем в модуле V_F если и только если оператор умножения на t переводит U в себя, т. е. тогда и только тогда, когда это подпространство F-инвариантно. Аналогично, разложимость V в прямую сумму инвариантных подпространств означает разложимость $\mathbb{k}[t]$ -модуля V_F в прямую сумму $\mathbb{k}[t]$ -подмодулей.

Если векторное пространство V конечномерно над \Bbbk , то $\Bbbk[t]$ -модуль V_F является конечно порождённым модулем кручения. В самом деле, любой базис пространства V над \Bbbk линейно порождает модуль V_F над $\Bbbk[t]$, и в каноническом разложении модуля V_F в прямую сумму свободного модуля и модуля кручения свободное слагаемое отсутствует, поскольку оно бесконечномерно над \Bbbk . Из теоремы об элементарных делителях вытекает

Теорема 10.1

Любой линейный оператор в конечномерном векторном пространстве над произвольным полем \Bbbk подобен оператору умножения на класс [t] в прямой сумме фактор колец

$$\frac{\mathbb{k}[t]}{(p_1^{m_1}(t))} \oplus \cdots \oplus \frac{\mathbb{k}[t]}{(p_k^{m_k}(t))}, \tag{10-1}$$

где все многочлены $p_{\nu}(t) \in \mathbb{k}[t]$ приведены и неприводимы, и слагаемые могут повторяться. Операторы умножения на класс [t], действующие в суммах

$$\frac{\mathbb{k}[t]}{(p_i^{m_1}(t))} \oplus \cdots \oplus \frac{\mathbb{k}[t]}{(p_k^{m_k}(t))} \quad \mathsf{и} \quad \frac{\mathbb{k}[t]}{(q_i^{n_1}(t))} \oplus \cdots \oplus \frac{\mathbb{k}[t]}{(q_\ell^{n_\ell}(t))}$$

изоморфны если и только если $k=\ell$ и прямые слагаемые можно переставить так, чтобы $p_{\nu}=q_{\nu}$ и $m_{\nu}=n_{\nu}$ при всех ν .

Определение 10.1 (элементарные делители линейного оператора)

Дизъюнктное объединение³ всех многочленов $p_{\nu}^{m_{\nu}}$, стоящих в правой части разложения (10-1), называется набором элементарных делителей оператора $F: V \to V$ и обозначается через $\mathcal{E}\ell(F)$.

Следствие 10.1

Линейные операторы F и G подобны тогда и только тогда, когда $\mathcal{E}\ell(F)=\mathcal{E}\ell(G)$.

Следствие 10.2

Линейный оператор неразложим тогда и только тогда, когда он подобен оператору умножения на класс [t] в фактор кольце $\mathbb{k}[t]/(p^m)$, где $p \in \mathbb{k}[t]$ неприводим и приведён. Неразложимый оператор неприводим если и только если m=1.

Следствие 10.3

Многочлен $f \in \mathbb{k}[t]$ тогда и только тогда аннулирует оператор $F: V \to V$, когда он делится на все элементарные делители оператора F.

¹См. сл. 9.2 на стр. 129.

²См. теор. 9.3 на стр. 128.

³Каждый элементарный делитель p^m входит в него ровно столько раз, сколько прямых слагаемых вида $\mathbb{k}[t]/(p^m)$ имеется в разложении (10-1).

Упражнение 10.3. Пусть пространство с оператором (F, V) разлагается в прямую сумму F-инвариантных подпространств U_i . Покажите, что $\mathcal{E}\ell(F) = |\cdot|_i \mathcal{E}\ell(F)_{U_i}$.

10.1.2. Характеристический многочлен. Пусть оператор $F:V\to V$ имеет в некотором базисе \boldsymbol{v} пространства V матрицу $F_{\boldsymbol{v}}$. Характеристический многочлен $\det(tE-F_{\boldsymbol{v}})$ этой матрицы не меняется при переходе к любому другому базису $\boldsymbol{w}=\boldsymbol{v}$ \mathcal{C} , поскольку 1 $F_{\boldsymbol{w}}=\mathcal{C}^{-1}F_{\boldsymbol{v}}\mathcal{C}$ и

$$\begin{split} \det(tE-F_w) &= \det(tC^{-1}EC-C^{-1}F_vC) = \det\left(C^{-1}(tE-F_v)C\right) = \\ &= \det C^{-1} \cdot \det(tE-F_v) \cdot \det C = \det(tE-F_v) \,. \end{split}$$

Многочлен $\chi_F(t) \stackrel{\text{def}}{=} \det(tE-F_v)$ называется характеристическим многочленом оператора F. Предыдущее вычисление показывает, что подобные операторы имеют равные характеристические многочлены.

Упражнение 10.4. Пусть пространство с оператором (F,W) распадается в прямую сумму пространств с операторами (G,U) и (H,V). Убедитесь, что $\chi_F(t)=\chi_G(t)\cdot\chi_H(t)$ в $\Bbbk[t]$.

Упражнение 10.5. Убедитесь, что для любого приведённого многочлена $f \in \mathbb{k}[t]$ характеристический многочлен оператора умножения на класс [t] в фактор кольце $\mathbb{k}[t]/(f)$ равен f.

Из этих упражнений и теор. 10.1 мы получаем

Предложение 10.1

Характеристический многочлен равен произведению всех элементарных делителей.

Упражнение 10.6. Выведите из предл. 10.1 новое доказательство теоремы Гамильтона – Кэли.

10.1.3. Минимальный многочлен. Для каждого неприводимого приведённого многочлена $p \in \mathbb{k}[t]$ обозначим через $m_p(F)$ максимальный показатель m, с которым p^m присутствует в наборе $\mathcal{E}\ell(F)$ элементарных делителей оператора F, а для тех неприводимых приведённых многочленов $p \in \mathbb{k}[x]$, степени которых не представлены в $\mathcal{E}\ell(F)$, положим $m_p(F) = 0$. Таким образом, $m_p(F) = 0$ для всех неприводимых приведённых $p \in \mathbb{k}[x]$ кроме конечного числа. Из теор. 10.1 вытекает, что приведённый многочлен $\mu_F(t)$ наименьшей возможной степени, аннулирующий оператор F, равен

$$\mu_F(t) = \prod_p p^{m_p(F)},$$

где произведение берётся по всем приведённым неприводимым $p \in \mathbb{k}[t]$. Многочлен $\mu_F(t)$ называется минимальным многочленом оператора F. Напомню, что минимальный многочлен порождает ядро гомоморфизма вычисления 2 многочленов на операторе F

$$\operatorname{ev}_F: \mathbb{k}[t] \to \operatorname{End}_{\mathbb{k}}(V), \quad f(t) \mapsto f(F),$$

и делит в $\mathbb{k}[t]$ все многочлены, аннулирующие оператор F, включая и характеристический многочлен $\chi_F(t) = \det(t \operatorname{Id}_V - F)$.

Пример 10.1 (ОПЕРАТОРЫ НАД АЛГЕБРАИЧЕСКИ ЗАМКНУТЫМ ПОЛЕМ)

Если основное поле k алгебраически замкнуто, то неприводимые приведённые многочлены в k[t] исчерпываются линейными двучленами $(t - \lambda)$, $\lambda \in k$. Оператор умножения на класс

¹См. прим. 7.3 на стр. 99.

²См. n° 7.2.3 на стр. 102.

 $[t] = [\lambda] + [t - \lambda]$ в фактор кольце $\mathbb{k}[t] / ((t - \lambda)^m)$ является суммой скалярного оператора $\lambda \operatorname{Id} : [g] \mapsto \lambda[g]$, умножающего все векторы на λ , и оператора умножения на класс $(t - \lambda)$, который действует на состоящий из векторов $e_i = \left[(t - \lambda)^{m-i} \right], 1 \leqslant i \leqslant m$, базис пространства $\mathbb{k}[t] / ((t - \lambda)^m)$ по правилу

$$0 \leftrightarrow e_1 \leftrightarrow e_2 \leftrightarrow e_3 \leftrightarrow \cdots \leftrightarrow e_{m-1} \leftrightarrow e_m \,. \tag{10-2}$$

Таким образом, умножение на класс [t] задаётся в базисе e_1, \ldots, e_n матрицей

$$J_{m}(\lambda) \stackrel{\text{def}}{=} \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}, \tag{10-3}$$

которая называется жордановой клеткой размера m с собственным числом λ . По теор. 10.1 каждый линейный оператор F над алгебраически замкнутым полем подобен оператору умножения на класс [t] в прямой сумме фактор колец вида $\mathbb{k}[t]/\left((t-\lambda)^m\right)$, и два таких оператора подобны если и только если прямые суммы отличаются друг от друга перестановкой слагаемых. При этом характеристический многочлен оператора F равен произведению всех $(t-\lambda)^m$, встречающихся в прямой сумме, а минимальный многочлен оператора F равен произведению максимальных для данного $\lambda \in \mathbb{k}$ степеней $(t-\lambda)^m$, взятому по всем различным λ , встречающимся в прямой сумме. Таким образом, характеристический и минимальный многочлены имеют одинаковый набор корней. Он обозначается $\operatorname{Spec} F$ и называется спектром оператора F, а сами корни $\lambda \in \operatorname{Spec} F$ называются собственными числами или собственными значениями оператора F. Кратность корня $\lambda \in \operatorname{Spec} F$ в минимальном многочлене $\mu_F(t)$ равна максимальному такому m, что $(t-\lambda)^m \in \mathcal{E}\ell(F)$, а кратность корня $\lambda \in \operatorname{Spec} F$ в характеристическом многочлене $\chi_F(t)$ равна сумме всех таких m, что $(t-\lambda)^m \in \mathcal{E}\ell(F)$.

На языке матриц сказанное означает, что любая квадратная матрица A над алгебраически замкнутым полем \Bbbk сопряжена блочно диагональной матрице, по главной диагонали которой располагаются жордановы клетки (10-3), причём эта блочно диагональная матрица однозначно с точностью до перестановки клеток определяется матрицей A. Она называется $\mathit{жордановой}$ $\mathit{нормальной}$ формой матрицы A. Две матрицы сопряжены если и только если у них одинаковые с точностью до перестановки клеток жордановы нормальные формы. Числа λ , встречающиеся в клетках жордановой нормальной формы матрицы A суть корни характеристического многочлена $\chi_A(t) = \det(tE - A)$, и кратность каждого корня λ равна сумме размеров всех жордановых клеток с собственным числом λ . Минимальный многочлен $\mu_A = \prod_{\lambda \in \operatorname{Spec} A} (t - \lambda)^{m_\lambda}$ равен взятому по всем корням λ характеристического многочлена матрицы A одночленов $(t - \lambda)$ в степенях, равных максимальным размерам жордановых клеток с собственным числом λ .

Упражнение 10.7. Как действует умножение на класс [t] в фактор кольце $\mathbb{k}[t]/(t-\lambda)$ и в прямой сумме конечного множества таких фактор колец?

10.1.4. Отыскание элементарных делителей. Зафиксируем в пространстве V какой-нибудь базис $v=(v_1,\ldots,v_n)$ над полем \mathbbm{k} и обозначим через $F_v\in \mathrm{Mat}_n(\mathbbm{k})$ матрицу оператора $F\colon V\to V$ в этом базисе. Поскольку векторы v_i линейно порождают пространство V над \mathbbm{k} , они тем более порождают модуль V_F над $\mathbbm{k}[t]$, и $V_F=\mathbbm{k}[t]^n/R_v$, где подмодуль $R_v=\ker\pi_v\subset\mathbbm{k}[t]^n$

является ядром эпиморфизма 1 π_v : $\Bbbk[t]^n \to V_F$, переводящего стандартный базисный вектор $e_i \in \Bbbk[t]^n$ в вектор $v_i \in V$, и состоит из всех $\Bbbk[t]$ -линейных соотношений между векторами v в V_F . Таким образом, множество $\mathcal{E}\ell(F)$ элементарных делителей оператора F представляет собою множество элементарных делителей, ассоциированное с набором инвариантных множителей подмодуля соотношений R_v в свободном координатном модуле $\Bbbk[t]^n$.

Лемма 10.1

Если записывать элементы свободного модуля $\mathbb{k}[t]^n$ в виде координатных столбцов с элементами из $\mathbb{k}[t]$, то подмодуль соотношений $\ker \pi_v \subset \mathbb{k}[t]^n$ линейно порождается над $\mathbb{k}[t]$ столбцами матрицы $tE - F_v$.

Доказательство. Пусть $F_v = (f_{ij})$. Тогда j-й столбец матрицы $tE - F_v$ выражается через стандартный базис e модуля $\mathbbm{k}[t]^n$ как $te_j - \sum_{i=1}^n e_i f_{ij}$. Применяя к этому вектору гомоморфизм π_v , получаем $\pi_v \Big(te_j - \sum_{i=1}^n e_i f_{ij} \Big) = tv_j - \sum_{i=1}^n v_i f_{ij} = Fv_j - \sum_{i=1}^n v_i f_{ij} = 0$. Тем самым, все столбцы матрицы $tE - F_v$ лежат в $\ker \pi_v$. Рассмотрим теперь произвольный вектор $h \in \ker \pi_v \subset \mathbbm{k}[t]^n$ и запишем его в виде многочлена от t с коэффициентами в \mathbbm{k}^n (ср. с \mathbbm{n}^* 8.3 на стр. 117):

$$h=t^mh_m+t^{m-1}h_{m-1}+\dots+th_1+h_0\,,\quad\text{где}\quad h_i\in \mathbb{k}^n\,.$$

Этот многочлен можно поделить с остатком слева на многочлен $tE-F_v$ точно также, как делят «уголком» обычные полиномы с постоянными коэффициентами². В результате получим равенство вида $t^mh_m+\ldots+th_1+h_0=(tE-F_v)\cdot(t^{m-1}g_{m-1}+\ldots+tg_1+g_0)+r$ с $g_i,r\in \mathbb{k}^n$.

Упражнение 10.8. Убедитесь в этом.

Иными словами, вычитая из столбца $h \in \Bbbk[t]^n$ подходящую $\Bbbk[t]$ -линейную комбинацию столбцов матрицы $tE-F_v$, можно получить вектор $r \in \Bbbk^n$, т. е. \Bbbk -линейную комбинацию $r = \sum \lambda_i e_i$ стандартных базисных векторов e_i модуля $\Bbbk[t]^n$. Так как столбцы матрицы $tE-F_v$ лежат в ядре гомоморфизма π_v , а векторы $v_i \in V$ линейно независимы над \Bbbk , вектор $\pi_v(h) = \pi_v(r) = \sum \lambda_i v_i$ обращается в нуль если и только если все $\lambda_i = 0$. Следовательно, r = 0 и столбец h лежит в $\Bbbk[t]$ -линейной оболочке столбцов матрицы $tE-F_v$.

Следствие 10.4

Множество $\mathcal{E}\!\ell(F)$ является дизъюнктным объединением степеней p^m неприводимых приведённых многочленов, встречающихся в разложениях инвариантных множителей p^m

$$f_i(t) = \Delta_i(tE - F_v) / \Delta_{i-1}(tE - F_v)$$

матрицы $tE - F_v$ на простые множители в $\mathbb{k}[t]$. Инвариантные множители $f_i(t) = d_{ii}$ совпадают с диагональными элементами матрицы D, которая получается в результате приведения матрицы $tE - F_v$ к диагональному виду элементарными преобразованиями строк и столбцов над кольцом $\mathbb{k}[t]$.

10.2. Специальные классы операторов. В этом разделе мы подробно остановимся на свойствах нескольких специальных классов операторов, играющих важную роль в различных задачах их самых разных областей математики.

¹См. n° 9.2 на стр. 124.

²См. n° 3.2 на стр. 37.

³Напомню, что Δ_i означает нод всех $k \times k$ миноров матрицы, см. сл. 9.1 на стр. 124.

10.2.1. Нильпотентные операторы. Линейный оператор $F:V\to V$ называется *нильпотентным*, если $F^m=0$ для некоторого $m\in\mathbb{N}$. Поскольку нильпотентный оператор аннулируется многочленом t^m , все его элементарные делители являются степенями t. В частности минимальный многочлен тоже является степенью t, и поскольку минимальный многочлен делит характеристический многочлен, степень которого равна $\dim V$, в определении нильпотентного оператора можно без ограничения общности считать, что $m\leqslant \dim V$. По теор. 10.1 нильпотентный оператор изоморфен оператору умножения на класс [t] в прямой сумме фактор колец вида

$$\frac{\mathbb{k}[t]}{(t^{\nu_1})} \oplus \cdots \oplus \frac{\mathbb{k}[t]}{(t^{\nu_k})} \tag{10-4}$$

и два таких оператора изоморфны друг другу если и только если выписанные в порядке нестрогого убывания наборы показателей $v_1 \geqslant v_2 \geqslant \ldots \geqslant v_k$ у них одинаковы. Таким образом, нильпотентные операторы над произвольным полем \Bbbk взаимно однозначно соответствуют диаграммам Юнга v. Диаграмма v(F), характеризующая нильпотентный оператор F, называется его цикловым типом.

Умножение на класс [t] действует на состоящий из векторов $e_i = [t^{m-i}]$ базис пространства $\mathbb{k}[t]/(t^m)$ по правилу [t]

$$0 \leftrightarrow e_1 \leftrightarrow e_2 \leftrightarrow e_3 \leftrightarrow \cdots \leftrightarrow e_{m-1} \leftrightarrow e_m$$

и задаётся в этом базисе матрицей

$$J_m(0) \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix},$$

которая называется нильпотентной жордановой клеткой размера m. Тем самым, для нильпотентного оператора F циклового типа $\nu(F)$ в пространстве V имеется базис, векторы которого размещаются по клеткам диаграммы $\nu(F)$ так, что F переводит каждый из них в левый соседний, а все векторы самого левого столбца — в нуль:

$$0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \\ 0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \\ 0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \\ 0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \\ 0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet$$

$$0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet$$

$$0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet$$

$$0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet$$

$$0 \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet$$

Базис такого вида называется *циклическим* или *жордановым* базисом нильпотентного оператора F, а наборы базисных векторов, стоящие по строкам диаграммы, называются *жордановыми цепочками*. Так как сумма длин первых m столбцов диаграммы v(F) равна $\dim \ker F^m$, длина m-того столбца диаграммы v(F) равна $\dim \ker F^m - \dim \ker F^{m-1}$.

Упражнение 10.9. В условиях прим. 10.1 на стр. 134 покажите, что для отыскания жордановой нормальной формы оператора F над алгебраически замкнутым полем достаточно разложить характеристический многочлен $\chi_F(t)$ на линейные множители:

$$\chi_F(t) = \prod_{\lambda \in \operatorname{Spec} F} (t - \lambda)^{m_\lambda}$$

 $^{^{1}}$ См. формулу (10-2) на стр. 135.

и для каждого $\lambda \in \operatorname{Spec} F$ и натурального k в пределах $1 \leqslant k \leqslant m_{\lambda}$, где m_{λ} — кратность корня λ , вычислить $\dim \ker(\lambda \operatorname{Id} - F)^k$, после чего построить диаграмму Юнга ν , в которой k-й столбец имеет длину $\dim \ker(\lambda \operatorname{Id} - F)^k - \dim \ker(\lambda \operatorname{Id} - F)^{k-1}$. Количество жордановых клеток размера m с заданным собственным значением λ в жордановой нормальной форме оператора F равно количеству строк длины m в диаграмме Юнга ν .

10.2.2. Полупростые операторы. Прямая сумма простых² пространств с операторами называется *полупростым* или *вполне приводимым* пространством с оператором.

Предложение 10.2

Следующие свойства оператора $F:V \to V$ эквивалентны друг другу:

- 1) V является прямой суммой неприводимых F-инвариантных подпространств
- 2) И линейно порождается неприводимыми F-инвариантными подпространствами
- 3) для каждого ненулевого F-инвариантного подпространства $U \subsetneq V$ существует такое F- инвариантное подпространство $W \subset V$, что $V = U \oplus W$
- 4) оператор F подобен умножению на класс [t] в прямой сумме фактор колец

$$\mathbb{k}[t]/(p_1) \oplus \mathbb{k}[t]/(p_2) \oplus \cdots \oplus \mathbb{k}[t]/(p_r),$$

где $p_i \in \mathbb{k}[t]$ приведены и неприводимы³ (но не обязательно различны).

Доказательство. Импликация $(1)\Rightarrow (2)$ очевидна. Покажем, что $(2)\Rightarrow (3)$. Индукция по $\dim V$. При $\dim V=1$ доказывать нечего. Пусть $\dim V>1$. Для каждого неприводимого F-инвариантного подпространства $L\subset V$ пересечение $L\cap U$, будучи F-инвариантным подпространством в L, либо нулевое, либо совпадает с L. Если все неприводимые инвариантные подпространства $L\subset V$ лежат в U, то U=V в силу (2), и доказывать нечего. Если есть ненулевое неприводимое F-инвариантное подпространство $L\subset V$ с $L\cap U=0$, рассмотрим фактор V'=V/L и проекцию $\pi:V\Rightarrow V'$ с ядром L. Она инъективно отображает подпространство $U\subset V$ на ненулевое F-инвариантное подпространство $\pi(U)\subset V'$. Поскольку $\dim V'<\dim V$, по индукции найдётся такое F-инвариантное подпространство $W'\subset V'$, что $V'=W'\oplus \pi(U)$ (при $\pi(U)=V$ мы полагаем W'=0). Пусть $W=\pi^{-1}(W')\subset V$. Проверим, что V=U+W. Проекция любого $v\in V$ на V' представляется в виде $\pi(v)=\pi(u)+w'$ с $u\in U$, $w'\in W'$, и разность $w=v-u\in W$, поскольку $\pi(w)=\pi(v)-\pi(u)=w'\in W'$. Тем самым, v=w+u с $w\in W$, $u\in U$. Если вектор $v\in U\cap W$, то $\pi(v)\in \pi(U)\cap W'=0$, откуда $v\in \ker \pi=L$. Так как $L\cap U=0$, мы заключаем, что $U\cap W=0$ и $V=W\oplus U$.

Чтобы доказать импликацию (3) \Rightarrow (4), покажем сначала, что если свойство (3) выполнено для пространства V, то оно выполнено и для каждого F-инвариантного подпространства $H \subset V$. Рассмотрим любое инвариантное подпространство $U \subset H$ и отыщем в V такие инвариантные

 $^{^1}$ Причём это вычисление достаточно продолжать только до тех пор, пока $\dim \ker(\lambda \operatorname{Id} - F)^k$ строго увеличивается с ростом k. Если при очередном k размерность останется такой же, как при предыдущем k, то она будет оставаться такой и для всех последующих k.

 $^{^{2}}$ Или — в другой терминологии — неприводимых, см. начало n° 10.1 на стр. 132.

 $^{^3}$ Иными словами, в прямой сумме (10-1) из теор. 10.1 все показатели степеней $m_i=1$.

подпространства Q и R, что $V=H\oplus Q=U\oplus Q\oplus R$. Рассмотрим проекцию $\pi:V\twoheadrightarrow H$ с ядром Q и положим $W=\pi(R)$.

Упражнение 10.10. Проверьте, что $H = U \oplus W$.

Итак, если свойство (3) выполнено для прямой суммы фактор колец (10-1) из теор. 10.1, то оно выполнено и для каждого слагаемого этой суммы. Однако по сл. 10.2 при m>1 пространство $\mathbb{k}[t]/(p^m)$ приводимо, но неразложимо.

Импликация (4) \Rightarrow (1) также немедленно вытекает из сл. 10.2.

Следствие 10.5 (из доказательства предл. 10.2)

Ограничение полупростого оператора на инвариантное подпространство также является полупростым оператором.

10.2.3. Циклические векторы. Вектор $v \in V$ называется *циклическим вектором* линейного оператора $F: V \to V$, если его F-орбита $v, Fv, F^2v, F^3v, \ldots$ линейно порождает пространство V над полем \mathbb{k} . Иначе можно сказать, что v порождает модуль V_F над $\mathbb{k}[t]$.

Предложение 10.3

Следующие свойства оператора $F:V\to V$ эквивалентны друг другу:

- 1) F обладает циклическим вектором
- 2) F подобен умножению на класс [t] в фактор кольце $\mathbb{k}[t]/(f)$, где $f \in \mathbb{k}[t]$ какой-либо приведённый многочлен
- 3) каждый неприводимый $p \in \mathbb{k}[t]$ встречается в $\mathcal{E}\ell$ F не более одного раза
- 4) минимальный многочлен оператора F совпадает с характеристическим.

Доказательство. Условия (3) и (4) эквивалентны в силу предл. 10.1 и означают, что оператор F подобен умножению на t в прямой сумме фактор колец

$$\mathbb{k}[t]/(p_1^{m_1}) \oplus \mathbb{k}[t]/(p_2^{m_2}) \oplus \cdots \oplus \mathbb{k}[t]/(p_r^{m_r}),$$

в которой все неприводимые приведённые многочлены p_1, p_2, \dots, p_r попарно различны. По китайской теореме об остатках, эта сумма изоморфна $\Bbbk[t]/(f)$, где

$$f = \chi_F = \mu_F = \prod_{i=1}^r p_i^{m_i}.$$

Тем самым, (2) равносильно (3) и (4). Импликация (2) \Rightarrow (1) очевидна: в качестве циклического вектора для оператора умножения на t в фактор кольце $\mathbb{k}[t]/(f)$ можно взять v=[1]. Наоборот, если модуль V_F порождается над $\mathbb{k}[t]$ одним вектором v, то $V_F=\mathbb{k}[t]/R$, где $R=\ker\pi$ — ядро $\mathbb{k}[t]$ -линейного эпиморфизма $\mathbb{k}[t]$ \Rightarrow V_F , преводящего 1 в v. Поскольку $\mathbb{k}[t]$ — кольцо главных идеалов, модмодуль $R\subset\mathbb{k}[t]$ имеет вид (f), где f-приведённый многочлен наименьшей степени со свойством f(F)v=0. Тем самым, $V=\mathbb{k}[t]/(f)$.

10.2.4. Собственные подпространства и собственные числа. Максимальное по включению ненулевое подпространство в V, на котором оператор $F:V\to V$ действует как умножение на скаляр $\lambda\in \mathbb{k}$, называется собственным подпространством оператора F с собственным числом или собственным значением λ и обозначается

$$V_{\lambda} \stackrel{\mathrm{def}}{=} \left\{ v \in V \mid F(v) = \lambda v \right\} = \ker(\lambda \operatorname{Id}_V - F).$$

Ненулевые векторы $v \in V_{\lambda}$ называются собственными векторами оператора F с собственным числом λ .

Предложение 10.4

Любой набор собственных векторов с попарно различными собственными числами линейно независим.

Доказательство. Пусть собственные векторы v_1,\dots,v_m имеют попарно разные собственные числа $\lambda_1,\dots,\lambda_m$ и линейно зависимы. Рассмотрим линейное соотношение между ними, в котором задействовано минимально возможное число векторов. Пусть это будут векторы e_1,\dots,e_k . Тогда $k\geqslant 2$ и $e_k=x_1e_1+\dots+x_{k-1}e_{k-1}$, где все $x_i\in \Bbbk$ отличны от нуля. При этом $\lambda_ke_k=F(e_k)=\sum x_iF(e_i)=\sum x_i\lambda_ie_i$. Вычитая из этого равенства предыдущее, умноженное на λ_k , получаем более короткую линейную зависимость

$$0 = x_1(\lambda_1 - \lambda_k) \cdot e_1 + x_1(\lambda_1 - \lambda_k) \cdot e_2 + \cdots + x_{k-1}(\lambda_{k-1} - \lambda_k) \cdot e_{k-1}$$

с ненулевыми коэффициентами.

Следствие 10.6

Сумма ненулевых собственных подпространств с попарно разными собственными числами является прямой. \Box

10.2.5. Спектр. Множество собственных чисел линейного оператора $F:V\to V$, т. е. всех таких $\lambda\in \Bbbk$, для которых существует ненулевое собственное подпространство $V_\lambda=\ker(\lambda\operatorname{Id}_V-F)$, называется спектром 2 оператора F в поле \Bbbk и обозначается

$$\operatorname{Spec} F = \{\lambda \in \mathbb{k} \mid \ker(\lambda \operatorname{Id}_V - F) \neq 0\} = \{\lambda \in \mathbb{k} \mid \det(tE - F) = 0\}.$$

Поскольку $\ker(\lambda\operatorname{Id}_V-F)\neq 0$ если и только если $\det(tE-F)=0$, спектр совпадает с множеством корней характеристического многочлена $\chi_F(t)=\det(tE-F)$ в поле \Bbbk . В частности, количество различных собственных чисел не превосходит $\deg\chi_F=\dim V$, что также вытекает из сл. 10.6, согласно которому

$$\sum_{\lambda \in \operatorname{Spec} F} \dim V_{\lambda} \leq \dim V. \tag{10-6}$$

Упражнение 10.11. Покажите, что $\operatorname{Spec} F$ содержится в множестве корней любого многочлена, аннулирующего F.

Если известен спектр F, отыскание собственных подпространств сводится к решению систем линейных однородных уравнений ($\lambda \operatorname{Id}_V - F$) v = 0, которые гарантированно имеют ненулевые решения при $\lambda \in \operatorname{Spec} F$. Если основное поле \Bbbk алгебраически замкнуто, спектр любого оператора гарантированно не пуст, поскольку характеристический многочлен $\chi_F(t)$ обязательно имеет корень в поле \Bbbk .

 $^{^{1}}$ Или собственным значением.

²Ср. с прим. 10.1 на стр. 134.

Прі	₹ЛЛ	ОЖ	EHI	ИF.	TO	5

Над алгебраически замкнутым полем \Bbbk любой оператор обладает хотя бы одним ненулевым собственным подпространством. \square

Упражнение 10.12. Покажите, что над алгебраически замкнутым полем \Bbbk оператор F нильпотентен если и только если когда $\operatorname{Spec} F = \{0\}$, и приведите пример оператора, для которого неравенство (10-6) строгое.

10.2.6. Диагонализуемые операторы. Оператор $F:V\to V$ называется диагонализуемым, если в V имеется базис, в котором F записывается диагональной матрицей. Такой базис состоит из собственных векторов оператора F, а элементы диагональной матрицы суть собственные числа F, причём каждое собственное число $\lambda\in \operatorname{Spec} F$ встречается на диагонали ровно столько раз, какова кратность корня $t=\lambda$ в характеристическом многочлене $\chi_F(t)$ и какова размерность собственного подпространства V_λ . Иначе можно сказать, что диагонализуемый оператор F подобен оператору умножения на класс [t] в прямой сумме фактор колец $\mathbb{E}[t]/(t-\lambda)\simeq \mathbb{E}[t]$, где λ пробегает $\mathbb{E}[t]$ и каждое такое прямое слагаемое представлено в сумме ровно $\dim V_\lambda$ раз.

Предложение 10.6

Следующие свойства линейного оператора $F:V \to V$ эквивалентны:

- *F* диагонализуем
- 2) пространство V линейно порождается собственными векторами оператора F
- 3) характеристический многочлен $\chi_F(t) = \det(tE F)$ полностью раскладывается в $\Bbbk[t]$ на линейные множители, и кратность каждого его корня λ равна размерности собственного подпространства V_{λ}
- 4) все элементарные делители F имеют вид $(t \lambda)$, $\lambda \in \mathbb{k}$
- 5) оператор F аннулируется многочленом f, раскладывающимся в $\mathbb{k}[t]$ в произведение попарно различных линейных множителей.

Доказательство. Эквивалентности (2) \iff (1) \iff (4) и импликация (1) \Rightarrow (3) очевидны из предваряющего предл. 10.6 обсуждения. Эквивалентность (4) \iff (5) следует из сл. 10.3. Из (3) вытекает, что $\sum \dim V_{\lambda} = \deg \chi_F = \dim V$. Поэтому прямая по сл. 10.6 сумма всех различных собственных подпространств V_{λ} совпадает с V, что даёт импликацию (3) \Rightarrow (1).

Следствие 10.7

Если оператор $F:V\to V$ диагонализуем, то его ограничение на любое инвариантное подпространство тоже диагонализуемо на этом подпространстве.

Доказательство. Это вытекает из свойства (5) предл. 10.6.

Упражнение 10.13. Убедитесь, что над алгебраически замкнутым полем диагонализуемость равносильна полупростоте.

¹Ср. с упр. 10.7 на стр. 135.

10.2.7. Перестановочные операторы. Если линейные операторы $F, G: V \to V$ на векторном пространстве V над произвольным полем \Bbbk коммутируют друг с другом, то ядро и образ любого многочлена от оператора F переводятся оператором G в себя, поскольку

$$f(F) v = 0 \Rightarrow f(F) G v = G f(F) v = 0$$

 $v = f(F) w \Rightarrow Gv = G f(F) w = f(F) Gw$.

В частности, все собственные подпространства $V_{\lambda} = \ker(F - \lambda E)$ инвариантны относительно любого перестановочного с F оператора G.

Предложение 10.7

В конечномерном векторном пространстве V над алгебраически замкнутым полем \Bbbk любое множество коммутирующих друг с другом операторов обладает общим для всех операторов собственным вектором. Над произвольным полем \Bbbk любое множество коммутирующих друг с другом диагонализуемых операторов на V можно одновременно диагонализовать в одном общем для всех операторов базисе.

Доказательство. Индукция по $\dim V$. Если все операторы скалярны (что так при $\dim V=1$), то доказывать нечего — подойдут, соответственно, любой ненулевой вектор и любой базис. Если среди операторов есть хоть один нескалярный оператор F, то над замкнутым полем у него есть собственное подпространство строго меньшей размерности, чем V, а в диагонализуемом случае V является прямой суммой таких собственных подпространств. Каждое собственное подпространство оператора F инвариантно для всех операторов, причём если операторы диагонализуемы на всём пространстве, то их ограничения на собственные подпространства оператора F останутся диагонализуемы по сл. 10.7. Применяя к собственным подпространствам оператора F предположение индукции, получаем требуемое.

Пример 10.2 (конечные группы операторов)

Если m линейных операторов на конечномерном пространстве V над алгебраически замкнутым полем \mathbbm{k} характеристики $\mathrm{char}\,\mathbbm{k} > m$ образуют группу G, то каждый из этих операторов аннулируется многочленом t^m-1 , который раскладывается в произведение m попарно различных линейных множителей 1 . Поэтому каждый оператор в группе G диагонализуем. Все операторы из группы G одновременно диагонализуются в одном общем базисе если и только если группа G абелева.

10.2.8. Аннулирующие многочлены. Если задан многочлен $f \in \mathbb{k}[x]$, аннулирующий линейный оператор $F: V \to V$, и известно, как f раскладывается в $\mathbb{k}[t]$ на простые множители, то в силу сл. 10.3 это оставляет лишь конечное число возможностей для набора элементарных делителей $\mathcal{E}\ell(F)$ и часто позволяет явно описать разложение V в прямую сумму F-инвариантных подпространств во внутренних терминах действия F на пространстве V.

Пример 10.3 (инволюции)

Линейный оператор $\sigma: V \to V$ называется *инволюцией*, если он удовлетворяет соотношению $\sigma^2 = \mathrm{Id}_V$, т. е. аннулируется многочленом $t^2 - 1$. Тождественная инволюция $\sigma = \mathrm{Id}_V$ называется

 $^{^{1}}$ Поскольку производная mt^{m-1} многочлена $t^{m}-1$ отлична от нуля и взаимно проста с этим многочленом, она не имеет с ним общих корней. Следовательно, у многочлена нет кратных корней.

 $^{^2}$ В силу тождества Гамильтона – Кэли по крайней мере один такой многочлен, а именно — характеристический многочлен $\chi_F(t) = \det(tE-F)$, всегда можно явно предъявить.

тивиальной. Так как $t^2-1=(t+1)(t-1)=0$ является произведением различных линейных множителей, все инволюции диагонализуемы, причём спектр любой инволюции исчерпывается числами ± 1 . Пространство V с инволюцией σ распадается в прямую сумму собственных подпространств $V=V_+\oplus V_-$ с собственными значениями ± 1 , и любой вектор $v\in V$ однозначно представим в виде $v=v_++v_-$, где $v_+=(v+Fv)/2\in V_+=\ker(\sigma-\mathrm{Id}_V)=\mathrm{im}(\sigma+\mathrm{Id}_V)$ и $v_-=(v-Fv)/2\in V_-=\ker(\sigma+\mathrm{Id}_V)=\mathrm{im}(\sigma-\mathrm{Id}_V)$.

Теорема 10.2 (теорема о разложении)

Пусть линейный оператор $F:V\to V$ на произвольном векторном пространстве V над любым полем \mathbbm{k} аннулируется многочленом $q\in\mathbbm{k}[t]$, который раскладывается в $\mathbbm{k}[t]$ в произведение $q=q_1\cdot q_2\cdot \cdots \cdot q_r$ попарно взаимно простых многочленов $q_i\in\mathbbm{k}[t]$. Положим $Q_j=q/q_j$. Тогда $\ker q_j(F)=\operatorname{im} Q_j(F)$ для каждого j, все эти подпространства F-инвариантны, и пространство V является прямой суммой тех из них, что отличны от нуля.

Доказательство. Так как $q(F)=q_i(F)\circ Q_j(F)=0$, имеем включение im $Q_i(F)\subset\ker q_i(F)$. Поэтому достаточно показать, что V линейно порождается образами операторов $Q_i(F)$, а сумма ядер $\ker q_i(F)$ прямая 2 , т. е. $\ker q_i(F)\cap\sum_{j\neq i}\ker q_j(F)=0$ для всех i. Первое вытекает из того, что нод $(Q_1,\ldots,Q_r)=1$, а значит, существуют такие $h_1,\ldots,h_r\in\Bbbk[t]$, что $1=\sum Q_j(t)h_j(t)$. Подставляя в это равенство t=F и применяя обе части κ произвольному вектору $v\in V$, получаем разложение $v=Ev=\sum Q_j(F)h_j(F)v\in\sum \inf Q_j(F)$. Второе вытекает из взаимной простоты q_i и Q_i , в силу которой существуют такие $g,h\in \Bbbk[t]$, что $1=g(t)\cdot q_i(t)+h(t)\cdot Q_i(t)$. Подставим сюда t=F и применим обе части полученного равенства $E=g(F)q_i(F)+h(F)\circ Q_i(F)$ κ произвольному вектору $v\in\ker q_i(F)\cap\sum_{j\neq i}\ker q_j$. Так как $\ker q_j(F)\subset\ker Q_i(F)$ при всех $j\neq i$, получим $v=Ev=g(F)q_i(F)v+h(F)Q_i(F)v=0$, что и требовалось.

Пример 10.4 (проекторы)

Линейный оператор $\pi:V \to V$ называется идемпотентом или проектором, если он аннулируется многочленом $t^2-t=t(t-1)$, т. е. удовлетворяет соотношению $\pi^2=\pi$. По теор. 10.2 образ любого идемпотента $\pi:V \to V$ совпадает с подпространством его неподвижных векторов: $\operatorname{im} \pi = \ker(\pi - \operatorname{Id}_V) = \{v \mid \pi(v) = v\}$, и всё пространство распадается в прямую сумму $V = \ker \pi \oplus \operatorname{im} \pi$. Тем самым, оператор π проектирует V на $\operatorname{im} \pi$ вдоль $\ker \pi$. Отметим, что оператор $\operatorname{Id}_V - \pi$ тоже является идемпотентом и проектирует V на $\ker \pi$ вдоль $\operatorname{im} \pi$. Таким образом, задание прямого разложения $V = U \oplus W$ равносильно заданию пары идемпотентных эндоморфизмов $\pi_1 = \pi_1^2$ и $\pi_2 = \pi_2^2$ пространства V, связанных соотношениями $\pi_1 + \pi_2 = 1$ и $\pi_1\pi_2 = \pi_2\pi_1 = 0$.

Упражнение 10.14. Выведите из этих соотношений, что $\ker \pi_1 = \operatorname{im} \pi_2$ и $\operatorname{im} \pi_1 = \ker \pi_2$.

Предложение 10.8

Над полем вещественных чисел $\mathbb R$ любой оператор обладает одномерным или двумерным инвариантным подпространством.

Доказательство. Пусть $\chi_F = q_1 q_2 \dots q_m$, где $q_i \in \mathbb{R}[t]$ — неприводимые приведённые линейные или квадратичные многочлены, не обязательно различные. Применим нулевой оператор

¹Возможно даже бесконечномерном.

²См. предл. 6.1 на стр. 81.

 $0=q_1(F)\circ q_2(F)\circ \cdots \circ q_m(F)$ к какому-нибудь ненулевому вектору $v\in V$. Тогда при некотором $i\geqslant 0$ мы получим такой ненулевой вектор $w=q_{i+1}(F)\circ \cdots \circ q_m(F)\,v$, что $q_i(F)\,w=0$. Если $q_i(t)=t-\lambda$ линеен, то $F(w)=\lambda w$, и мы имеем 1-мерное F-инвариантное подпространство $\Bbbk\cdot w$. Если $q_i(t)=t^2-\alpha t-\beta$ квадратичен, то $F(Fw)=\alpha F(w)+\beta w$ лежит в линейной оболочке векторов w и Fw, которая тем самым является F-инвариантным подпространством, и её размерность не превышает 2.

10.3. Корневое разложение и функции от операторов. Всюду в этом разделе мы предполагаем, что линейный оператор $F:V\to V$ аннулируется многочленом, который полностью разлагается над полем \Bbbk на линейные множители. Для этого необходимо и достаточно, чтобы полностью разлагался на линейные множители минимальный или характеристический многочлен оператора F. Спектр такого оператора F исчерпывается степенями линейных двучленов $(t-\lambda)^m$ с $\lambda\in \operatorname{Spec} F$ и произвольными $m\in\mathbb{N}$, причём как числа λ , так и числа m могут повторяться. Подмодуль $(t-\lambda)$ -кручения в $\Bbbk[t]$ -модуле V_F называется корневым подпространством оператора F, отвечающим собственному числу $\lambda\in \operatorname{Spec} F$, и обозначается

$$K_{\lambda} = \{v \in V \mid \exists \, m \in \mathbb{N} : (\lambda \operatorname{Id} - F)^m v = 0\} = \bigcup_{m \geq 1} \ker(\lambda \operatorname{Id} - F)^m = \ker(\lambda \operatorname{Id} - F)^{m_{\lambda}}, \quad (10\text{-}7)$$

где m_{λ} — максимальный из показателей степеней элементарных делителей оператора F вида $(t-\lambda)^m$. Каждое корневое подпространство K_{λ} содержит ненулевое собственное подпространство V_{λ} и тем самым отлично от нуля. Разложение $\mathbb{k}[t]$ -модуля V_F в прямую сумму $\mathbb{k}[t]$ -подмодулей $(t-\lambda)$ -кручения из сл. 9.3 на стр. 129 имеет вид $V=\bigoplus_{\lambda\in \operatorname{Spec} F} K_{\lambda}$ и называется корневым разложением оператора F.

Следствие 10.8 (теорема о корневом разложении)

Пусть характеристический многочлен $\chi_F(t)$ линейного оператора $F:V\to V$ на конечномерном векторном пространстве V над полем $\mathbb R$ полностью разлагается в $\mathbb R[t]$ на линейные множители: $\chi_F(t)=\prod_{\lambda\in\operatorname{Spec} F}(t-\lambda)^{m_\lambda}$. Тогда $V=\bigoplus_{\lambda\in\operatorname{Spec} F}K_\lambda$, причём $K_\lambda=\ker(\lambda\operatorname{Id}-F)^{m_\lambda}$ для всех $\lambda\in\operatorname{Spec} F$.

Упражнение 10.15. Выведите существование корневого разложения из теор. 10.2 и тождества Гамильтона – Кэли без использования сл. 9.3 и теоремы об элементарных делителях.

10.3.1. Функции от операторов. Пусть линейный оператор F действует на конечномерном векторном пространстве V над полем $\mathbb R$ или $\mathbb C$, которое мы обозначим через $\mathbb K$. Всюду далее мы предполагаем, что F аннулируется многочленом $\alpha(t) \in \mathbb K[t]$, который полностью разлагается над $\mathbb K$ на линейные множители, т. е.

$$\alpha(t) = (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdots (t - \lambda_s)^{m_s}, \tag{10-8}$$

где $\lambda_i \neq \lambda_j$ при $i \neq j$ и все $m_i \in \mathbb{N}$. В этом случае характеристический и минимальный многочлены оператора F тоже полностью разлагаются на линейные множители в $\mathbb{K}[t]$, и можно взять в качестве $\alpha(t)$ один из них. Мы полагаем $m = \deg \alpha = m_1 + \dots + m_s$. Алгебра \mathcal{A} , состоящая из функций $U \to \mathbb{K}$, заданных на каком-нибудь подмножестве $U \subset \mathbb{K}$, содержащем все корни многочлена (10-8), называется алгебраически вычислимой на операторе F, если $\mathbb{K}[t] \subset \mathcal{A}$ и для каждого корня λ кратности k многочлена (10-8) все функции $f \in \mathcal{A}$ определены в точке $\lambda \in \mathbb{K}$

вместе с первыми k-1 производными $f^{(\nu)}=rac{d^{
u}f}{dt^{
u}}$ и допускают разложение вида

$$f(t) = f(\lambda) + \frac{f'(\lambda)}{1!}(t - \lambda) + \dots + \frac{f^{(k-1)}(\lambda)}{(k-1)!}(t - \lambda)^{k-1} + g_{\lambda}(t) \cdot (t - \lambda)^{k},$$
 (10-9)

где функция $g_{\lambda}(t)$ тоже лежит в алгебре \mathcal{A} .

Например, алгебра $\mathcal A$ всех функций, определённых в ε -окрестности каждого собственного числа $\lambda \in \operatorname{Spec} F$ и представимых в ней суммой абсолютно сходящегося степенного ряда от $(t-\lambda)$, алгебраически вычислима на операторе F. Подалгебра в $\mathcal A$, состоящая из всех аналитических функций $\mathbb K \to \mathbb K$, алгебраически вычислима на всех линейных операторах $F \in \operatorname{End}(V)$, характеристические многочлены которых полностью разлагаются на линейные множители в $\mathbb K[t]$.

Теорема 10.3

В сделанных выше предположениях каждая алгебраически вычислимая на операторе $F:V\to V$ алгебра функций $\mathcal A$ допускает единственный такой гомоморфизм $\mathbb K$ -алгебр $\operatorname{ev}_F:\mathcal A\to\operatorname{End} V$, что $\operatorname{ev}_F(p)=p(F)$ для всех многочленов $p\in\mathbb K[t]\subset\mathcal A$.

Определение 10.2 (гомоморфизм вычисления)

Гомоморфизм $\operatorname{ev}_F: \mathcal{A} \to \operatorname{End} V$ из теор. 10.3 называется вычислением функций $f \in \mathcal{A}$ на операторе F. Линейный оператор $\operatorname{ev}_F(f): V \to V$, в который переходит функция $f \in \mathcal{A}$ при гомоморфизме вычисления, обозначается f(F) и называется функцией f от оператора F.

Замечание то.т. (как относиться к функциям от операторов) Из теор. 10.3 вытекает, что если характеристический многочлен линейного оператора $F:V\to V$ полностью разлагается на линейные множители в $\mathbb{K}[t]$, то на пространстве V определены такие линейные операторы, как e^F или $\sin F$, а если $F\in \mathrm{GL}(V)$, то и такие задаваемые аналитическими вне нуля функциями операторы, как $\ln F$ или \sqrt{F} , причём алгебраические свойства всех этих операторов точно такие же, как у числовых функций e^t , $\sin t$, $\ln t$ и \sqrt{t} . В частности, все эти функции от оператора F коммутируют друг с другом и с F, а также удовлетворяют соотношениям вроде $\ln F^2 = 2 \ln F$ и $\sqrt{F}\sqrt{F} = F$. Таким образом, функции от операторов можно использовать для отыскания операторов с предписанными свойствами, например, для извлечения корней из невырожденных операторов.

Доказательство теор. 10.3. Пусть оператор F аннулируется многочленом $\alpha(t) = \prod_{\lambda} (t-\lambda)^{m_{\lambda}}$, где $\lambda = \lambda_1, \ldots, \lambda_r$ пробегает все различные корни этого многочлена, и пусть искомый гомоморфизм $\operatorname{ev}_F : \mathcal{A} \to \mathbb{K}$ существует. По теореме о разложении пространство V является прямой суммой F-инвариантных подпространств $K_{\lambda} = \ker(F - \lambda \operatorname{Id})^{m_{\lambda}}$, и согласно формуле (10-9) оператор

$$f(F) = f(\lambda) \cdot E + f'(\lambda) \cdot (F - \lambda E) + \dots + \frac{f^{(m_{\lambda} - 1)}(\lambda)}{(m_{\lambda} - 1)!} (F - \lambda E)^{m_{\lambda} - 1} + g_{\lambda}(F)(F - \lambda E)^{m_{\lambda}}$$
 (10-10)

действует на каждом подпространстве K_{λ} точно так же, как результат подстановки оператора F в многочлен

$$j_{\lambda}^{m_{\lambda}-1}f(t)\stackrel{\mathrm{def}}{=} f(\lambda)+f'(\lambda)\cdot(t-\lambda)+\,\cdots\,+f^{(m_{\lambda}-1)}(\lambda)\cdot(t-\lambda)^{m_{\lambda}-1}\big/(m_{\lambda}-1)!\,,$$

 $^{^{1}}$ Т. е. функций, задаваемых сходящимися всюду в $\mathbb K$ степенными рядами.

²См. теор. 10.2 на стр. 143.

класс которого в фактор кольце $\mathbb{K}[t]/\left((t-\lambda)^{m_{\lambda}}\right)$ называется $(m_{\lambda}-1)$ -струёй функции $f\in\mathcal{A}$ в точке $\lambda\in\mathbb{K}$. По китайской теореме об остатках существует единственный такой многочлен $p_{f(F)}(t)\in\mathbb{K}[t]$ степени меньшей $\deg\alpha(t)$, что

$$p_{f(F)}(t) \equiv j_{\lambda}^{m_{\lambda}-1} f(t) \, (\text{mod} \, \alpha(t))$$

для всех корней λ многочлена α . Поскольку операторы $p_{f(F)}(F)$ и f(F) одинаково действуют на каждом подпространстве K_{λ} , мы имеем равенство $f(F)=p_{f(F)}(F)$. Таким образом гомоморфизм вычисления единствен. Остаётся убедиться, что отображение $f\mapsto p_{f(F)}(F)$ действительно является гомоморфизмом \mathbb{K} -алгебр. Проверим сначала, что отображение

$$J: \mathcal{A} \to \frac{\mathbb{K}[t]}{\left((t - \lambda_1)^{m_1}\right)} \times \cdots \times \frac{\mathbb{K}[t]}{\left((t - \lambda_r)^{m_r}\right)} \simeq \frac{\mathbb{K}[t]}{(\alpha)}$$
$$f \mapsto \left(j_{\lambda_1}^{m_1 - 1} f, \dots, j_{\lambda_s}^{m_r - 1} f\right), \tag{10-11}$$

сопоставляющее функции $f \in \mathcal{A}$ набор её струй во всех корнях многочлена α , является гомоморфизмом \mathbb{K} -алгебр, т. е. \mathbb{K} -линейно и удовлетворяет равенству J(fg)=J(f)J(g). Первое очевидно, второе достаточно установить для каждой струи j_{λ}^{m-1} отдельно. Используя правило Лейбница: $(fg)^{(k)}=\sum_{\nu=0}^k \binom{k}{\nu} f^{(\nu)}g^{(k-\nu)}$, получаем следующие равенства по модулю $(t-\lambda)^m$:

$$\begin{split} j_{\lambda}^{m-1}(fg) &= \sum_{k=0}^{m-1} \frac{(t-\lambda)^k}{k!} \sum_{\nu+\mu=k} \frac{k!}{\nu!\mu!} f^{(\nu)}(\lambda) g^{(\mu)}(\lambda) = \\ &= \sum_{k=0}^{m-1} \sum_{\nu+\mu=k} \frac{f^{(\nu)}(\lambda)}{\nu!} (t-\lambda)^{\nu} \cdot \frac{g^{(\mu)}(\lambda)}{\mu!} (t-\lambda)^{\mu} \equiv j_{\lambda}^{m-1}(f) j_{\lambda}^{m-1}(g) \,. \end{split}$$

Отображение $f\mapsto P_{f(F)}(F)$ является композицией гомоморфизма (10-11) с гомоморфизмом вычисления многочленов $\operatorname{ev}_F\colon \mathbb{K}[t] \to \operatorname{End} V, p\mapsto p(F)$, который корректно пропускается черезфактор $\mathbb{K}[t]/(\alpha)$, так как $\alpha(F)=0$.

Определение 10.3 (интерполяционный многочлен)

Многочлен $p_{f(F)}(t) \in \mathbb{K}[t]$, принимающий на операторе F то же самое значение, что и функция $f \in \mathcal{A}$, называется интерполяционным многочленом для вычисления f(F). Он однозначно определяется тем, что в каждом корне λ кратности m аннулирующего оператор f многочлена α многочлен $p_{f(F)}(t)$ и первые его m-1 производные принимают те же значения, что и функция f и её m-1 производные, т. е. многочлен $p_{f(F)}(t)$ решает интерполяционную задачу с кратными узлами из прим. 6.13 на стр. 92. Если $\deg \alpha = n$, отыскание коэффициентов интерполяционного многочлена $p_{f(F)}$ сводится к решению системы из n линейных уравнений на n неизвестных.

Пример 10.5 (СТЕПЕННАЯ ФУНКЦИЯ И РЕКУРРЕНТНЫЕ УРАВНЕНИЯ)

Задача отыскания n-того члена a_n числовой последовательности $z:\mathbb{Z}\to\mathbb{K}, n\mapsto z_n$, решающей рекуррентное уравнение $z_n=\alpha_1z_{n-1}+\alpha_2z_{n-2}+\cdots+\alpha_mz_{n-m}$ с начальным условием

 $^{^{1}}$ Мы рассматриваем этот набор как элемент прямого произведения соответствующих колец вычетов, которое по китайской теореме об остатках изоморфно фактор кольцу $\mathbb{K}[t]/(\alpha)$.

 $(z_0,\dots,z_{n-1})=(a_0,\dots,a_{n-1})\in \mathbb{K}^n$, сводится вычислению n-той степени матрицы сдвига

$$S = \begin{pmatrix} 0 & 0 & \cdots & 0 & \alpha_m \\ 1 & 0 & \ddots & \vdots & \alpha_{m-1} \\ 0 & 1 & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 & \alpha_2 \\ 0 & \cdots & 0 & 1 & \alpha_1 \end{pmatrix}$$

смещающей каждый фрагмент из m последовательных элементов на один шаг вправо:

$$(z_{k+1}, z_{k+2}, \dots, z_{k+m}) \cdot S = (z_{k+2}, z_{k+3}, \dots, z_{k+m+1}),$$

так что член a_n оказывается равным первой координате вектора

$$(a_n, a_{n+1}, \ldots, a_{n+m-1}) = (a_0, a_1, \ldots, a_{m-1}) \cdot S^n.$$

Матрица $S^n = p_{S^n}(S)$ является результатом подстановки матрицы S в интерполяционный многочлен $p_{S^n}(t) \in \mathbb{K}[t]$ для вычисления на матрице S *степенной функции* $f(t) = t^n$. Обратите внимание, что $\deg p_{S^n} < m$, и коэффициенты многочлена p_{S^n} находятся решением системы из m линейных уравнений на m неизвестных.

Например, для уравнения Фиббоначчи $a_n = a_{n-1} + a_{n-2}$ матрица сдвига

$$S = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Интерполяционный многочлен для вычисления степенной функции t^n на этой матрице линеен. Записывая его в виде $p_{S^n}(t) = at + b$ с неопределёнными коэффициентами a и b, получаем

$$S^{n} = a S + b E = \begin{pmatrix} b & a \\ a & a+b \end{pmatrix}.$$

В частности, n-тое uисло Φ иббонаuuu, решающее уравнение Φ иббонаuuu с начальным условием $(a_0,a_1)=(0,1)$, равно первой координате вектора $(a_n,a_{n+1})=(0,1)\cdot S^n=(a,a+b)$. Матрица S аннулируется своим характеристическим многочленом

$$\chi_S(t) = t^2 - t \operatorname{tr} S + \det S = t^2 - t - 1 = (t - \lambda_+)(t - \lambda_-)$$

с однократными корнями $\lambda_{\pm}=(1\pm\sqrt{5})/2$. Функция t^n принимает на них значения λ_{\pm}^n . Коэффициенты a и b находятся из системы

$$\begin{cases} a \lambda_+ + b = \lambda_+^n \\ a \lambda_- + b = \lambda_-^n \end{cases}$$

и по правилу Крамера первый из них $a = (\lambda_+^n - \lambda_-^n)/(\lambda_+ - \lambda_-)$. Тем самым,

$$a_n = a = \frac{\left((1+\sqrt{5})/2\right)^n - \left((1-\sqrt{5})/2\right)^n}{\sqrt{5}}$$
.

Замечание 10.2. Имеются различные аналитические способы продолжения гомоморфизма вычисления многочленов на матрице $F\in \operatorname{Mat}_n(\mathbb{C})$ с алгебры $\mathbb{C}[z]$ на большие алгебры функций $\mathcal C\,\supset\,\mathbb C[z]$. А именно, пространства $\mathbb C[z]$ и $\operatorname{Mat}_n(\mathbb C)$ наделяются той или иной топологией, и функция $f\in\mathcal{C}$ представляется в виде предела $f=\lim_{n o\infty}f_n$ какой-нибудь последовательности многочленов (f_n) . Матрица f(F) полагается равной пределу последовательности матриц $f_n(F)\in \mathrm{Mat}_n(\mathbb{C})$. Разумеется, при этом необходимо проверять, что предел $\lim_{n o\infty}f_n(F)\in$ $\mathrm{Mat}_n(\mathbb{C})$ существует и зависит только от функции f, а не от выбора сходящейся к f последовательности многочленов (f_n) . Отдельно необходимо проверить, что возникающее таким образом отображение $\mathrm{ev}_F: \mathcal{C} \to \mathrm{Mat}_n(\mathbb{C}), f \mapsto f(F)$, является гомоморфизмом алгебр¹. Однако, как бы ни определялась сходимость в пространстве функций и какой бы ни была сходящаяся к функции f последовательность многочленов (f_n) , последовательность матриц $f_n(F)$ всегда лежит в конечномерном векторном пространстве, линейно порождённом над $\mathbb C$ степенями F^m с $0\leqslant m<\dim n$, и если переход к пределу в пространстве матриц перестановочен со сложением и умножением на константы 2 , то предел последовательности матриц $(f_n(F))$ неминуемо является многочленом от F степени, строго меньшей n. Это означает, что какая бы аналитическая процедура не применялась для построения гомоморфизма $\mathrm{ev}_F:\,\mathcal{C} o\mathrm{Mat}_n(\mathbb{C})$, значение этого гомоморфизма на заданной функции $f \in \mathcal{C}$ а priori вычисляется по указанному нами рецепту. Отметим также, что если матрицы F и G подобны, т. е. $G = CFC^{-1}$ для некоторой матрицы $\mathcal{C} \in \mathrm{GL}_n(\mathbb{C})$, то и аналитически определённые функции от них подобны: поскольку равенство $f_n(G) = C f_n(F) C^{-1}$ выполнено для всех многочленов, приближающих функцию f , оно останется выполненным и для предельной функции: $f(G) = Cf(F)C^{-1}$, при условии, что топология на пространстве $\mathrm{Mat}_n(\mathbb{C})$ такова, что все \mathbb{C} -линейные отображения $\mathrm{Mat}_n(\mathbb{C}) o \mathrm{Mat}_n(\mathbb{C})$ непрерывны.

10.4. Разложение Жордана. Этот раздел является уточнением прим. 10.1 на стр. 134. Всюду далее речь идёт об операторах на конечномерном векторном пространстве V над алгебраически замкнутым полем \Bbbk .

Теорема 10.4 (разложение Жордана)

Для каждого оператора F на конечномерном векторном пространстве V над алгебраически замкнутым полем \Bbbk существует единственная пара таких операторов F_d и F_n , что F_n нильпотентен, F_d диагонализуем, $F_dF_n = F_nF_d$ и $F = F_d + F_n$. Кроме того, операторы F_d и F_n являются многочленами от оператора F с нулевыми свободными членами.

Доказательство. Пусть $\operatorname{Spec} F = \{\lambda_1, \dots, \lambda_r\}$. В силу алгебраической замкнутости поля $\mathbb K$, характеристический многочлен оператора F полностью разлагается на линейные множители: $\chi_F(t) = \prod_i (t-\lambda_i)^{m_i}$, а пространство V является прямой суммой корневых подпространств: $V = \bigoplus_i K_i$, где $K_i = \ker(F-\lambda_i \operatorname{Id})^{m_i}$. В качестве диагонализуемого оператора F_d можно взять оператор, действующий на каждом корневом подпространстве K_λ умножением на λ , а в качестве нильпотентного оператора F_n взять разность $F_n = F - F_d$, которая действует на каждом

 $^{^1}$ В качестве упражнения по анализу читателю настоятельно рекомендуется попробовать самостоятельно реализовать намеченную программу, используя на пространстве функций топологию, в которой сходимость последовательности функций означает равномерную сходимость в каждом круге в $\mathbb C$, а на пространстве $\mathrm{Mat}_n(\mathbb C)$ — стандартную топологию пространства $\mathbb C^{n^2}$, где сходимость определяется покоординатно.

²T. e. $\lim_{n\to\infty} (\lambda F_n + \mu G_n) = \lambda \lim_{n\to\infty} F_n + \mu \lim_{n\to\infty} G_n$.

корневом подпространстве K_{λ} нильпотентным оператором $F - \lambda$ Id. Покажем, что оба эти оператора являются многочленами без свободного члена от F. Для этого достаточно представить в таком виде оператор F_d .

Так как многочлены $(t-\lambda_i)^{m_i}$ попарно взаимно просты, по китайской теореме об остатках существуют такие многочлены $f_1,\dots,f_r\in \Bbbk[t]$, что

$$f_i(t) \equiv egin{cases} 1 \mod \left(t - \lambda_i
ight)^{m_i} \ 0 \mod \left(t - \lambda_j
ight)^{m_j} \ \mathrm{пр} \mathit{u} \, j
eq i \, . \end{cases}$$

Если $\lambda_i \neq 0$, то многочлен t обратим по модулю $(t-\lambda_i)^{m_i}$. Поэтому найдётся такой многочлен $g_i(t)$, что $t \cdot g_i(t) \equiv \lambda_i \mod \left(t-\lambda_i\right)^{m_i}$. Если $\lambda_i = 0$, то положим $g_i(t) = 0$. Тогда при каждом i многочлен $p_s(t) \stackrel{\text{def}}{=} t \sum_{j=1}^r g_j(t) f_j(t) \equiv \lambda_i \mod \left(t-\lambda_i\right)^{m_i}$ и не имеет свободного члена. Из этих

сравнений вытекает, что оператор $F_d \stackrel{\text{def}}{=} p_{\scriptscriptstyle S}(F)$ действует на каждом корневом подпространстве $K_i = \ker(F - \lambda_i \operatorname{Id})^{m_i}$ как умножение на λ_i и, стало быть, равен F_d . Будучи многочленами от F, операторы F_d и $F_n = F - F_d$ перестановочны между собою и с F. Это доказывает существование операторов F_d и F_n с требуемыми свойствами, включая последнее утверждение предложения.

Докажем их единственность. Пусть есть ещё одно разложение $F=F_S'+F_n'$, в котором F_d' диагонализуем, F_n' нильпотентен и $F_d'F_n'=F_n'F_d'$. Из последнего равенства вытекает, что F_d' и F_n' перестановочны с любым многочленом от $F=F_S'+F_n'$ и, в частности, с построенными выше F_d и F_n . Поэтому каждое собственное подпространство V_λ оператора F_d переводится оператором F_d' в себя 1 , причём F_d' диагонализуем 2 на каждом V_λ . Если бы оператор F_d' имел на V_λ собственный вектор с собственным значением $\mu \neq \lambda$, то этот вектор был бы собственным для оператора $F_n-F_n'=F_d-F_d'$ с собственным значением $\lambda-\mu\neq 0$, что невозможно, так как оператор F_n-F_n' нильпотентен.

Упражнение 10.16. Докажите, что разность двух перестановочных нильпотентных операторов нильпотентна.

Следовательно, оператор F_s' действует на каждом собственном подпространстве V_λ оператора F_d как умножение на λ , откуда $F_d' = F_d$. Тогда и $F_n' = F - F_s' = F - F_d = F_n$.

Определение 10.4

Операторы F_d и F_n из теор. 10.4 называются, соответственно, диагонализуемой и нильпотентной составляющими оператора F.

Замечание 10.3. Поскольку операторы F_d и F_n являются многочленами от F, каждое F-инвариантное подпространство $U \subset V$ является инвариантным для F_d и F_n .

Предложение 10.9

В условиях теор. 10.3 на стр. 145 для любой функции f из алгебраически вычислимой на операторе F алгебры функций $\mathcal A$ спектр оператора f(F) состоит из чисел $f(\lambda)$, где $\lambda \in \operatorname{Spec} F$. Если $f'(\lambda) \neq 0$, то элементарные делители $(t-\lambda)^m \in \mathcal E\ell(F)$ биективно соответствуют элементарным делителям $\left(t-f(\lambda)\right)^m \in \mathcal E\ell(f(F))$. Если $f'(\lambda)=0$, то элементарные делители вида $(t-\lambda)^m \in \mathcal E\ell(F)$, имеющие m>1, распадаются в объединения элементарных делителей $\left(t-f(\lambda)\right)^\ell \in \mathcal E\ell(f(F))$, имеющих $\ell < m$.

¹См. n° 10.2.7 на стр. 142.

²См. сл. 10.7 на стр. 141.

Доказательство. Реализуем F как оператор умножения на класс [t] в прямой сумме фактор колец

$$V = \frac{\mathbb{C}[t]}{\left((t - \lambda_1)^{S_1}\right)} \oplus \cdots \oplus \frac{\mathbb{C}[t]}{\left((t - \lambda_r)^{S_r}\right)}.$$

Из доказательства теор. 10.3 вытекает, что диагональная и нильпотентная составляющие ограничения оператора f(F) на корневое подпространство K_{λ} суть $f_{S}(F) = f(\lambda) \cdot \mathrm{Id}$ и

$$f_n(F) = f'(\lambda) \cdot \eta + \frac{1}{2} f''(\lambda) \cdot \eta^2 + \cdots,$$

где η обозначает нильпотентный оператор умножения на класс $(t-\lambda)$. На каждом слагаемом $\mathbb{C}[t]/\left((t-\lambda)^k\right)$ оператор η имеет ровно одну жорданову цепочку максимальной длины k. Если $f'(\lambda) \neq 0$, то $f_n^{k-1}(F) = f'(\lambda)^{k-1} \cdot \eta^{k-1} \neq 0$. Поэтому $f_n(F)$ тоже имеет ровно одну жорданову цепочку длины k. При f'(l) = 0 и m > 1 равенство $f_n^m(F) = 0$ наступит при m < k. Поэтому цикловой тип ограничения $f_n(F)$ на $\mathbb{C}[t]/\left((t-\lambda)^k\right)$ состоит из нескольких цепочек длины < k. П

Упражнение 10.17. Покажите, что матрица $J_n^{-1}(\lambda)$, обратная к жордановой клетке размера $n \times n$ с собственным числом λ , подобна матрице $J_n(\lambda^{-1})$.

Ответы и указания к некоторым упражнениям

- Упр. 10.1. Если отождествить $\mathbb{R}[t]/(t^2+1)$ с полем \mathbb{C} , отправив классы [1] и [t] в 1 и i соответственно, умножение на класс [t] превратится в умножение на i, т. е. в поворот на угол $\pi/2$, который не переводит никакое одномерное векторное подпространство в себя.
- Упр. 10.2. Пусть $\mathbb{k}[t]/(t^n) = U \oplus W$, где U и W переводятся в себя умножением на [t]. Оба этих подпространства не могут целиком содержаться в образе оператора умножения на [t], так как иначе их сумма тоже бы в нём содержалась. Поэтому в одном из них, пусть это будет U, имеется класс [g] многочлена g с ненулевым свободным членом. Тогда классы $[t^{n-1}g], \ldots, [tg], [g] \in U$ выражаются через базис $[1], [t], \ldots, [t^{n-1}]$ пространства $\mathbb{k}[t]/(t^n)$ при помощи верхнетреугольной матрицы, на диагонаи которой всюду стоит ненулевой свободный член многочлена g. Следовательно, эти классы тоже образуют базис в $\mathbb{k}[t]/(t^n)$, и значит, содержащее их подпространство U совпадает со всем пространством $\mathbb{k}[t]/(t^n)$.
- Упр. 10.3. Разложите каждое пространство $(F|_{U_i}, U_i)$ по форм. (10-1) на стр. 133. В силу единственности такого разложения прямая сумма полученных разложений является разложением исходного пространства (F, V).
- Упр. 10.4. В согласованном с разложением в прямую сумму базисе матрица tE-F имеет блочно диагональный вид $\begin{pmatrix} tE-G & 0 \\ 0 & tE-H \end{pmatrix}$. С другой стороны, для любых матриц $A \in \operatorname{Mat}_n(\Bbbk)$, $C \in \operatorname{Mat}_m(\Bbbk)$, $B \in \operatorname{Mat}_{n \times m}(\Bbbk)$ определитель $\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \cdot \det C$ согласно формуле для разложения определителя по первым n столбцам.
- Упр. 10.5. Пусть $f=t^n+a_1t^{n-1}+\cdots+a_{n-1}t+a_n$. Напишите матрицу F оператора умножения на класс [t] в фактор кольце $\mathbb{k}[x]/(f)$ в базисе $[t^{n-1}],[t^{n-2}],\ldots,[t],[1]$ и разложите $\det(tE-F)$ по первому столбцу.
- Упр. 10.6. Поскольку умножение на произведение всех элементарных делителей полностью аннулирует прямую сумму форм. (10-1) на стр. 133, оператор $\chi_F(F)$ нулевой для любого оператора F над любым полем \Bbbk . Поскольку теорема Гамильтона-Кэли для матрицы A представляет собою набор тождеств между многочленами с целыми коэффициентами от элементов матрицы A, достаточно убедиться в её справедливости для всех матриц с рациональными элементами, т. е. для любого оператора над полем \mathbb{Q} .
- Упр. 10.8. Векторы $g_i \in \mathbb{k}^n$ вычисляются рекурсивно по формулам $g_{m-1} = h_m$, $g_{i-1} = h_i + Ag_i$ при $i \leqslant m-1$. Остаток $r = h_0 + F_v g_0 = h_0 + F_v (h_1 + F_v g_1) = h_0 + F_v (h_1 + A(h_2 + F_v g_2)) = \cdots = h_0 + h_1 F_v + \cdots + h_m F_v^m$ имеет степень 0 по t и тоже лежит в \mathbb{k}^n .
- Упр. 10.10. Так как любой вектор $h \in H$ представляется в V как h = u + q + r с $u \in U$, $q \in Q$, $r \in R$, в U выполняется равенство $h = \pi(h) = \pi(u) + \pi(r)$, в котором $\pi(u) = u \in U$ и $\pi(r) \in W$, т. е. U + W = H. Если $u \in U \cap W$, то $u = \pi(r)$ для некоторого $r \in R$, и $\pi(u r) = \pi(u) \pi(r) = u u = 0$, откуда $u r \in \ker \pi = Q$, что возможно только при u = r = 0. Поэтому $U \cap W = 0$.
- Упр. 10.11. Если $\lambda \in \operatorname{Spec} F$ и $g(\lambda) \neq 0$, то g(F) действует на ненулевом собственном подпространстве V_{λ} умножением на ненулевое число $g(\lambda)$. Тем самым, $g(F) \neq 0$.
- Упр. 10.12. Над алгебраически замкнутым полем всякий многочлен имеющий только один корень 0 равен t^m . Поэтому $\chi_F(t) = t^m$ и по теореме Гамильтона Кэли $F^m = 0$.

Упр. 10.15. Разложение характеристического многочлена оператора F в виде произведения степеней попарно разных линейных форм $\chi_F(t) = \prod_{\lambda \in \operatorname{Spec} F} (t-\lambda)^{N_\lambda}$ удовлетворяет условиям ?? с

 $q_i = (t-\lambda)^{N_\lambda}$, а корневые подпространства $K_\lambda = \ker(\lambda\operatorname{Id} - F)^{N_\lambda}.$

Упр. 10.16. Если $a^n=0$, $b^m=0$ и ab=ba, то $(a-b)^{m+n-1}=0$ по формуле Ньютона.

Упр. 10.17. Над полем $\mathbb C$ можно применить предл. 10.9. Над произвольным полем $\mathbb k$ оператор F с матрицей $J_n(\lambda)$ имеет вид $\lambda \mathrm{Id} + N$, где $N^n = 0$, но $N^{n-1} \neq 0$. Обратный оператор

$$F^{-1} = (\lambda \mathrm{Id} + N)^{-1} = \lambda^{-1} (\mathrm{Id} + N/\lambda)^{-1} = \lambda^{-1} - \lambda^{-2} N + \lambda^{-3} N^2 - \cdots + (-1)^{n-1} \lambda^{-n} N^{n-1}$$

имеет вид $\lambda^{-1}\mathrm{Id}+M$, где оператор $M=-\lambda^{-2}N(1-\lambda^{-1}N+\cdots)$ тоже имеет $M^n=0$, а $M^{n-1}=\lambda^{2(1-n)}N^{n-1}\neq 0$. Таким образом, ЖНФ оператора F^{-1} это одна клетка $J_n\left(\lambda^{-1}\right)$.