§5. Идеалы, фактор кольца и разложение на множители

5.1. Идеалы. Подкольцо I коммутативного кольца K называется uдеалом, если вместе с каждым своим элементом оно содержит и все его кратные. В n° 2.6.3 мы видели, что этим свойством обладает ядро любого гомоморфизма колец. Множество всех элементов кольца, кратных фиксированному элементу $a \in K$, также является идеалом. Этот идеал обозначается

$$(a) = \{ ka \mid k \in K \}, \tag{5-1}$$

и называется главным идеалом, порождённым a. Мы встречались с главными идеалами при построении колец вычетов $\mathbb{Z}/(n)$ и $\mathbb{k}[x]/(f)$, где они возникали как ядра гомоморфизмов факторизации $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/(n)$, $m \mapsto [m]_n$, и $\mathbb{k}[x] \twoheadrightarrow \mathbb{k}[x]/(f)$, $g \mapsto [g]_f$, которые сопоставляют целому числу (соотв. многочлену) его класс вычетов. Среди главных идеалов имеются *тривиальный* идеал (0), состоящий только из нулевого элемента, и *несобственный* идеал (1), совпадающий со всем кольцом. Идеалы, отличные от всего кольца, называются *собственными*.

Упражнение 5.1. Покажите, что следующие условия на идеал I в коммутативном кольце K с единицей эквивалентны: A) I = K Б) I содержит обратимый элемент.

Предложение 5.1

Коммутативное кольцо K с единицей тогда и только тогда является полем, когда в нём нет нетривиальных собственных идеалов.

Доказательство. Из упр. 5.1 вытекает, что в поле таких идеалов нет. Наоборот, если в кольце нет нетривиальных собственных идеалов, то главный идеал (b), состоящий из всех кратных произвольно взятого элемента $b \neq 0$, совпадает со всем кольцом. В частности, он содержит единицу, т. е. 1 = ab для некоторого a. Тем самым, любой ненулевой элемент b обратим.

5.1.1. Нётеровость. Любое подмножество $M \subset K$ порождает идеал $(M) \subset K$, состоящий из всех элементов кольца K, представимых в виде $b_1a_1 + b_2a_2 + \cdots + b_ma_m$, где a_1, \ldots, a_m — произвольные элементы множества M, а b_1, \ldots, b_m — произвольные элементы кольца K, и число слагаемых $m \in \mathbb{N}$ также произвольно.

Упражнение 5.2. Убедитесь, что $(M) \subset K$ это и в самом деле идеал, совпадающий с пересечением всех идеалов, содержащих множество M.

Любой идеал $I\subset K$ имеет вид (M) для подходящего множества образующих $M\subseteq I$: например, всегда можно положить M=I. Идеалы $I=(a_1,\ldots,a_k)=\{b_1a_1+b_2a_2+\cdots+b_ka_k\mid b_i\in K\}$, допускающие конечное множество образующих, называются конечно порождёнными. Мы встречались с такими идеалами, когда доказывали существование наибольшего общего делителя в кольцах целых чисел и многочленов с коэффициентами в поле.

ЛЕММА 5.1

Следующие свойства коммутативного кольца К попарно эквивалентны:

- 1) любое подмножество $M\subset K$ содержит конечный набор элементов $a_1,\dots,a_k\in M$, порождающий тот же идеал, что и M
- 2) любой идеал $I \subset K$ конечно порождён
- 3) любая бесконечная возрастающая цепочка вложенных идеалов $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ в K стабилизируется в том смысле, что найдётся такое $n \in \mathbb{N}$, что $I_v = I_n$ для всех $v \geqslant n$.

Доказательство. Ясно, что (1) влечёт (2). Чтобы получить (3) из (2), заметим, что объединение $I=\bigcup I_{\mathcal{V}}$ всех идеалов цепочки тоже является идеалом. Согласно (2), идеал I порождён конечным набором элементов. Все они принадлежат некоторому идеалу I_n . Тогда $I_n=I=I_{\mathcal{V}}$ при $\mathcal{V}\geqslant n$. Чтобы вывести (1) из (3), будем по индукции строить цепочку идеалов $I_n=(a_1,\dots,a_n)$, начав с произвольного элемента $a_1\in M$ и добавляя на k-том шагу очередную образующую $a_k\in M\setminus I_{k-1}$ до тех пор, пока это возможно, т. е. пока $M\not\subset I_k$. Так как $I_{k-1}\varsubsetneq I_k$, этот процесс не может продолжаться бесконечно, и на каком-то шагу мы получим идеал, содержащий всё множество M, а значит, совпадающий с (M).

Определение 5.1

Кольцо K, удовлетворяющее условиям лем. 5.1, называется нётеровым. Отметим, что любое поле нётерово.

Теорема 5.1

Если кольцо K нётерово, то кольцо многочленов K[x] также нётерово.

Доказательство. Рассмотрим произвольный идеал $I\subset K[x]$ и обозначим через $L_d\subset K$ множество старших коэффициентов всех многочленов степени не выше d из I, а через $L_\infty=\bigcup_d L_d$ — множество старших коэффициентов вообще всех многочленов из I.

Упражнение 5.3. Убедитесь, что все L_d (включая L_∞) являются идеалами в K .

Поскольку кольцо K нётерово, все идеалы L_d конечно порождены. Для каждого d (включая $d=\infty$) обозначим через $f_1^{(d)}, f_2^{(d)}, \dots, f_{m_d}^{(d)} \in K[x]$ многочлены, старшие коэффициенты которых порождают соответствующий идеал $L_d \subset K$. Пусть наибольшая из степеней многочленов $f_i^{(\infty)}$, старшие коэффициенты которых порождают идеал L_∞ , равна D. Покажем, что идеал I порождается многочленами $f_i^{(\infty)}$ и $f_j^{(d)}$ с d < D.

Каждый многочлен $g\in I$ сравним по модулю многочленов $f_1^{(\infty)}, f_2^{(\infty)}, \dots, f_{m_\infty}^{(\infty)}$ с многочленом, степень которого строго меньше D. В самом деле, поскольку старший коэффициент многочлена g лежит в идеале L_∞ , он имеет вид $\sum \lambda_i a_i$, где $\lambda_i \in K$, а a_i — старшие коэффициенты многочленов $f_i^{(\infty)}$. При $\deg g\geqslant D$ все разности $m_i=\deg g-\deg f_i^{(\infty)}\geqslant 0$, и можно образовать многочлен $h=g-\sum \lambda_i\cdot f_i^{(\infty)}(x)\cdot x_i^{m_i}$, сравнимый с g по модулю I и имеющий $\deg h<\deg g$. Заменим g на h и повторим эту процедуру, пока не получим многочлен $h\equiv g\ (\mathrm{mod}\ (f_1^{(\infty)},f_2^{(\infty)},\dots,f_{m_\infty}^{(\infty)}))$ с $\deg h< D$. Теперь старший коэффициент многочлена h лежит в идеале L_d с d< D, и мы можем строго уменьшать его степень, сокращая старший член путём вычитания из h подходящих комбинаций многочленов $f_j^{(d)}$ с $0\leqslant d< D$.

Следствие 5.1

Если K нётерово, то кольцо многочленов $K[x_1, \ldots, x_n]$ также нётерово.

Упражнение 5.4. Покажите, что кольцо формальных степенных рядов над нётеровым кольцом нётерово.

Следствие 5.2

Любая система полиномиальных уравнений с коэффициентами в нётеровом кольце эквивалентна некоторой конечной своей подсистеме.

5.2. Фактор кольца 67

Доказательство. Если кольцо K нётерово, то кольцо $K[x_1,\ldots,x_n]$ тоже нётерово, и в любом множестве многочленов $M\subset K[x_1,\ldots,x_n]$ можно указать такой конечный набор многочленов $f_1,f_2,\ldots,f_m\in M$, что среди многочленов f_v , что каждый многочлен $g\in M$ представляется в виде $g=h_1f_1+h_2f_2+\cdots+h_mf_m$ для некоторых $h_i\in K[x_1,\ldots,x_n]$. Поэтому любое уравнение вида $g(x_1,\ldots,x_n)=0$ с $g\in M$ является следствием конечного множества уравнений $f_1(x_1,\ldots,x_n)=f_2(x_1,\ldots,x_n)=\cdots=f_m(x_1,\ldots,x_n)=0$.

5.1.2. Примеры ненётеровых колец. Кольцо многочленов от счётного множества переменных $\mathbb{Q}[x_1,x_2,x_3,\ldots]$, элементы которого суть конечные линейные комбинации с рациональными коэффициентами всевозможных мономов вида $x_{\nu_1}^{m_1}x_{\nu_2}^{m_2}\cdots x_{\nu_s}^{m_s}$ не является нётеровым: его идеал (x_1,x_2,\ldots) , состоящий из всех многочленов без свободного члена, нельзя породить конечным множеством многочленов.

Упражнение 5.5. Докажите это и выясните, является ли конечно порождённым идеал, образованный в кольце бесконечно гладких функций $\mathbb{R} \to \mathbb{R}$ всеми функциями, которые обращаются в нуль вместе со всеми своими производными.

Предостережение 5.1. Подкольцо нётерова кольца может не быть нётеровым. Например, кольцо формальных степенных рядов $\mathbb{C}[\![z]\!]$ нётерово по упр. 5.4, тогда как его подкольцо образованное рядами, сходящимися всюду в \mathbb{C} , нётеровым не является.

Упражнение 5.6. Приведите пример бесконечной возрастающей цепочки строго вложенных идеалов в кольце сходящихся всюду в $\mathbb C$ степенных рядов с комплексными коэффициентами.

5.2. Фактор кольца. Пусть на коммутативном кольце K задано отношение эквивалентности, разбивающее K в дизъюнктное объединение классов эквивалентных элементов. Обозначим множество классов через X и рассмотрим сюрьективное отображение факторизации

$$\pi: K \to X, \quad a \mapsto [a], \tag{5-2}$$

переводящее элемент $a \in K$ в его класс эквивалентности $[a] \subset K$, являющийся элементом множества X. Мы хотим задать на множестве X структуру коммутативного кольца, определив сложение и умножение теми же сами правилами

$$[a] + [b] = [a+b], \quad [a] \cdot [b] = [ab],$$
 (5-3)

которые мы использовали в кольцах вычетов. Если эти правила корректны, то аксиомы коммутативного кольца в X будут автоматически выполнены, как и для колец вычетов, поскольку формулы (5-3) сводят их проверку к проверке аксиом коммутативного кольца в K. В частности, нулевым элементом кольца X будет класс [0]. С другой стороны, если формулы (5-3) корректны, то они утверждают, что отображение (5-2) является гомоморфизмом колец. Но если это так, то согласно n° 2.6.3 на стр. 28 класс нуля $[0] = \ker \pi$, служащий ядром этого гомоморфизма, является идеалом в K, а класс $[a] \subset K$ произвольного элемента $a \in K$, служащий прообразом точки $[a] \in X$ при гомоморфизме (5-2), является аддитивным сдвигом ядра на этот элемент:

$$[a] = \pi^{-1}(\pi(a)) = a + \ker \pi = a + [0] = \{a + b \mid b \in [0]\}.$$

Оказывается, что этих необходимых условий на классы также и достаточно для того, чтобы правила (5-3) были корректны, т. е. для любого идеала $I \subset K$ множество классов

$$[a]_I = a + I \stackrel{\text{def}}{=} \{a + b \mid b \in I\}$$
 (5-4)

образует разбиение кольца K, и правила (5-3) корректно определяют на классах этого разбиения структуру коммутативного кольца с нулевым элементом $[0]_I = I$.

Упражнение 5.7. Убедитесь, что отношение сравнимости по модулю идеала

$$a_1 \equiv a_2 \pmod{I}$$
,

означающее, что $a_1-a_2\in I$, является отношением эквивалентности, и проверьте, что формулы (5-3) корректны.

Определение 5.2

Классы эквивалентности (5-4) называются классами вычетов (или смежными классами) по модулю идеала I. Множество этих классов с операциями (5-3) называется фактор кольцом кольца K по идеалу I и обозначается K/I. Эпиморфизм

$$K \twoheadrightarrow K/I, \quad a \mapsto [a]_I,$$
 (5-5)

сопоставляющий каждому элементу кольца его класс вычетов, называется гомоморфизмом факторизации.

Пример 5.1 (кольца вычетов)

Рассматривавшиеся выше кольца $\mathbb{Z}/(n)$ и $\mathbb{k}[x]/(f)$ суть фактор кольца кольца целых числел и кольца многочленов по главным идеалам $(n) \subset \mathbb{Z}$ и $(f) \subset \mathbb{k}[x]$ соответственно.

Пример 5.2 (ОБРАЗ ГОМОМОРФИЗМА)

Согласно n° 2.6.3, для любого гомоморфизма коммутативных колец $\varphi: A \to B$ имеется канонический изоморфизм колец $\overline{\varphi}: A/\ker \varphi \simeq \in \varphi, [a]_{\ker \varphi} \mapsto \varphi(a)$, переводящий каждый класс

$$[a]_{\ker \varphi} = a + \ker \varphi = \varphi^{-1}(\varphi(a))$$

в его образ $\varphi(a) = \varphi([a])$ при гомоморфизме φ .

Пример 5.3 (максимальные идеалы и гомоморфизмы вычисления)

Идеал $\mathfrak{m} \subset K$ называется *максимальным*, если фактор кольцо K/\mathfrak{m} является полем. Название связано с тем, что собственный идеал $\mathfrak{m} \subset K$ максимален если и только если он не содержится ни в каком строго большем собственном идеале, т. е. является максимальным элементом в чуме собственных идеалов кольца K, частично упорядоченных отношением нестрогого включения. В самом деле, обратимость всех ненулевых классов $[a]_{\mathfrak{m}}$ в фактор кольце K/\mathfrak{m} означает, что для любого $a \notin \mathfrak{m}$ найдутся такие $b \in K$, $m \in \mathfrak{m}$, что ab+m=1 в K. Последнее равносильно тому, что идеал $(\mathfrak{m},a) \supsetneq \mathfrak{m}$, порождённый \mathfrak{m} и элементом $a \notin \mathfrak{m}$, содержит $a \in K$, $a \in K$,

 $^{^{1}}$ Т. е. отличный от всего кольца.

²См. n° 1.7 на стр. 16.

5.2. Фактор кольца 69

Из леммы Цорна 1 вытекает, что любой собственный идеал произвольного коммутативного кольца с единицей содержится в некотором максимальном идеале. В самом деле, множество всех собственных идеалов, содержащих произвольно заданный идеал $I \subset K$, тоже составляет чум по включению.

Упражнение 5.8. Убедитесь, что он полный, т. е. для любого линейно упорядоченного множества 2 M содержащих I собственных идеалов в K существует собственный идеал J^* , содержащий все идеалы из M.

По лемме Цорна существует такой собственный идеал $\mathfrak{m}\supset I$, который не содержится ни в каком большем собственном идеале, содержащем I. Такой идеал \mathfrak{m} автоматически максимален по включению и в чуме всех собственных идеалов кольца K.

Максимальные идеалы возникают в кольцах функций как ядра гомоморфизмов вычисления. А именно, пусть X — произвольное множество, $p \in X$ — любая точка, \Bbbk — любое поле, и K — какое-нибудь подкольцо в кольце всех функций $X \to \Bbbk$, содержащее тождественно единичную функцию 1 и вместе с каждой функцией $f \in K$ содержащее и все пропорциональные ей функции cf, $c \in \Bbbk$. Гомоморфизм вычисления $\mathrm{ev}_p : K \to \Bbbk$ переводит функцию $f \in K$ в её значение $f(p) \in \Bbbk$. Поскольку он сюрьективен, его ядро $\ker \mathrm{ev}_p = \{f \in K \mid f(p) = 0\}$ является максимальным идеалом в K.

Упражнение 5.9. Убедитесь, что:

- а) каждый максимальный идеал кольца $\mathbb{C}[x]$ имеет вид $\ker \operatorname{ev}_p$ для некоторого $p \in \mathbb{C}$
- в) каждый максимальный идеал кольца непрерывных функций $[0,1] \to \mathbb{R}$ имеет вид $\ker \operatorname{ev}_p$ для некоторой точки $p \in [0,1].$
- в) Укажите в кольце $\mathbb{R}[x]$ максимальный идеал, отличный от всех идеалов $\ker \operatorname{ev}_n \operatorname{c} p \in \mathbb{R}$.

Пример 5.4 (простые идеалы и гомоморфизмы в поля)

Идеал $\mathfrak{p} \subset K$ называется *простым*, если в фактор кольце K/\mathfrak{p} нет делителей нуля. Иначе говоря, идеал $\mathfrak{p} \subset K$ прост если и только если из $ab \in \mathfrak{p}$ вытекает, что $a \in \mathfrak{p}$ или $b \in \mathfrak{p}$. Например, главные идеалы $(p) \subset \mathbb{Z}$ и $(q) \subset \mathbb{k}[x]$, где \mathbb{k} — поле, просты тогда и только тогда, когда число p просто, а многочлен q неприводим.

Упражнение 5.10. Убедитесь в этом.

Согласно определениям, всякий максимальный идеал прост. Обратное неверно: скажем, главный идеал $(x) \subset \mathbb{Q}[x,y]$ прост, так как кольцо $\mathbb{Q}[x,y]/(x) \simeq \mathbb{Q}[x]$ целостное, но не максимален, поскольку строго содержится в идеале (x,y) многочленов без свободного члена. Простые идеалы кольца K являются ядрами гомоморфизмов из кольца K во всевозможные поля. В самом деле, образ любого такого гомоморфизма, будучи подкольцом в поле, не имеет делителей нуля. Наоборот, фактор кольцо K/\mathfrak{p} по простому идеалу $\mathfrak{p} \subset K$ является подкольцом своего поля частных $Q_{K/\mathfrak{p}}$, и композиция факторизации и вложения $K \twoheadrightarrow K/\mathfrak{p} \hookrightarrow Q_{K/\mathfrak{p}}$ задаёт гомоморфизм из K в поле $Q_{K/\mathfrak{p}}$ с ядром \mathfrak{p} .

Упражнение 5.11. Убедитесь, что пересечение конечного множества идеалов содержится в простом идеале р только если хотя бы один из пересекаемых идеалов содержится в р.

¹См. лем. 1.3 на стр. 18.

 $^{^2}$ В данном случае это означает, что для любых $J_1, J_2 \in M$ выполняется включение $J_1 \subseteq J_2$ или включение $J_2 \subseteq J_1.$

Пример 5.5 (конечно порождённые коммутативные алгебры)

Пусть K — произвольное коммутативное кольцо с единицей. Всякое кольцо вида $A=K[x_1,\ldots,x_n]$ I, где $I\subset K[x_1,\ldots,x_n]$ — произвольный идеал, называется конечно порождённой K-алгеброй 1 . Классы $a_i=[x_i]_I$ называются образующими K-алгебры A, а многочлены $f\in I$ — соотношениями между этими образующими. Говоря неформально, K-алгебра состоит из всевозможных выражений, которые можно составить из элементов кольца K и коммутирующих букв a_1,\ldots,a_n при помощи операций сложения и умножения, производимых с учётом полиномиальных соотношений $f(a_1,\ldots,a_n)=0$ для всех f из I. Из сл. 5.1 и идущего ниже упражнения:

Упражнение 5.12. Покажите, что фактор кольцо нётерова кольца тоже нётерово. мы получаем

Следствие 5.3

Всякая конечно порождённая коммутативная алгебра над нётеровым кольцом нётерова и все соотношения между её образующими являются следствиями конечного числа соотношений. □

- **5.3. Кольца главных идеалов.** Целостное кольцо с единицей называется кольцом главных идеалов, если каждый его идеал является главным. Параллелизм между кольцами \mathbb{Z} и $\mathbb{k}[x]$, где \mathbb{k} поле, который мы наблюдали выше, объясняется тем, что оба эти кольца являются кольцами главных идеалов. Мы фактически доказали это, когда строили в этих кольцах наибольший общий делитель. Ниже мы воспроизведём это доказательство ещё раз таким образом, чтобы оно годилось для чуть более широкого класса колец, допускающих деление с остатком.
- **5.3.1.** Евклидовы кольца. Целостное кольцо K с единицей называется eвклидовым, если существует ϕ ункция высоты (или eвклидова норма) $v: K \setminus \{0\} \to \mathbb{N} \cup \{0\}$, сопоставляющая каждому ненулевому элементу $a \in K$ целое неотрицательное число v(a) так, что $\forall a, b \in K \setminus \{0\}$ выполняется неравенство $v(ab) \geqslant v(a)$ и существуют такие $q, r \in K$, что

$$a = bq + r$$
, где $v(r) < v(b)$ или $r = 0$. (5-6)

Элементы q, r называются henonным частным и остатком от деления a на b. Подчеркнём, что их единственности (для данных a и b) не предполагается.

Упражнение 5.13. Докажите евклидовость колец: A) \mathbb{Z} с $\nu(z) = |z|$ Б) $\mathbb{k}[x]$ с $\nu(f) = \deg f$

- B) $\mathbb{Z}[i] \stackrel{\text{def}}{=} \{ a + bi \in | a, b \in \mathbb{Z}, i^2 = -1 \} c \nu(z) = |z|^2$
- $\Gamma) \ \mathbb{Z}[\omega] \stackrel{\text{def}}{=} \{ a + b\omega \in \mathbb{C} \mid a, b \in \mathbb{Z}, \ \omega^2 + \omega + 1 = 0 \} \ c \ \nu(z) = |z|^2.$

Все четыре кольца из упр. 5.13 являются кольцами главных идеалов в силу следующей теоремы.

ТЕОРЕМА 5.2

Любое евклидово кольцо является кольцом главных идеалов 2 .

Доказательство. Пусть $I\subset K$ — идеал, и $d\in I$ — ненулевой элемент наименьшей высоты. Покажем, что каждый элемент $a\in I$ делится на d. Поделим a на d с остатком: a=dq+r. Так как $a,d\in I$, остаток $r=a-dq\in I$. Поскольку строгое неравенство v(r)< v(d) невозможно, мы заключаем, что r=0.

Упражнение 5.14. Покажите, что в любом евклидовом кольце равенство $\nu(ab) = \nu(a)$ для $a, b \neq 0$ равносильно обратимости элемента b.

 $^{^{1}}$ Или, более торжественно, конечно порождённой коммутативной алгеброй над кольцом K.

²Отметим, что обратное неверно, но содержательное обсуждение контрпримеров требует техники, которой мы пока не владеем (см. замечание 3 на стр. 365 книги *Э. Б. Винберг*. «Курс алгебры», М. «Факториал», 1999)

5.3.2. НОД и взаимная простота. В кольце главных идеалов K у любого набора элементов a_1,\ldots,a_n есть наибольший общий делитель — такой элемент $d=\text{нод}(a_1,\ldots,a_n)\in K$, который делит все элементы a_i , делится на любой общий делитель элементов a_i и представляется в виде $d=a_1b_1+\cdots+a_nb_n$ с подходящими $b_i\in K$. Это простая переформулировка того, что порождённый элементами a_i идеал $(a_1,\ldots,a_n)=\{x_1a_1+x_2a_2+\cdots+x_na_n\mid x_i\in K\}$ является главным и имеет вид (d) для некоторого $d\in K$. Отметим, что наибольший общий делитель определён не однозначно, а с точностью до умножения на произвольный обратимый элемент кольца.

Упражнение 5.15. Убедитесь, что в любом целостном коммутативном кольце K главные идеалы (a) и (b) совпадают если и только если a = sb для некоторого обратимого $s \in K$.

Поэтому всюду в дальнейшем обозначение $\log(a_1,\ldots,a_n)$ подразумевает целый класс элементов, получающихся друг из друга умножениями на обратимые константы, и все формулы, которые будут писаться, относятся к произвольно выбранному конкретному представителю этого класса 2 . В частности, равенство $\log(a_1,\ldots,a_n)=1$ означает, что у элементов a_i нет необратимых общих делителей. Поскольку в этом случае имеется представление $1=a_1b_1+\cdots+a_nb_n$ с $b_i\in K$, в кольце главных идеалов отсутствие необратимых общих делителей у элементов a_i равносильно их взаимной простоте в смысле опр. 2.2 на стр. 24.

- **5.4.** Факториальность. Всюду в этом разделе мы по умолчанию обозначаем через K *целостное* кольцо. Ненулевые элементы $a,b \in K$ называются accouuupoванными, если b делится на a, и a делится на b. Из равенств a=mb и b=na=nmb вытекает равенство b(1-nm)=0, откуда mn=1. Таким образом, ассоциированность элементов означает, что они получаются друг из друга умножением на обратимый элемент кольца. Например, целые числа a и b ассоциированы в кольце $\mathbb Z$ если и только если $a=\pm b$, а многочлены f(x) и g(x) с коэффициентами из поля $\mathbb K$ ассоциированы в $\mathbb K[x]$ если и только если f(x)=cg(x), где $c\in \mathbb K^*$ ненулевая константа.
- **5.4.1. Неприводимые элементы.** Элемент $q \in K$ называется *неприводимым*, если он необратим, и из равенства q = mn вытекает, что M или n обратим. Другими словами, неприводимость элемента q означает, что главный идеал q не содержится строго ни в каком другом главном идеале, т. е. максимален в множестве главных идеалов. Например, неприводимыми элементами в кольце целых чисел являются простые числа, а в кольце многочленов неприводимые многочлены.

Отметим, что кольце главных идеалов любые два неприводимых элемента p,q либо взаимно просты⁴, либо ассоциированы, поскольку порождённый ими идеал (p,q)=(d) для некоторого $d\in K$, и включения $(p)\subset (d)$ и $(q)\subset (d)$ влекут либо равенство (d)=(K)=(1), либо равенство (d)=(p)=(q). Обратите внимание, что в произвольном целостном кольце два неассоциированных неприводимых элемента могут и не быть взаимно простыми. Например, в $\mathbb{Q}[x,y]$ элементы x и y не взаимно просты и не ассоциированы.

Предложение 5.2

В любом кольце главных идеалов K следующие свойства элемента $p \in K$ попарно эквивалентны друг другу:

 $^{^{1}}$ T. e. c единицей и без делителей нуля.

 $^{^2}$ Что, конечно же, требует проверки корректности всех таких формул, которую мы, как правило, будем оставлять читателю в качестве упражнения.

 $^{^{3}}$ См. сноску $(^{1})$ выше.

⁴В смысле опр. 2.2 на стр. 24, т. е. существуют такие $x, y \in K$, что px + qy = 1.

- 1) фактор кольцо K/(p) является полем
- 2) в фактор кольце K/(p) нет делителей нуля
- 3) p неприводим, т. е. из равенства p = ab вытекает, что a или b обратим в K.

Доказательство. Импликация $(1) \Rightarrow (2)$ очевидна и имеет место в любом коммутативном кольце с единицей 1 . Покажем, что в любом целостном кольце 2 K справедлива импликация $(2) \Rightarrow (3)$. Из p=ab следует, что [a][b]=0 в K/(p). Так как в K/(p) нет делителей нуля, один из сомножителей, скажем [a], равен [0]. Тогда a=ps=abs для некоторого $s\in K$, откуда a(1-bs)=0. Поскольку в K нет делителей нуля, bs=1, т. е. b обратим. Покажем теперь, что в кольце главных идеалов $(3) \Rightarrow (1)$. Так как каждый собственный идеал в K главный, максимальность идеала (p) в чуме главных идеалов означает его максимальность в чуме всех собственных идеалов. В прим. 5.3 на стр. 68 мы видели, что это равносильно тому, что K/(p) поле.

Упражнение 5.16. Проверьте, что идеалы $(x,y) \subset \mathbb{Q}[x,y]$ и $(2,x) \in \mathbb{Z}[x]$ не являются главными.

Предложение 5.3

В любом нётеровом кольце всякий элемент является произведением конечного числа неприводимых.

Доказательство. Если элемент a неприводим, доказывать нечего. Пусть a приводим. Запишем его в виде произведения необратимых элементов. Каждый приводимый сомножитель этого произведения снова запишем в виде произведения необратимых элементов и т. д. Эта процедура закончится, когда все сомножители станут неприводимы, что и требуется. Если же она никогда не закончится, мы сможем образовать бесконечную последовательность строго вложенных друг в друга главных идеалов $(a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$, что противоречит нётеровости.

Определение 5.3

Целостное кольцо K называется ϕ акториальным, если каждый его необратимый элемент является произведением конечного числа неприводимых, причём любые два таких разложения

$$p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_k$$

состоят из одинакового числа k=m сомножителей, после надлежащей перенумерации которых можно указать такие обратимые элементы $s_{\nu}\in K$, что $q_{\nu}=p_{\nu}s_{\nu}$ при всех ν .

5.4.2. Простые элементы. Элемент $p \in K$ называется простым, если порождённый им главный идеал $(p) \subset K$ прост, т. е. в фактор кольце K/(p) нет делителей нуля. Это означает, что для любых $a,b \in K$ из того, что произведение ab делится на p, вытекает, что a или b делится на p. Каждый простой элемент p автоматически неприводим: если p = xy, то один из сомножителей, скажем x, делится на p, и тогда p = pyz, откуда yz = 1 и y обратим. Согласно предл. 5.2 в кольце главных идеалов верно и обратное: все неприводимые элементы кольца главных идеалов просты. Однако в произвольном целостном кольце простота является более

¹См. n° 2.4.1 на стр. 25.

²Не обязательно являющимся кольцом главных идеалов.

сильным свойством, чем неприводимость. Например, в кольце $\mathbb{Z}[\sqrt{5}] = \mathbb{Z}[x]/(x^2 - 5)$ число 2 неприводимо, но не просто, поскольку в фактор кольце

$$\mathbb{Z}[\sqrt{5}]/(2) \simeq \mathbb{Z}[x]/(2, x^2 - 5) = \mathbb{Z}[x]/(2, x^2 + 1) \simeq \mathbb{F}_2[x]/(x^2 + 1) \simeq \mathbb{F}_2[x]/((x + 1)^2)$$

есть нильпотент — класс $[x+1] \in \mathbb{Z}[x]/(2,x^2+5)$. Среди прочего, это означает, что квадрат $(1+\sqrt{5})^2=6+2\sqrt{5}$ делится в кольце $\mathbb{Z}[\sqrt{5}]$ на 2, хотя $1+\sqrt{5}$ не делится на 2, при том что 2 и $\sqrt{5}+1$ неприводимы и не ассоциированы друг с другом в кольце $\mathbb{Z}[\sqrt{5}]$.

Упражнение 5.17. Убедитесь в этом, и покажите, что $2 \cdot 2 = 4 = (\sqrt{5} + 1) \cdot (\sqrt{5} - 1)$ суть два различных разложения числа 4 на неприводимые множители в $\mathbb{Z}[\sqrt{5}]$.

Предложение 5.4

Целостное нётерово кольцо K факториально тогда и только тогда, когда все его неприводимые элементы просты.

Доказательство. Покажем сначала, что если K факториально, то любой неприводимый элемент $q \in K$ прост. Пусть произведение ab делится на q. Тогда разложение ab на неприводимые множители содержит множитель, ассоциированный с q. В силу своей единственности, разложение произведения ab на неприводимые множители является произведением таких разложени для a и b. Поэтому q ассоциирован с одним из неприводимых делителей a или b, т. е. a или b делится на q, что и требовалось. Пусть теперь все неприводимые элементы просты. В нётеровом кольце каждый элемент является произведением конечного числа неприводимых u, стало быть, простых элементов. Покажем, что в любом целостном кольце равенство $p_1 \cdots p_k = q_1 \cdots q_m$, в котором все сомножители просты, возможно только если k = m и после надлежащей перенумерации каждый p_i окажется ассоциирован с q_i . Так как произведение $q_1 \cdots q_m$ делится на p_1 , один из его сомножителей делится на p_1 . Будем считать, что это $q_1 = sp_1$. Поскольку q_1 неприводим, элемент s обратим. Пользуясь целостностью кольца s, сокращаем обе части равенства s, иго s, иго

Следствие 5.4

Всякое кольцо главных идеалов факториально.

Пример 5.6 (суммы двух квадратов, продолжение прим. 3.6 на стр. 47)

Согласно упр. 5.13, кольцо гауссовых чисел $\mathbb{Z}[i] \subset \mathbb{C}$ является кольцом главных идеалов, а потому в нём справедлива теорема об однозначности разложения на неприводимые множители. Выясним, какие целые простые числа $p \in \mathbb{Z}$ остаются неприводимыми в кольце гауссовых чисел. В $\mathbb{Z}[i]$ разложение любого целого вещественного числа, будучи инвариантным относительно комплексного сопряжения, содержит вместе с каждым невещественным неприводимым множителем также и сопряжённый ему множитель. Поэтому простое $p \in \mathbb{Z}$, не являющееся простым в $\mathbb{Z}[i]$, представляется в виде $p = (a+ib)(a-ib) = a^2 + b^2$ с ненулевыми $a,b \in \mathbb{Z}$. Таким образом, простое $p \in \mathbb{Z}$ приводимо в $\mathbb{Z}[i]$ если и только если p является суммой двух квадратов. С другой стороны, неприводимость $p \in \mathbb{Z}[i]$ означает, что фактор кольцо $\mathbb{Z}[i]/(p) \simeq \mathbb{Z}[x]/(p,x^2+1) \simeq \mathbb{F}_p[x]/(x^2+1)$ является полем 1 , что равносильно неприводимости многочлена x^2+1 над \mathbb{F}_p , т. е. отсутствию у него корней в \mathbb{F}_p . Мы заключаем, что простое $p \in \mathbb{Z}$

¹См. предл. 5.2 на стр. 71.

является суммой двух квадратов если и только если -1 квадратичный вычет по модулю p. Как мы видели в \mathbf{n}° 3.5.2 на стр. 50, это происходит при p=2 и тех p>2, для которых (p-1)/2 чётно, т. е. для p=4k+1.

Упражнение 5.18. Покажите, что натуральное число n тогда и только тогда является квадратом или суммой двух квадратов натуральных чисел, когда в его разложение на простые множители простые числа p=4k+3 входят лишь в чётных степенях.

5.4.3. НОД в факториальном кольце. В факториальном кольце K наибольший общий делитель набора элементов $a_1, \ldots, a_m \in K$ допускает следующее описание. Для каждого класса ассоциированных неприводимых элементов $q \in K$ обозначим через m_q максимальное такое целое число, что q^{m_q} делит каждое из чисел a_i . Тогда, с точностью до умножения на обратимые константы,

нод
$$(a_1,a_2,\ldots,a_m)=\prod_q q^{m_q}$$
 .

Так как любой элемент факториального кольца является произведением конечного числа неприводимых, числа m_q отличны от нуля лишь для конечного числа классов q. Поэтому написанное произведение корректно определено и, в силу факториальности K, делится на любой общий делитель чисел a_i .

5.5. Многочлены над факториальным кольцом. Пусть K — факториальное кольцо. Обозначим через Q_K его поле частных. Кольцо многочленов K[x] является подкольцом в кольце многочленов $Q_K[x]$. Назовём codep жанием многочлена $f=a_0+a_1x+\cdots+a_nx^n\in K[x]$ наибольший общий делитель $\mathrm{cont}(f)\stackrel{\mathrm{def}}{=} \mathrm{hod}(a_0,a_1,\ldots,a_n)$ его коэффициентов.

Лемма 5.2 $\operatorname{cont}(fg) = \operatorname{cont}(f) \cdot \operatorname{cont}(g)$ для любых $f, g \in K[x]$.

Доказательство. Достаточно для каждого неприводимого $q \in K$ убедиться в том, что q делит все коэффициенты произведения fg если и только если q делит все коэффициенты одного из многочленов f,g. Поскольку неприводимые элементы факториального кольца просты, фактор кольцо R = K/(q) целостное. Применим к произведению fg гомоморфизм редукции по модулю $q:K[x] \to R[x], a_0 + a_1x + \dots + a_nx^n \mapsto [a_0]_q + [a_1]_qx + \dots [a_n]_qx^n$, заменяющий все коэффициенты каждого многочлена классами их вычетов по модулю q.

Упражнение 5.19. Проверьте, что это и в самом деле гомоморфизм колец.

Так как кольцо R[x] тоже целостное, произведение $[fg]_q = [f]_q[g]_q$ обращается в нуль если и только если один из сомножителей $[f]_q$, $[g]_q$ равен нулю.

Лемма 5.3 (редуцированное представление)

Каждый многочлен $f \in Q_K[x]$ представляется в виде $f(x) = (a/b) \cdot f_{\rm red}(x)$, где $f_{\rm red} \in K[x]$, $a,b \in K$ и ${\rm cont}(f_{\rm red}) = {\rm hod}(a,b) = 1$, причём числа a,b и многочлен $f_{\rm red}$ определяются по f однозначно с точностью до умножения на обратимые элементы кольца K.

Доказательство. Вынесем из коэффициентов f их общий знаменатель, потом вынесем из всех коэффициентов полученного многочлена их наибольший общий делитель. В результате мы получим многочлен содержания 1, умноженный на число из Q_K , которое запишем несократимой дробью a/b. Докажем единственность такого представления. Если $(a/b) \cdot f_{\rm red}(x) = (c/d) \cdot g_{\rm red}(x)$

в $Q_K[x]$, то $ad \cdot f_{\rm red}(x) = bc \cdot g_{\rm red}(x)$ в K[x]. Сравнивая содержание обеих частей, получаем ad = bc. В виду отсутствия общих неприводимых множителей у a и b и у c и d, это возможно, только если a ассоциирован с c, а b ассоциирован с d. Но тогда и $f_{\rm red}(x) = g_{\rm red}(x)$ с точностью до умножения на обратимую константу.

Следствие 5.5 (лемма Гаусса)

Многочлен $f \in K[x]$ содержания 1 неприводим в $Q_K[x]$ если и только если он неприводим в K[x].

Доказательство. Пусть $f(x) = g(x) \cdot h(x)$ в $Q_K[x]$. Записывая многочлены g и h в редуцированном виде из лем. 5.3 и сокращая возникающую дробь, приходим к равенству

$$f(x) = \frac{a}{b} \cdot g_{\text{red}}(x) \cdot h_{\text{red}}(x), \qquad (5-7)$$

в котором $g_{\mathrm{red}}, h_{\mathrm{red}} \in \mathit{K}[x]$ имеют содержание 1, и нод(a,b) = 1. По лем. 5.2

$$\mathrm{cont}(g_{\mathrm{red}}h_{\mathrm{red}}) = \mathrm{cont}(g_{\mathrm{red}}) \cdot \mathrm{cont}(h_{\mathrm{red}}) = 1\,,$$

т. е. правая часть в (5-7) является редуцированным представлением многочлена f. В силу единственности редуцированного представления элементы a и b обратимы в K, а $f=g_{\rm red}h_{\rm red}$ с точностью до умножения на обратимую константу.

Теорема 5.3

Кольцо многочленов над факториальным кольцом факториально.

Доказательство. Будучи кольцом главных идеалов, кольцо $Q_K[x]$ факториально, и каждый многочлен $f \in K[x] \subset Q_K[x]$ раскладывается в $Q_K[x]$ в произведение неприводимых множителей $f_v \in Q_K[x]$. Записывая их в редуцированном виде из лем. 5.3 и сокращая возникающую при этом числовую дробь, получаем равенство $f = \frac{a}{b} \prod f_{v,\mathrm{red}}$, в котором все многочлены $f_{v,\mathrm{red}} \in K[x]$ неприводимы в $Q_K[x]$ и имеют содержание 1, а числа $a,b \in K$ взаимно просты. Поскольку сопt $\left(\prod f_{v,\mathrm{red}}\right) = 1$, правая часть равенства является редуцированным представлением многочлена $f = \mathrm{cont}(f) \cdot f_{\mathrm{red}}$. В силу единственности редуцированного представления, b = 1 и $f = a \prod f_{v,\mathrm{red}}$ с точностью до умножения на обратимые константы из K. Раскладывая $a \in K$ в произведение неприводимых констант, получаем разложение f в произведение неприводимых множителей в кольце K[x]. Докажем единственность такого разложения. Пусть в K[x]

$$a_1 a_2 \cdots a_k \cdot p_1 p_2 \cdots p_s = b_1 b_2 \cdots b_m \cdot q_1 q_2 \cdots q_r,$$

где $a_{\alpha},b_{\beta}\in K$ — неприводимые константы, а $p_{\mu},q_{\nu}\in K[x]$ — неприводимые многочлены. Поскольку неприводимые многочлены имеют содержание 1, сравнивая содержание обеих частей, приходим к равенству $a_1a_2\cdots a_k=b_1b_2\cdots b_m$ в K. В силу факториальности K, имеем k=m и (после надлежащей перенумерации сомножителей) $a_i=s_ib_i$, где s_i обратимы. Следовательно, с точностью до умножения на обратимую константу из K в кольце многочленов K[x] выполняется равенство $p_1p_2\cdots p_s=q_1q_2\cdots q_r$. В силу факториальности $Q_K[x]$ и неприводимости многочленов p_i и q_i в $Q_K[x]$, мы заключаем, что p_i и после надлежащей перенумерации сомножителей $p_i=q_i$ с точностью до постоянного множителя из p_i 0. Из единственности редуцированного представления вытекает, что эти постоянные множители являются обратимыми константами из p_i 1.

¹См. лем. 5.3 на стр. 74.

Следствие 5.6

Кольцо многочленов $K[x_1,\ldots,x_n]$ над факториальным кольцом K факториально.

5.6. Разложение многочленов с целыми коэффициентами. Разложение многочлена $f \in \mathbb{Z}[x]$ на множители в $\mathbb{Q}[x]$ разумно начать с отыскания его рациональных корней, что делается за конечное число проб.

Упражнение 5.20. Покажите, что несократимая дробь $p/q \in \mathbb{Q}$ является корнем многочлена $a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ только если $p \mid a_0$ и $q \mid a_n$.

Точное знание комплексных корней многочлена f тоже весьма полезно.

Упражнение 5.21. Разложите $x^4 + 4$ в $\mathbb{Z}[x]$ в произведение двух квадратных трёхчленов.

После того, как эти простые соображения будут исчерпаны, следует подключать более трудоёмкие способы.

5.6.1. Редукция коэффициентов многочлена $f \in \mathbb{Z}[x]$ по модулю $m \in \mathbb{Z}$

$$\mathbb{Z}[x] \to \frac{\mathbb{Z}}{(m)}[x], \quad a_0 + a_1 x + \dots + a_n x^n \mapsto [a_0]_m + [a_1]_m x + \dots + [a_n]_m x^n$$
 (5-8)

приводит все коэффициенты каждого многочлена по модулю m и является гомоморфизмом колец 2 . Поэтому равенство f=gh в $\mathbb{Z}[x]$ влечёт за собой равенства $[f]_m=[g]_n\cdot [h]_m$ во всех кольцах $(\mathbb{Z}/(m))[x]$. Таким образом из неприводимости многочлена $[f]_m$ хотя бы при одном m вытекает его неприводимость в $\mathbb{Z}[x]$. Если число m=p простое, кольцо коэффициентов $\mathbb{Z}/(m)=\mathbb{F}_p$ является полем, и кольцо многочленов $\mathbb{F}_p[x]$ в этом случае факториально. При малых p разложение многочлена небольшой степени на неприводимые множители в $\mathbb{F}_p[x]$ можно осуществить простым перебором, и анализ такого разложения может дать существенную информацию о возможном разложении в $\mathbb{Z}[x]$.

Пример 5.7

Покажем, что многочлен $f(x)=x^5+x^2+1$ неприводим в кольце $\mathbb{Z}[x]$. Поскольку у f нет целых корней, нетривиальное разложение f=gh в $\mathbb{Z}[x]$ возможно только с $\deg(g)=2$ и $\deg(h)=3$. Сделаем редукцию по модулю 2. Так как у $[f]_2=x^5+x^2+1$ нет корней и в \mathbb{F}_2 , оба многочлена $[g]_2$, $[h]_2$ неприводимы в $\mathbb{F}_2[x]$. Но единственный неприводимый многочлен второй степени в $\mathbb{F}_2[x]$ это x^2+x+1 , и x^5+x^2+1 на него не делится. Тем самым, $[f]_2$ неприводим над \mathbb{F}_2 , а значит, и над \mathbb{Z} .

Пример 5.8 (критерий Эйзенштейна)

Пусть все коэффициенты приведённого многочлена $f\in\mathbb{Z}[x]$ делятся на простое число $p\in\mathbb{N}$, а младший коэффициент, делясь на p, не делится при этом на p^2 . Покажем, что f неприводим в $\mathbb{Z}[x]$. В силу сделанных об f предположений при редукции по модулю p от f остаётся только старший моном $[f(x)]_p = x^n$. Если f(x) = g(x)h(x) в $\mathbb{Z}[x]$, то в силу единственности разложения на простые множители в $\mathbb{F}_p[x]$ оба сомножителя g, h тоже редуцируются в некоторые степени переменной: $[g]_p = x^k$ и $[h]_p = x^m$. Это означает, что все коэффициенты многочленов g и h кроме старшего делятся на p. Тогда младший коэффициент многочлена f, будучи произведением младших коэффициентов многочленов g и h, должен делиться на p^2 , что не так.

 $^{^{1}}$ В частности, над полем или над областью главных идеалов.

 $^{^{2}}$ Мы уже пользовались этим в доказательстве лем. 5.2 на стр. 74, см. упр. 5.19.

Пример 5.9 (неприводимость кругового многочлена Φ_p) Покажем, что при простом $p \in \mathbb{N}$ круговой многочлен

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1 = \frac{x^p - 1}{x - 1}$$

неприводим в $\mathbb{Z}[x]$. Для этого перепишем его как многочлен от переменной t=x-1

$$f(t) = \varPhi_p(t+1) = \frac{(t+1)^p - 1}{t} = t^{p-1} + \binom{p}{1}t^{p-2} + \dots + \binom{p}{p-2}t + \binom{p}{p-1}.$$

Поскольку при простом p все биномиальные коэффициенты $\binom{p}{k}$ с $1\leqslant k\leqslant p-1$ делятся на p, а свободный член $\binom{p}{p-1}=p$ не делится на p^2 , многочлен f(t) неприводим по критерию Эйзенштейна из прим. 5.8. Поэтому и $\Phi_p(x)=f(x-1)$ неприводим.

5.6.2. Алгоритм Кронекера позволяет путём довольно трудоёмкого, но вполне эффективного конечного вычисления либо явно найти разложение заданного многочлена f с целыми коэффициентами в кольце $\mathbb{Z}[x]$, либо убедиться, что f неприводим в $\mathbb{Z}[x]$ (а значит, по лемме Гаусса, и в $\mathbb{Q}[x]$). Будем для определённости считать, что $\deg f = 2n$ или $\deg f = 2n+1$. Тогда в любом нетривиальном разложении f = gh в $\mathbb{Z}[x]$ степень одного из делителей, назовём его h, не превосходит n. Чтобы выяснить, делится ли f в $\mathbb{Z}[x]$ на какой-нибудь многочлен степени не выше n, подставим в f любые n+1 различных чисел $z_0, z_1, \ldots, z_n \in \mathbb{Z}$ и выпишем все возможные наборы чисел $d_0, d_1, \ldots, d_n \in \mathbb{Z}$, в которых каждое d_i делит соответствующее $f(z_i)$. Таких наборов имеется конечное число, и набор значений $h(z_0), \ldots, h(z_n)$ многочлена h на числах z_i , если такой многочлен вообще существует, является одним из выписанных нами наборов d_0, \ldots, d_n . Для каждого такого набора в $\mathbb{Q}[x]$ есть ровно один многочлен h степени не выше n с $h(z_i) = d_i$ при всех i — это интерполяционный многочлен Лагранжа 2

$$h(x) = \sum_{i=0}^{n} d_i \cdot \prod_{\nu \neq i} \frac{(x - z_{\nu})}{(z_i - z_{\nu})}.$$
 (5-9)

Таким образом, делитель h многочлена f, если он существует, является одним из тех многочленов (5-9), что имеют целые коэффициенты. Остаётся явно разделить f на все такие многочлены и либо убедиться, что они не делят f, либо найти среди них делитель f.

¹См. сл. 2.1 на стр. 26.

²См. упр. 3.12 на стр. 39.

Ответы и указания к некоторым упражнениям

- Упр. 5.1. Импликации (а) \Rightarrow (б) \Rightarrow (в) очевидны. Если I содержит обратимый элемент, то среди его кратных есть единица, кратные которой исчерпывают всё кольцо.
- Упр. 5.2. Первое утверждение очевидно, второе вытекает из того, что все суммы вида $b_1a_1+b_2a_2+\cdots+b_ma_m$, где $a_1,\ldots,a_m\in M,b_1,\ldots,b_m\in K$, лежат во всех идеалах,, содержащих множество M.
- Упр. 5.3. Если a и b являются старшими коэффициентами многочленов f(x) и g(x) из идеала I, причём $\deg f = m$ и $\deg g = n$, где $m \geqslant n$, то a+b либо нуль, т. е. является старшим коэффициентом нулевого многочлена, либо является старшим коэффициентом многочлена $f(x)+x^{m-n}\cdot g(x)\in I$ степени m. Аналогично, для любого $\alpha\in K$ произведение αa является старшим коэффициентом многочлена $\alpha f(x)\in I$ степени m.
- Упр. 5.4. Повторите доказательство теор. 5.1, следя за младшими коэффициентами вместо старших.
- Упр. 5.6. Обозначим через I_0 идеал, образованный всеми аналитическими функциями 1 , обращающимися в нуль на множестве $\mathbb{Z}\subset\mathbb{C}$, а через I_k идеал всех функций, обращающихся в нуль на множестве $\mathbb{Z}\smallsetminus\{1,\,2,\,\ldots\,,\,k\}$. Убедитесь, что $\sin(2\pi z)/\prod_{\alpha=1}^k(z-\alpha)\in I_k\smallsetminus I_{k-1}$, откуда $I_k\subsetneq I_{k+1}$.
- Упр. 5.7. Из того, что I является абелевой подгруппой в K немедленно вытекает, что отношение $a_1 \equiv a_2 \pmod{I}$ рефлексивно, транзитивно и симметрично. Корректность операций проверяется так же, как в упр. 1.10: если $[a']_I = [a]_I$ и $[b']_I = [b]_I$, т. е. a' = a + x, b' = b + y с некоторыми $x, y \in I$, то a' + b' = a + b + (x + y) и a'b' = ab + (ay + bx + xy) сравнимы по модулю I с a + b и ab соответственно, поскольку суммы в скобках лежат в I (именно в этот момент мы пользуемся тем, что идеал вместе с каждым элементом содержит и все его кратные); таким образом, $[a' + b']I = [a + b]_I$ и $[a'b']_I = [ab]_I$.
- Упр. 5.8. Возьмите в качестве I^* объединение всех идеалов из M.
- Упр. 5.9. В (а) всякий идеал в $\mathbb{C}[x]$ является главным. Если фактор кольцо $\mathbb{C}[x]/(f)$ не имеет делителей нуля, то многочлен f неприводим. Над полем \mathbb{C} неприводимые многочлены исчерпываются линейными, поэтому f(x) = x p для некоторого $p \in \mathbb{C}$ и $(f) = (x p) = \ker \operatorname{ev}_p$. В (б) с помощью леммы о конечном покрытии докажите, что для любого идеала I в кольце непрерывных функций $[0,1] \to \mathbb{R}$ найдётся точка $p \in [0,1]$, в которой все функции из I обращаются в нуль, что даст включение $I \subset \ker \operatorname{ev}_p$. В (в) подойдёт главный идеал $\mathfrak{m} = (x^2 + 1)$.
- Упр. 5.11. Если в каждом идеале I_k есть элемент $x_k \in I_k \setminus \mathfrak{p}$, то произведение этих элементов $x_1x_2 \dots x_m \in \bigcap I_k \subset \mathfrak{p}$, что противоречит простоте \mathfrak{p} .
- Упр. 5.12. Рассмотрим эпиморфизм факторизации $\pi: K \twoheadrightarrow K/I$. Полный прообраз $\pi^{-1}(J)$ любого идеала $J \subset K/I$ является идеалом в K. Классы элементов, порождающих этот идеал в K порождают идеал J в K/I.
- Упр. 5.13. Для колец (в) и (г) свойство (??) очевидно, поскольку модули всех ненулевых элементов не меньше 1, а свойство (5-6) вытекает из того, что для любого $z \in \mathbb{C}$ существует такой элемент кольца w, что |z-w|<1. Беря такой w для z=a/b, получаем |a-bw|<|b|, так что можно положить q=w и r=a-bw.

 $^{^1}$ Функция $\mathbb{C} \to \mathbb{C}$ называется *аналитической*, если она задаётся сходящимся всюду в \mathbb{C} степенным рядом из $\mathbb{C}[\![z]\!]$.

Упр. 5.14. Если $\exists \ b^{-1}$, то $\nu(ab) \leqslant \nu(abb^{-1}) = \nu(a)$. Наоборот, если $\nu(ab) = \nu(a)$, то деля a на ab с остатком, получаем a = abq + r, где либо $\nu(r) < \nu(ab) = \nu(a)$, либо r = 0. Из равенства r = a(1-bq) вытекает, что либо $\nu(r) \geqslant \nu(a)$, либо 1-bq = 0. С учётом предыдущего, такое возможно только при 1-bq = 0 или r = 0. Во втором случае a(1-bq) = 0, что тоже влечёт 1-bq = 0. Следовательно bq = 1 и b обратим.

Упр. 5.15. Если b = ax и a = by = axy, то a(1 - xy) = 0, откуда xy = 1.

Упр. 5.16. Многочлены x и y не имеют в $\mathbb{Q}[x,y]$ никаких общих делителей, кроме констант. Общими делителями элементов 2 и x в $\mathbb{Z}[x]$ являются только ± 1 .

Упр. 5.17. По аналогии с комплексными числами, назовём сопряжённым к числу $\vartheta=a+b\sqrt{5}$ число $\overline{\vartheta}=a-b\sqrt{5}$, а целое число $||\vartheta||\stackrel{\text{def}}{=}\vartheta\cdot\overline{\vartheta}=a^2-5b^2$ назовём нормой числа ϑ . Легко видеть, что $\overline{\vartheta_1\vartheta_2}=\overline{\vartheta_1}\cdot\overline{\vartheta_2}$, откуда $||\vartheta_1\vartheta_2||=\vartheta_1\vartheta_2\overline{\vartheta_1}\overline{\vartheta_2}=||\vartheta_1||\cdot||\vartheta_2||$. Поэтому $\vartheta\in\mathbb{Z}[\sqrt{5}]$ обратим тогда и только тогда, когда $||\vartheta||=\pm 1$, и в этом случае $\vartheta^{-1}=\pm\overline{\vartheta}$. Поскольку ||2||=4, а $||1\pm\sqrt{5}||=-4$, разложение этих элементов в произведение xy с необратимыми x и y возможно только при $||x||=||y||=\pm 2$. Но элементов нормы ± 2 в $\mathbb{Z}[\sqrt{5}]$ нет, так как равенство $a^2-5b^2=\pm 2$ при редукции по модулю 5 превращается в равенство $a^2=\pm 2$ в поле \mathbb{F}_5 , где числа ± 2 не являются квадратами.

Упр. 5.20. Это следует из равенства $a_0q^n+a_1q^{n-1}p+\cdots+a_{n-1}qp^{n-1}+a_np^n=0$ Упр. 5.21. Ответ: $(x^2-2x+2)(x^2+2x+2)$.