Действия и гомоморфизмы

- **A12<**1. Найдите длины орбит всех точек каждого из платоновых тел под действием собственной и несобственной группы тела. Перечислите орбиты, длина которых меньше порядка группы.
- **A12** \diamond 2. Собственная группа куба действует на множестве вершин V и множестве рёбер E этого куба. Опишите орбиты её диагонального действия на а) $V \times V$ б) $V \times E$ в) $E \times E \times E$.
- **A12** \diamond 3. Симметрическая группа S_n стандартно действует на множестве $X=\{1,\,2,\,\dots\,,\,n\}$. Опишите орбиты диагонального действия S_n на X^m при $n\geqslant m$ (начните с $m=2,\,3,\,\dots$).
- **A124**. Конечная группа транзитивно действует на множестве, содержащем более одного элемента. Обязательно ли в группе есть элемент, действующий без неподвижных точек?
- **A12** \diamond 5. Имеется неограниченный запас неразличимых по длине и форме бусин n разных цветов. Сколько различных с виду ожерелий можно изготовить из a) 4 б) 7 в) 8 г) 9 бусин?
- **A12** \diamond 6. Имеется неограниченный запас неразличимых по длине и форме кусков верёвок n различных цветов. Сколько можно навязать из них разных с виду фенечек формы

- **A12** \diamond 7. Опишите орбиту двойного отношения ϑ четвёрки различных точек на \mathbb{P}_1 под действием группы S_4 перестановок этих точек, и найдите все ϑ , орбиты которых короче общей.
- **A12** \diamond 8. Постройте изоморфизмы S_4 с а) несобственной группой тетраэдра б) собственной группой куба. в) Постройте эпиморфизм $S_4 \twoheadrightarrow S_3$.
- A12
<9. Найдите порядок группы а) $\operatorname{PGL}_n(\mathbb{F}_q)$ б) $\operatorname{PSL}_2(\mathbb{F}_q)$.
- **A12<10**. Постройте изоморфизмы A_4 с а) собственной группой тетраэдра б) $PSL_2(\mathbb{F}_3)$.
- A12 \diamond 11. Постройте изоморфизмы A_5 с а) собственной группой додекаэдра б) $\operatorname{PGL}_2(\mathbb{F}_4)$ в) $\operatorname{PSL}_2(\mathbb{F}_5)$.
- A12 \diamond 12. Постройте изоморфизмы a) $PSL_3(\mathbb{F}_2) \cong PSL_2(\mathbb{F}_7)$ б) $A_6 \cong PSL_2(\mathbb{F}_9)$.
- А12 \diamond 13 (системы Штейнера). Набор S из k-элементных подмножеств n-элементного множества X называется системой Штейнера S(t,k,n), если каждое t-элементное подмножество X содержится ровно в одном множестве из S. Мы полагаем $\operatorname{Aut}(S) \stackrel{\text{def}}{=} \{g \in S_n \mid \forall Y \in S \ g(Y) \in S\}$. а) По системе Штейнера S(t,k,n) постройте систему S(t-1,k-1,n-1). 6) Для всех $q=p^k$, где p простое, постройте системы $S(2,q,q^2)$ и $S(2,q+1,q^2+q+1)$. в *) Покажите, что образы множества $\{0,1,4,9,3,5\}$ квадратов поля \mathbb{F}_{11} под действием группы $\operatorname{PGL}_2(\mathbb{F}_{11})$ дробно линейных преобразований проективной прямой $\mathbb{P}_1(\mathbb{F}_{11}) = \{0,1,\ldots,10,\infty\}$ составляют систему Штейнера S(5,6,12) г *) Постройте систему Штейнера S(5,8,24).
- $A12 \diamond 14^*$. Найдите порядки спорадических простых групп $Mamb\ddot{e}^3$ а) $M_{11} \stackrel{\text{def}}{=} \operatorname{Aut}\left(S(4,5,11)\right)$ б) $M_{12} \stackrel{\text{def}}{=} \operatorname{Aut}\left(S(5,6,12)\right)$ в) $M_{22} \stackrel{\text{def}}{=} \operatorname{Aut}\left(S(3,6,22)\right)$ г) $M_{23} \stackrel{\text{def}}{=} \operatorname{Aut}\left(S(4,7,23)\right)$ д) $M_{24} \stackrel{\text{def}}{=} \operatorname{Aut}\left(S(5,8,24)\right)$ и покажите, что M_{11} , M_{22} и M_{23} суть стабилизаторы точек естественных действий M_{12} , M_{23} и M_{24} .
- A12 \diamond 15. Постройте изоморфизмы a) $\operatorname{PGL}_3(\mathbb{F}_4) \xrightarrow{\operatorname{def}} \operatorname{Aut}\left(S(2,5,21)\right)$ б *) $A_6 \xrightarrow{} [M_{10}, M_{10}]$, где $M_{10} \stackrel{\operatorname{def}}{=} \operatorname{Aut}\left(S(3,4,10)\right)$ и $[G,G] \subset G$ подгруппа, порождённая коммутаторами $ghg^{-1}h^{-1}$, $g,h \in G$.
- A12 \diamond 16. Опишите группу автоморфизмов группы а) $\mathbb{Z}/(n)$ б) $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$ в) D_3 г) D_4 д) Q_8 .
- A12 \$17. У каких групп из предыдущей задачи все автоморфизмы являются внутренними?
- **A12\diamond18**. Найдите индекс подгруппы внутренних автоморфизмов в группе Aut (A_5) .
- **A12\diamond19** * . Постройте внешний автоморфизм симметрической группы 4 S_{6} .

 $^{^1}$ если G действует на множествах X_1, X_2, \dots, X_m , то ∂ иагональное действие G на $X_1 \times X_2 \times \dots \times X_m$ происходит по правилу $g: (x_1, x_2, \dots, x_m) \mapsto (ax_1, ax_2, \dots, ax_m)$

 $g:(x_1,x_2,\dots,x_m)\mapsto (gx_1,gx_2,\dots,gx_m)$ 2 двойное отношение $[a,b,c,d]=\frac{d-b}{d-a}:\frac{c-b}{c-a}\in \mathbb{k}\setminus\{0,1\}$ равно образу точки d при дробно линейном преобразовании $\mathbb{P}_1(\mathbb{k})$, переводящем a,b,c в $\infty,0,1$

(напишите свои имя, отчество и фамилию)

No	дата сдачи	имя и фамилия принявшего	подпись принявшего
1		T	1
2a			
6			
В			
3			
4			
5a			
6			
В			
Γ			
6a			
б			
7			
8a			
б			
В			
9a			
б			
10a			
б			
11a			
б			
В			
12a			
6		-	
13a 6			
В			
Г			
14a			
6			
В			
Γ			
Д			
15a			
б			
16a			
б			
В			
Γ			
<u>Д</u>			
17			
18			
19			