Матрицы

- **А7\diamond1**. В \mathbb{Q}^4 найдите размерность и какой-либо базис у суммы и пересечения подпространств:
 - a) span (1, 1, 1, 1), (1, -1, 1, -1), (1, 3, 1, 3) μ span (1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1)
 - б) span (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1) и Ann (1, 0, 1, 0), (0, 2, 1, 1), (1, 2, 1, 2)
 - B) Ann((1,1,0,0), (0,1,1,0)), (0,0,1,1)) u Ann((1,2,0,2), (1,2,1,2), (3,1,3,1))
- $A_7 \diamond 2$. Выясните, является ли сумма подпространств $U, W \subset \mathbb{R}^n$ прямой, и если да, найдите проекции стандартных базисных векторов \mathbb{k}^n на каждое из подпространств вдоль другого.
 - а) U задано уравнением $x_1+x_2+\cdots=x_n=0$, а W- системой $x_1=x_2=\cdots=x_n$
 - 6) $U = \operatorname{span}((1, 1, 1, 1), (-1, -2, 0, 1)), W = \operatorname{span}((-1, -1, 1, -1), (2, 2, 0, 1)) \times \mathbb{Q}^4$.
- А7♦3. На какую матрицу и с какой стороны надо умножить прямоугольную матрицу, чтобы а) её i-тая и j-тая строки поменялись местами б) её i-тая строка умножилась на λ в) к её i-той строке прибавилась j-тая, умноженная на λ г) то же, но со столбцами.
- A7 \diamond 4 (теорема о ранге). Покажите, что у любой матрицы $A \in \operatorname{Mat}_{m \times n}(\mathbb{k})$ размерность линейной оболочки её строк в \mathbb{k}^n равна размерности линейной оболочки её столбцов 1 в \mathbb{k}^m .
- A7\$5. Покажите, что каждая матрица ранга 1 а) является произведением столбца на строку б) пропорциональна своему квадрату, буде она квадратная.
- A7 \diamond 6. Докажите для любых матриц $A \in \operatorname{Mat}_{k \times \ell}, B \in \operatorname{Mat}_{\ell \times m}, C \in \operatorname{Mat}_{m \times n}$ неравенства:
 - a) $\operatorname{rk}(AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$ 6) $\operatorname{rk}(AB) + \operatorname{rk}(BC) \leqslant \operatorname{rk}(ABC) + \operatorname{rk}(B)$ B) $\operatorname{rk}(A) + \operatorname{rk}(B) \leqslant \operatorname{rk}(AB) + \ell$.
- A_7 \$7. Есть 7 одинаковых банок, каждая на $\frac{9}{10}$ заполнена краской одного из семи цветов радуги². Можно ли переливая краску из банки в банку и равномерно размешивая содержимое получить хоть в одной из банок колер, в котором все 7 красок смешаны в равной пропорции?
- **A**7 \diamond 8 (коммутатор). Разность [A, B] = AB BA называется коммутатором квадратных матриц $A, B \in \mathrm{Mat}_n(\mathbbm{k})$. Докажите, что для любых $A, B, C \in \mathrm{Mat}_n(\mathbbm{k})$ выполняются правила Лейбница: a) [A, BC] = [A, B]C + B[A, C] 6) [A, [B, C]] = [[A, B], C] + [B, [A, C]].
- $A_7 \diamond 9$. Выразите $(A + B)^n$ через $A^i B^j$, если a) [A, B] = 0 6^*) [A, B] = B ${\bf B}^*$) [A, B] = A.
- $A7 \diamond 10^*$ (лемма Барта). Пусть rk[A, B] = 1. Покажите, что у A и B есть общий собственный вектор³.
- A7 \diamond 11 (след). Сумма диагональных элементов tr $A \stackrel{\text{def}}{=} \sum a_{ii}$ называется *следом* квадратной матрицы A. Покажите, что $a) \, \forall A, B \in \operatorname{Mat}_n(\Bbbk) \, \operatorname{tr}[A, B] = 0 \, 6) \, \forall A \in \operatorname{Mat}_n(\Bbbk) \, \operatorname{u} \, \forall C \in \operatorname{GL}_n(\Bbbk)$ $\operatorname{tr}(\mathcal{C}^{-1}A\mathcal{C}) = \operatorname{tr}(A)$ в) если $\operatorname{tr}(AX) = 0 \ \forall X \in \operatorname{Mat}_n(\Bbbk)$ с $\operatorname{tr} X = 0$, то $A = \lambda E$ для некоторого $\lambda \in \Bbbk$.
- $A7 \diamond 12$ (нильпотентные матрицы). Матрица $A \in \mathrm{Mat}_n(\mathbb{k})$ называется нильпотентной, если $A^n = 0$ для некоторого $n \in \mathbb{N}$. Покажите, что если A нильпотентна, то матрицы $E \pm A$ обратимы.
- $A_7 \diamond 13$. Нильпотентна ли сумма A + B нильпотентных матриц A и B? Докажите, что да, если a) [A, B] = 0 6^*) [A, [A, B]] = [B, [B, A]] = 0.
- A7 \diamond 14. Решите в Mat₂(\Bbbk) уравнения **a)** $X^2 = 0$ **b)** $X^3 = 0$ **b)** $X^2 = X$ **г)** $X^2 = E$ **д)** $X^2 = -E$.
- A7♦15. Пусть матрица A диагональна, и все её диагональные элементы различны. Покажите, что любая матрица, коммутирующая с A, имеет вид f(A) для некоторого $f(x) \in \mathbb{k}[x]$.

- $A7 \diamond 18$. Напишите явную формулу для (*ij*)-того элемента матрицы, обратной к верхнетреугольной матрице (h_{ij}) с единицами по главной диагонали⁴.
- **А7<19**. Пусть квадратные матрицы A, B, C, D обратимы. Явно вычислите $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1}$ в предположении, что $A BD^{-1}C$, $C DB^{-1}A$, $B AC^{-1}D$, $D CA^{-1}B$ тоже обратимы.

¹эти размерности называются *рангом* и обозначается rk *A*

²в каждой банке — свой цвет и все цвета разные

 $^{^3}$ т. е. такой столбец $v \in \mathbb{C}^n$, что $Av = \lambda v$ и $Bv = \mu v$ для некоторых $\lambda, \mu \in \mathbb{C}$ (мы считаем, что $A, B \in \mathrm{Mat}_n(\mathbb{C})$)

⁴найдите ответ, пригодный и для матриц с элементами из *некоммутативного* кольца

(напишите свои имя, отчество и фамилию)

№	дата сдачи	имя и фамилия принявшего	подпись принявшего
1a			
6			
В			
2a			
6			
3			
4			
5a			
6			
6a		•	
б			
В			
7			
8a			
б			
9a			
б			
В			
10			
11a			
б			
В			
12			
13a			
б			
14a			
б			
В			
Γ			
Д			
15			
16			
17			
18			
19			