12.1. Группы, подгруппы, циклы. Множество G называется *группой*, если на нём задана операция *композиции* $G \times G \to G$, $(g_1, g_2) \mapsto g_1 g_2$ со свойствами

ассоциативность:
$$\forall f, g, h \in G \quad (fg)h = f(gh)$$
 (12-1)

наличие единицы:
$$\exists e \in G : \forall g \in G \quad eg = g$$
 (12-2)

наличие обратных:
$$\forall g \in G \quad \exists g^{-1} \in G : g^{-1}g = e$$
 (12-3)

Группа называется коммутативной или абелевой, если дополнительно имеет место

коммутативность:
$$\forall f, g \in G \quad fg = gf$$
. (12-4)

Левый обратный к g элемент g^{-1} , существование которого постулируется в (12-3), является также и правым обратным, т. е. удовлетворяет равенству $gg^{-1}=e$, которое получается умножением правой и левой частей в $g^{-1}gg^{-1}=eg^{-1}=g^{-1}$ слева на левый обратный к g^{-1} элемент.

Упражнение 12.1. Убедитесь, что обратный к g элемент g^{-1} однозначно определяется элементом g и что $\left(g_1g_2\ \cdots\ g_k\right)^{-1}=g_k^{-1}\ \cdots\ g_2^{-1}g_1^{-1}.$

Для единицы e из (12-2) при любом $g \in G$ выполнятся также и равенство ge = g, поскольку $ge = g(g^{-1}g) = (gg^{-1})g = eg = g$.

Упражнение 12.2. Убедитесь, что единичный элемент $e \in G$ единствен.

Если группа G конечна, число элементов в ней обозначается |G| и называется *порядком* группы G. Подмножество $H \subset G$ называется *подгруппой*, если оно образует группу относительно имеющейся в G композиции. Для этого достаточно, чтобы вместе с каждым элементом $h \in H$ в H лежал и обратный к нему элемент h^{-1} , а вместе с каждой парой элементов $h_1, h_2 \in H$ — их произведение h_1h_2 . Единичный элемент $e \in G$ автоматически окажется в H, т. к. $e = hh^{-1}$ для произвольного $h \in H$.

Упражнение 12.3. Проверьте, что пересечение любого множества подгрупп является подгруппой.

Пример 12.1 (группы преобразований)

Модельными примерами групп являются *группы преобразований*, обсуждавшиеся нами в \mathfrak{n}° 1.6. Все взаимно однозначные отображения произвольного множества X в себя очевидно образуют группу. Она обозначается Aut X и называется *группой автоморфизмов* множества X. Подгруппы $G \subset \operatorname{Aut} X$ называются *группами преобразований* множества X. Для $g \in G$ и $x \in X$ мы часто будем сокращать обозначение g(x) до gx. Группа автоморфизмов конечного множества $X = \{1, 2, \ldots, n\}$ из n элементов называется *симметрической группой* и обозначается S_n . Порядок $|S_n| = n!$. Чётные перестановки образуют в S_n подгруппу, обозначаемую A_n и часто называемую *знакопеременной группой*. Порядок $|A_n| = n!/2$.

12.1.1. Циклические группы и подгруппы. Наименьшая по включению подгруппа в G, содержащая заданный элемент $g \in G$, состоит из всевозможных целых степеней g^m элемента g, где мы, как обычно, полагаем $g^0 \stackrel{\mathrm{def}}{=} e$ и $g^{-n} \stackrel{\mathrm{def}}{=} \left(g^{-1}\right)^n$. Она называется g^0 и обозначается g^0 . Будучи абелевой группой с одной образующей, g^0 является образом сюрьективного гомоморфизма g^0 : g^0 желяется образом сюрьективного гомоморфизма g^0 с g^0 с g^0 желяется образом сюрьективного гомоморфизма g^0 с g^0 с

 $m\mapsto g^m$ переводящего сложение в композицию. Если $\ker\varphi_g\neq 0$, то $\ker\varphi_g=(n)$ и $\langle g\rangle\simeq 2\mathbb{Z}/(n)$, где $n\in\mathbb{N}$ — наименьшая степень, для которой $g^n=e$. Она называется порядком элемента g и обозначается $\operatorname{ord}(g)$. В этом случае группа $\langle g\rangle$ имеет порядок $n=\operatorname{ord} g$ и состоит из элементов $e=g^0,\,g=g^1,\,g^2,\,\ldots\,,\,g^{n-1}$. Если $\ker\varphi_g=0$, то $\varphi_g:\,\mathbb{Z}\Rightarrow\langle g\rangle$ является изоморфизмом и все степени g^m попарно различны. В этом случае говорят, что g имеет $\operatorname{бесконечный}$ порядок и пишут $\operatorname{ord} g=\infty$.

Напомним², что группа G называется μ иклической, если в ней существует элемент $g \in G$ такой, что все элементы группы являются его целыми степенями, т. е. $G = \langle g \rangle$. Элемент g называется в этом случае образующей циклической группы G. Например, аддитивная группа целых чисел $\mathbb Z$ является циклической, и в качестве образующего элемента можно взять любой из двух элементов ± 1 . В предл. 3.12 на стр. 48 мы видели, что всякая конечная подгруппа в мультипликативной группе любого поля является циклической. Аддитивная группа вычетов $\mathbb Z/(10)$ также является циклической, и в качестве её образующего элемента можно взять любой из четырёх классов³ $[\pm 1]_6$, $[\pm 3]_6$.

Упражнение 12.4. Укажите необходимые и достаточные условия для того, чтобы конечно порождённая абелева группа 4 $G=\mathbb{Z}^r\oplus \frac{\mathbb{Z}}{(p_1^{n_1})}\oplus \cdots \oplus \frac{\mathbb{Z}}{(p_{\alpha}^{n_{\alpha}})}$ была циклической.

Лемма 12.1

Элемент $h=g^k$ тогда и только тогда является образующей циклической группы $\langle g \rangle$ порядка n, когда нод(k,n)=1.

Доказательство. Так как $\langle h \rangle \subset \langle g \rangle$, равенство $\langle h \rangle = \langle g \rangle$ равносильно неравенству ord $h \geqslant n$. Но $h^m = g^{mk} = e$ тогда и только тогда, когда mk делится на n. Если нод(n,k) = 1, то это возможно только при m делящемся на n, и в этом случае ord $h \geqslant n$. Если же $n = n_1 d$ и $k = k_1 d$, где d > 1, то $h^{n_1} = g^{kn_1} = g^{nk_1} = e$ и ord $h \leqslant n_1 < n$.

12.1.2. Разложение перестановок в композиции циклов. Перестановка $\tau \in S_n$ по кругу переводящая друг в друга какие-нибудь m различных элементов 5

$$i_1 \mapsto i_2 \mapsto \cdots \mapsto i_{m-1} \mapsto i_m \mapsto i_1$$
 (12-5)

и оставляющая на месте все остальные элементы, называется μ иклом длины m.

Упражнение 12.5. Покажите, что k-тая степень цикла длины m является циклом тогда и только тогда, когда нод(k,m)=1.

Цикл (12-5) часто бывает удобно обозначать $\tau = |i_1, i_2, \dots, i_m\rangle$, не смотря на то, что один и тот же цикл (12-5) допускает m различных таких записей, получающихся друг из друга циклическими перестановками элементов.

Упражнение 12.6. Сколько имеется в S_n различных циклов длины k?

 $^{^{1}}$ таким образом, порядок элемента равен порядку порождённой им циклической подгруппы 2 см. n° 3.5.1 на стр. 47

³обратите внимание, что остальные 6 классов не являются образующими

⁴см. теор. 10.5 на стр. 160

 $ar{i}_1, i_2, \ldots, i_m$ могут быть любыми, не обязательно соседними или возрастающими

Теорема 12.1

Каждая перестановка $g \in S_n$ является композицией непересекающихся циклов:

$$g = \tau_1 \tau_2 \cdots \tau_k \,. \tag{12-6}$$

Любые два цикла разложения (12-6) перестановочны: $\tau_i \tau_j = \tau_j \tau_i$, и оно единственно с точностью до перестановки циклов между собой.

Доказательство. Поскольку множество $X = \{1, 2, ..., n\}$ конечно, в последовательности

$$x \xrightarrow{g} g(x) \xrightarrow{g} g^{2}(x) \xrightarrow{g} g^{3}(x) \xrightarrow{g} \cdots,$$
 (12-7)

возникающей при применении g к произвольной точке $x \in X$, случится повтор. Так как преобразование $g: X \cong X$ биективно, первым повторившимся элементом будет стартовый элемент x. Таким образом, каждая точка $x \in X$ под действием g движется по циклу. В силу биективности g два таких цикла, проходящие через различные точки x и y, либо не пересекаются, либо совпадают. Таким образом, перестановка g является произведением непересекающихся циклов, очевидно, перестановочных друг с другом.

Упражнение 12.7. Покажите, что два цикла $\tau_1, \tau_2 \in S_n$ перестановочны ровно в двух случаях: либо когда они не пересекаются, либо когда $\tau_2 = \tau_1^s$ и оба цикла имеют равную длину, взаимно простую с s.

Определение 12.1 (цикловой тип перестановки)

Написанный в порядке нестрогого убывания набор длин непересекающихся циклов 1 , в которые раскладывается перестановка $g \in S_n$, называется цикловым типом перестановки g и обозначается $\lambda(g)$.

Цикловой тип перестановки $g \in S_n$ удобно изображать n-клеточной диаграммой Юнга, а сами циклы записывать по строкам этой диаграммы. Например, перестановка

имеет цикловой тип , т. е. $\lambda(6, 5, 4, 1, 8, 3, 9, 2, 7) = (4, 3, 2)$. Единственной перестановкой циклового типа $\lambda = (1, 1, \dots, 1)$ (один столбец высоты n) является тождественная перестановка Id. Диаграмму $\lambda = (n)$ (одна строка длины n) имеют (n-1)! циклов максимальной длины n.

Упражнение 12.8. Сколько перестановок в симметрической группе S_n имеют заданный цикловой тип, содержащий для каждого $i=1,\,2,\,\ldots\,,\,n\,m_i$ циклов длины $i\,?$

Пример 12.2 (вычисление порядка и знака перестановки)

Порядок перестановки $g \in S_n$ равен наименьшему общему кратному длин непересекающихся циклов, из которых она состоит. Например, порядок перестановки

$$(3, 12, 7, 9, 10, 4, 11, 1, 6, 2, 8, 5) = |1, 3, 7, 11, 8\rangle |2, 12, 5, 10\rangle |4, 9, 6\rangle \in S_{12}$$

 $^{^{1}}$ включая циклы длины один, отвечающие элементам, которые перестановка оставляет на месте

равен $5 \cdot 4 \cdot 3 = 60$. По правилу ниточек из прим. 9.2 на стр. 134 знак цикла длины ℓ равен $(-1)^{\ell-1}$. Поэтому перестановка чётна тогда и только тогда, когда у неё чётное число циклов чётной длины.

Упражнение 12.9. Найдите чётность $g = (6, 5, 4, 1, 8, 3, 9, 2, 7) \in S_9$ и вычислите g^{15} .

12.2. Группы фигур. Для любой фигуры Φ в евклидовом¹ пространстве \mathbb{R}^n биективные отображения $\Phi \to \Phi$ индуцированные ортогональными² линейными преобразованиями пространства \mathbb{R}^n , переводящими фигуру Φ в себя, образуют группу преобразований фигуры Φ . Эта группа называется *полной группой фигуры* Φ и обозначается O_{Φ} . Подгруппу $SO_{\Phi} \subset O_{\Phi}$, состоящую из биекций, индуцированных собственными³ ортогональными операторами $\mathbb{R}^n \to \mathbb{R}^n$, мы будем называть собственной группой фигуры Φ . Если фигура $\Phi \subset \mathbb{R}^n$ содержится в некоторой гиперплоскости $\Pi \subset \mathbb{R}^n$, то собственная группа фигуры Φ совпадает с полной: беря композицию любого несобственного движения из группы фигуры с отражением в плоскости Π , мы получаем собственное движение, которое действует на фигуру Φ точно также, как и исходное несобственное движение.

Упражнение 12.10. Изготовьте модели пяти *платоновых тел* — тетраэдра, октаэдра, куба, додекаэдра и икосаэдра (см. рис. $12 \diamond 5$ — рис. $12 \diamond 8$ на стр. 185).

Пример 12.3 (группы диэдров D_n)

Группа правильного плоского n-угольника, лежащего в пространстве \mathbb{R}^3 так, что его

центр находится в нуле, обозначается D_n и называется n-той группой диэдра. Простейший диэдр — двуугольник — возникает при n=2. Его можно представлять себе как вытянутую симметричную луночку с двумя сторонами, изображённую на рис. 12 \diamond 1. Группа D_2 такой луночки совпадает с группами описанного вокруг неё прямоугольника и вписанного в неё ромба 4 . Она состоит из тождественного отображения и трёх поворотов на 180° во-

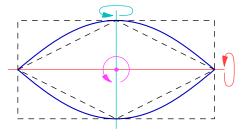


Рис. 12 \diamond 1. Двуугольник D_2 .

круг перпендикулярных друг другу осей, одна из которых проходит через вершины луночки, другая — через середины её сторон, а третья перпендикулярна плоскости луночки и проходит её центр.

Упражнение 12.11. Убедитесь, что $D_2 \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$.

Следующая диэдральная группа — группа треугольника D_3 — состоит из шести движений: тождественного, двух поворотов τ , τ^{-1} на $\pm 120^\circ$ вокруг центра треугольника и трёх

 $^{^1}$ напомню, что eвклидовость означает фиксацию в векторном пространстве \mathbb{R}^n симметричного билинейного положительного скалярного произведения $V \times V \to \mathbb{R}$, обозначаемого (v,w)

 $^{^2}$ линейный оператор $F:\mathbb{R}^n \to \mathbb{R}^n$ на евклидовом пространстве \mathbb{R}^n называется *ортогональным*, если он сохраняет скалярное произведение, т. е. $\forall \, v,w \in \mathbb{R}^n \, (Fv,Fw) = (v,w)$ (достаточно, чтобы это равенство выполнялось при v=w)

 $^{^{3}}$ т. е. ортогональными операторами определителя 1 или, что то же самое — сохраняющими ориентацию

⁴мы предполагаем, что луночка такова, что оба они не квадраты

осевых симметрий σ_{ij} относительно его медиан (см. рис. 12 \diamond 2). Так как движение плоскости однозначно задаётся своим действием на вершины треугольника, группа треугольника D_3 изоморфна группе перестановок S_3 его вершин. При этом повороты на $\pm 120^\circ$ отождествляются с циклическими перестановками (2, 3, 1), (3, 1, 2), а осевые симметрии — с транспозициями $\sigma_{23}=(1,3,2)$, $\sigma_{13}=(3,2,1)$, $\sigma_{12}=(2,1,3)$.

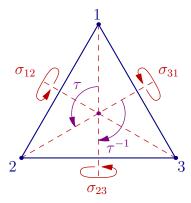


Рис. 12<2. Группа треугольника.

Поскольку движение плоскости, переводящее в себя правильный n-угольник, однозначно определяется своим действием на аффинный репер, образованный какой-нибудь вершиной и примыкающей к ней парой сторон, группа диэдра D_n при каждом $n \geqslant 2$ состоит из 2n движений: выбранную вершину можно перевести в любую из n вершин, после чего одним из двух возможных способов совместить рёбра. Эти 2n движений суть n поворотов вокруг центра многоугольника на углы $2\pi k/n$ с $k=0,1,\ldots,(n-1)$ и n осевых симметрий относительно прямых, проходящих при нечётном n через вершину и середину противоположной стороны, а при чётном n — через пары противоположных вершин и через середины противоположных сторон (см. рис. $12 \diamond 3$).

Упражнение 12.12. Составьте таблицы умножения в группах D_3 , D_4 и D_5 , аналогичные таблице форм. (1-24) на стр. 14.

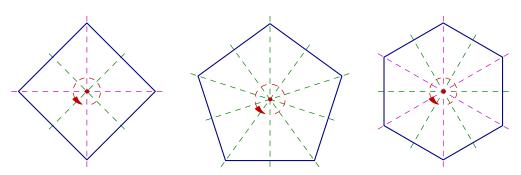


Рис. 12 \diamond 3. Оси диэдров D_4 , D_5 и D_6 .

Пример 12.4 (группа тетраэдра)

Поскольку каждое движение трёхмерного евклидова пространства \mathbb{R}^3 однозначно задаётся своим действием на вершины правильного тетраэдра и это действие может быть произвольным, полная группа правильного тетраэдра с центром в нуле изоморфна группе S_4 перестановок его вершин и состоит из 24 движений. Собственная группа состоит из $12=4\cdot 3$ движений: поворот тетраэдра однозначно задаётся своим действием на аффинный репер, образованный какой-нибудь вершиной и тремя выходящими из неё рёбрами, и может переводить эту вершину в любую из четырёх вершин, после чего остаются ровно три возможности для совмещения рёбер, сохраняющего ориентацию пространства.

 $^{^{1}}$ при k=0 получается тождественное преобразование

²или, что то же самое, поворотов на 180° в пространстве

Полный список всех собственных движений тетраэдра таков: тождественное, $4 \cdot 2 = 8$ поворотов на углы $\pm 120^\circ$ вокруг прямых, проходящих через вершину и центр противоположной грани, а также 3 поворота на 180° вокруг прямых, проходящих через середины противоположных рёбер (см. рис. 12\$4). В несобственной группе, помимо перечисленных поворотов, имеется 6 отражений σ_{ii} в плоскостях, проходящих через середину ребра [i,j] и противоположное ребро. При изоморфизме с S_4 отражение σ_{ii} переходит в транспозицию букв i и j, повороты на $\pm 120^{\circ}$, представляющие собой всевозможные композиции $\sigma_{ij}\sigma_{ik}$ с попарно различными i, j, k, переходят в циклические перестановки букв i, j, k, три вращения на $\pm 180^{\circ}$ относительно осей, соединяющих середины противоположных рёбер, — в одновременные транспозиции непересекающихся пар букв: $\sigma_{12}\sigma_{34}=(2,\,1,4,\,3)$, $\sigma_{13}\sigma_{24}=(3,\,4\,,1,\,2)$, $\sigma_{14}\sigma_{23} = (4, 3, 2, 1).$

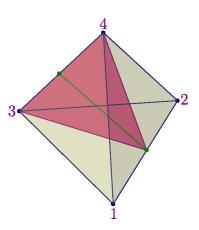
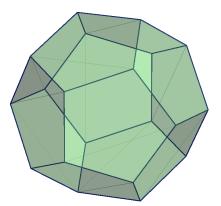


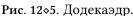
Рис. 12 \diamond 4. Плоскость симметрии σ_{12} и ось поворота $\sigma_{12}\sigma_{34}$ на 180°.

Упражнение 12.13. Убедитесь, что вместе с тождественным преобразованием эти три поворота образуют группу двуугольника D_2 .

Оставшиеся шесть несобственных преобразований тетраэдра отвечают шести циклическим перестановкам вершин $|1234\rangle$, $|1243\rangle$, $|1324\rangle$, $|1342\rangle$, $|1423\rangle$, $|1432\rangle$ и реализуются поворотами на $\pm 90^\circ$ относительно прямых, проходящих через середины противоположных рёбер с последующим отражением в плоскости, проходящей через центр тетраэдра и перпендикулярной оси поворота.

Упражнение 12.14. Выразите эти 6 движений через отражения σ_{ij} .





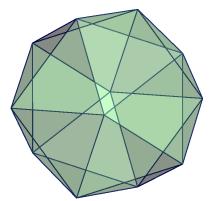


Рис. 12 6. Икосаэдр.

Пример 12.5 (группа додекаэдра)

Как и для тетраэдра, всякое вращение додекаэдра однозначно задаётся своим действием на аффинный репер, образованный вершиной и тремя выходящими из неё рёбрами, и может переводить эту вершину в любую из 20 вершин, а затем тремя способами совмещать рёбра с сохранением ориентации. Поэтому собственная группа додекаэдра

(см. рис. 12 \diamond 5 на стр. 184) состоит из 20 \cdot 3 = 60 движений: 6 \cdot 4 = 24 поворотов на углы $2\pi k/5$, $1 \leq k \leq 4$, вокруг осей, проходящих через центры противоположных граней додекаэдра, $10 \cdot 2 = 20$ поворотов на углы $\pm 2\pi/3$ вокруг осей, проходящих через противоположные вершины, 15 поворотов на 180° вокруг осей, проходящих через середины противоположных рёбер, и тождественного преобразования. Полная группа додекаэдра состоит из $20 \cdot 6 = 120$ движений и помимо перечисленных 60 поворотов содержит их композиции с центральной симметрией относительно центра додекаэдра.

Упражнение 12.15. Покажите что полные группы куба, октаэдра и икосаэдра состоят, соответственно из 48, 48 и 120 движений, а собственные — из 24, 24 и 60 поворотов.

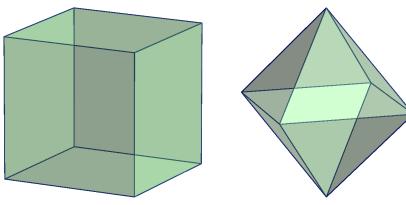


Рис. 12♦7. Куб.

Рис. 12 8. Октаэдр.

12.3. Гомоморфизмы групп. Отображение групп $\varphi: G_1 \to G_2$ называется гомоморфизмом, если оно переводит композицию в композицию, т. е. для любых $g,h \in G_1$ в группе G_2 выполняется соотношение $\varphi(gh) = \varphi(g)\varphi(h)$. Термины эпиморфизм, мономорфизм и изоморфизм применительно к отображению групп далее по умолчанию будут подразумевать, что это отображение является гомоморфизмом групп.

Упражнение 12.16. Убедитесь, что композиция гомоморфизмов тоже является гомоморфизмом.

Каждый гомоморфизм групп $\varphi:G_1\to G_2$ переводит единицу e_1 группы G_1 в единицу e_2 группы G_2 : равенство $\varphi(e_1)=e_2$ получается из равенств $\varphi(e_1)\varphi(e_1)=\varphi(e_1e_1)=\varphi(e_1)$ умножением правой и левой части на $\varphi(e_1)^{-1}$. Кроме того, для любого $g\in G$ выполняется равенство $\varphi(g^{-1})=\varphi(g)^{-1}$, поскольку $\varphi(g^{-1})\varphi(g)=\varphi(g^{-1}g)=\varphi(e_1)=e_2$. Поэтому образ

$$\operatorname{im} \varphi \stackrel{\text{def}}{=} \varphi(G_1) \subset G_2$$

гомоморфизма групп является nodepynno"u группы G_2 . Полный прообраз единицы $e_2\in G_2$

$$\ker \varphi \stackrel{\text{\tiny def}}{=} \varphi^{-1}\left(e_2\right) = \left\{g \in G_1 \mid \varphi(g_1) = e_2\right\} \ .$$

называется ядром гомоморфизма φ и является подгруппой в G_1 , поскольку из равенств $\varphi(g)=e_2$ и $\varphi(h)=e_2$ вытекает равенство $\varphi(gh)=\varphi(g)\varphi(h)=e_2e_2=e_2$, а из равенства $\varphi(g)=e_2$ — равенство $\varphi(g^{-1})=\varphi(g)^{-1}=e_2^{-1}=e_2$.

Предложение 12.1

Все непустые слои произвольного гомоморфизма групп $\varphi:G_1\to G_2$ находится во вза-имно однозначном соответствии его ядром $\ker\varphi$, причём $\varphi^{-1}\big(\varphi(g)\big)=g(\ker\varphi)=(\ker\varphi)g$, где $g(\ker\varphi)\stackrel{\mathrm{def}}{=}\{gh\mid h\in\ker\varphi\}$ и $(\ker\varphi)g\stackrel{\mathrm{def}}{=}\{hg\mid h\in\ker\varphi\}$.

Доказательство. Если $\varphi(t)=\varphi(g)$, то $\varphi(tg^{-1})=\varphi(t)\varphi(g)^{-1}=e$ и $\varphi(g^{-1}t)=\varphi(g)^{-1}\varphi(t)=e$, т. е. $tg^{-1}\in\ker\varphi$ и $g^{-1}t\in\ker\varphi$. Поэтому $t\in\ker\varphi$ и $t\in\ker\varphi$. Наоборот, для всех $t\in\ker\varphi$ выполняются равенства $\varphi(hg)=\varphi(h)\varphi(g)=\varphi(g)$ и $\varphi(gh)=\varphi(g)\varphi(h)=\varphi(g)$. Тем самым, полный прообраз $\varphi^{-1}\big(\varphi(g)\big)$ элемента $\varphi(g)$ совпадает и с $(\ker\varphi)g$, и с $g(\ker\varphi)$, а $(\ker\varphi)g$ и $g(\ker\varphi)$ совпадают друг с другом. Взаимно обратные биекции

$$\ker \varphi \xrightarrow[g^{-1}t \leftrightarrow t]{h \mapsto gh} g(\ker \varphi)$$

между ядром и слоем $\varphi^{-1}\big(\varphi(g)\big)=g(\ker\varphi)$ задаются левым умножением элементов ядра на g, а элементов слоя — на g^{-1} .

Следствие 12.1

Для того, чтобы гомоморфизм групп $\varphi: G_1 \to G_2$ был инъективен, необходимо и достаточно, чтобы его ядро исчерпывалось единичным элементом.

Следствие 12.2

Для любого гомоморфизма конечных групп $\varphi:G_1 \to G_2$ выполнено равенство

$$|\operatorname{im}(\varphi)| = |G_1|/|\ker(\varphi)|. \tag{12-8}$$

В частности, $|\ker \varphi|$ и $|\operatorname{im} \varphi|$ делят $|G_1|$.

Пример 12.6 (знакопеременные группы)

В сл. 9.1 на стр. 134 мы построили гомоморфизм симметрической группы в мультипли-кативную группу знаков sgn : $S_n \to \{\pm 1\}$, сопоставляющий перестановке её знак. Ядро знакового гомоморфизма обозначается $A_n = \ker \operatorname{sgn} u$ называется знакопеременной группой или группой чётных перестановок. Порядок $|A_n| = n!/2$.

Пример 12.7 (линейные группы)

Все линейные автоморфизмы произвольного векторного пространства V над произвольным полем \Bbbk образуют *полную линейную группу* GL(V). В n° 9.3.1 на стр. 138 мы построили гомоморфизм полной линейной группы в мультипликативную группу \Bbbk^* поля \Bbbk , сопоставляющий невырожденному линейному оператору $F:V \hookrightarrow V$ его определитель:

$$\det : \operatorname{GL}(V) \to \mathbb{k}^*, \quad F \mapsto \det F. \tag{12-9}$$

Ядро этого гомоморфизма называется специальной линейной группой и обозначается

$$SL(V) = \ker \det = \{F : V \cong V \det F = 1\}.$$

Если $\dim V = n$ и поле $\mathbbm{k} = \mathbbm{F}_q$ состоит из q элементов, полная линейная группа конечна и

$$\left| \mathrm{GL}_n(\mathbb{F}_q) \right| = (q^n - 1)(q^n - q)(q^n - q^2) \, \cdots \, (q^n - q^{n-1}) \, ,$$

поскольку элементы $\mathrm{GL}(V)\simeq\mathrm{GL}_n(\mathbb{F}_q)$ взаимно однозначно соответствуют базисам пространства V.

Упражнение 12.17. Убедитесь в этом.

Поскольку гомоморфизм (12-9) сюрьективен порядок специальной линейной группы

$$\left| \mathrm{SL}_n(\mathbb{F}_q) \right| = \left| \mathrm{GL}_n(\mathbb{F}_q) \right| / \left| \mathbb{k}^* | (q^n - 1) (q^n - q) (q^n - q^2) \, \cdots \, (q^n - q^{n-1}) / (q - 1)$$

Пример 12.8 (проективные группы)

Напомним², что проективное пространство $\mathbb{P}(V)$, ассоциированное с векторным пространством V, это множество, точками которого являются одномерные векторные подпространства в V или, что то же самое, классы пропорциональности ненулевых векторов в V. Каждый линейный оператор $F \in \mathrm{GL}(V)$ корректно задаёт биекцию $\overline{F}: \mathbb{P}(V) \to \mathbb{P}(V)$, переводящую класс вектора $v \neq 0$ в класс вектора F(v). Таким образом возникает гомоморфизм $F \mapsto \overline{F}$ группы $\mathrm{GL}(V)$ в группу биективных преобразований проективного пространства $\mathbb{P}(V)$. Образ этого гомоморфизма обозначается $\mathrm{PGL}(V)$ и называется $\mathrm{проективной}$ линейной группой пространства V. Из курса геометрии известно, что два оператора $F,G \in \mathrm{GL}(V)$ тогда и только тогда задают одинаковые преобразования $\overline{F} = \overline{G}$ проективного пространства $\mathbb{P}(V)$, когда они пропорциональны, т. е. $F = \lambda G$ для некоторого $\lambda \in \mathbb{k}^*$. Поэтому ядром эпиморфизма групп

$$\pi : GL(V) \twoheadrightarrow PGL(V), \quad F \mapsto \overline{F}$$
 (12-10)

является подгруппа гомотетий $\Gamma \simeq \mathbb{k}^*$, состоящая из диагональных скалярных операторов $v \mapsto \lambda v$, $\lambda \in \mathbb{k}^*$. Таким образом, группа PGL(V) образована классами пропорциональности линейных операторов. Классы пропорциональности операторов с единичным определителем образуют в ней подгруппу, обозначаемую PSL(V) \subset PGL(V). Ограничение эпиморфизма (12-10) на подгруппу SL(V) \subset GL(V) доставляет эпиморфизм

$$\pi' : SL(V) \rightarrow PSL(V), \quad F \mapsto \overline{F}$$
 (12-11)

ядром которого является конечная мультипликативная подгруппа $\mu_n(\Bbbk) \subset \Bbbk^*$ содержащихся в поле \Bbbk корней n-той степени из единицы, где³ $n = \dim V = \dim \mathbb{P}(V) + 1$.

Пример 12.9 (эпиморфизм $S_4 S_3$)

На проективной плоскости \mathbb{P}_2 над любым полем \mathbb{k} с каждой четвёркой точек a, b, c, d, никакие 3 из которых не коллинеарны связана фигура, образованная тремя парами проходящих через эти точки прямых⁴

$$(ab) \ u \ (cd), \quad (ac) \ u \ (bd), \quad (ad) \ u \ (bc)$$
 (12-12)

и называемая четырёхвершинником (см. рис. $12 \diamond 9$). Пары прямых (12 - 12) называются npo- musonoложными сторонами четырёхвершинника. С четырёхвершинником abcd ассоциирован треугольник xyz с вершинами в точках пересечения пар противоположных сторон

$$x = (ab) \cap (cd) \qquad y = (ac) \cap (bd) \qquad z = (ad) \cap (bc) \tag{12-13}$$

 $^{^1}$ диагональный оператор F с собственными значениями ($\lambda,\ 1,\ 1,\ \dots,\ 1$) имеет det $F=\lambda$

 $^{^{2}}$ мы предполагаем, что читатель знаком с проективными пространствами и проективными преобразованиями по курсу геометрии

 $^{^3}$ напомню, что по определению, dim $\mathbb{P}(V) \stackrel{\mathrm{def}}{=} \dim V - 1$

 $^{^4}$ они отвечают трём возможным способам разбить точки a,b,c,d на две пары

188 $\S 12 \, \Gamma$ руппы

Каждая перестановка вершин a, b, c, d однозначно определяет линейное проективное преобразование 1 плоскости, что даёт вложение 1

$$S_4\hookrightarrow \operatorname{PGL}_3(\Bbbk)\,.$$

Преобразования из S_4 переводят ассоциированный треугольник xyz в себя, переставляя его вершины x, y, z согласно формулам (12-13). Например, 3-цикл

$$(b, c, a, d) \in S_{\Delta}$$

задаёт циклическую перестановку (y,z,x), а транспозиции (b,a,c,d), (a,c,b,d) и (c,b,a,d) дают транспозиции (x,z,y), (y,x,z) и (z,y,x) соответственно. Таким образом, мы получаем сюрьективный гомоморфизм $S_4 \twoheadrightarrow S_3$. Его ядро имеет порядок 4!/3! = 4 и состоит из тождественной перестановки и трёх пар независимых транспозиций

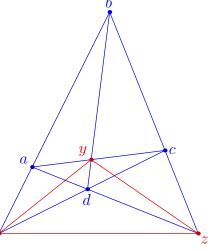


Рис. 12 9. Четырёхвешинник и треугольник.

$$(b, a, d, c), (c, d, a, b), (d, c, b, a).$$

Пример 12.10 (S_4 и собственная группа куба)

Линейные преобразования евклидова пространства \mathbb{R}_3 , составляющие собственную группу куба с центром в нуле, действуют на четырёх прямых a, b, c, d, соединяющих противоположные вершины куба, а также на трёх прямых x, y, z, соединяющих центры

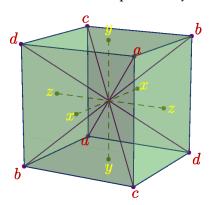


Рис. 12<10. От куба к

его противоположных граней (см. рис. $12\diamond 10$). На проективной плоскости $\mathbb{P}_2=\mathbb{P}(\mathbb{R}^3)$ эти 7 прямых становятся вершинами четырёхвершинника abcd и ассоциированного с ним треугольника xyz (см. рис. $12\diamond 9$). Поворот на 180° вокруг оси, соединяющей середины противоположных рёбер куба, меняет местами примыкающие к этому ребру диагонали и переводит в себя каждую их двух оставшихся диагоналей. Тем самым, вращения куба осуществляют транспозиции любых двух соседних диагоналей, и мы имеем сюрьективный гомоморфизм

$$SO_{KVO} \rightarrow S_4$$
. (12-14)

четырёхвершиннику. Так как обе группы имеют порядок 24, это изоморфизм. Он переводит 6 поворотов на $\pm 90^\circ$ вокруг прямых x, y, z в 6 циклов длины 4 циклового типа $\boxed{}$, 3 поворота на 180° вокруг тех же прямых — в 3 пары независимых транспозиций циклового типа $\boxed{}$, 8 поворотов на $\pm 120^\circ$ вокруг прямых a, b, c, d — в 8 циклов длины 3 циклового типа $\boxed{}$, а 6 поворотов на 180° вокруг осей, проходящих через середины противоположных рёбер — в 6 простых транспозиций циклового типа $\boxed{}$.

 $^{^1}$ напомню, что каждое линейное проективное преобразование $\overline{F} \in \mathrm{PGL}(V)$ однозначно определяется своим действием на любые $\dim V + 1$ точек пространства $\mathbb{P}(V)$, никакие $\dim V$ из которых не лежат в одной гиперплоскости

Гомоморфизм $SO_{\kappa v \delta} \to S_3$, возникающий из действия группы куба на прямых x, y, z, согласован с изоморфизмом (12-14) и эпиморфизмом $S_4 S_3$ из предыдущего прим. 12.9. Его ядро состоит из собственных ортогональных преобразований евклидова пространства \mathbb{R}^3 , переводящих в себя каждую из декартовых координатных осей x, y, z в \mathbb{R}^3 , и совпадает, таким образом, с группой двуугольника D_2 с осями x, y, z. В таком контексте эту группу иногда называют четвертной группой Клейна и обозначают V_4 . Изоморфизм (12-14) переводит её в ядро эпиморфизма $S_4 \twoheadrightarrow S_3$ из предыдущего прим. 12.9.

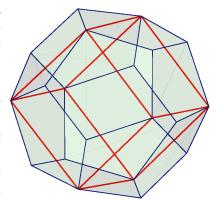
Пример 12.11 (собственная группа додекаэдра и A_5)

Любая диагональ любой грани додекаэдра единственным образом достраивается до лежащего на поверхности додекаэдра куба, образованного диагоналями граней так, что в каждой грани рисуется ровно одна диагональ¹, как на рис. 12♦11. Всего на поверхности додекаэдра имеется ровно 5 таких кубов — они биективно соответствуют пяти диагоналям

какой-либо фиксированной грани. Собственная группа додекаэдра переставляет эти кубы друг с другом, что даёт гомоморфизм собственной группы додекаэдра в симметрическую группу S_5 :

$$\psi_{\text{пол}}: SO_{\text{пол}} \to S_5$$
 (12-15)

Глядя на модель додекаэдра, легко видеть, что образами $20 \cdot 3 = 60$ поворотов, из которых состоит группа $SO_{\text{пол}}$ будут в точности 60 чётных перестановок: $6 \cdot 4 = 24$ поворота на углы $2\pi k/5$, $1 \le k \le 4$, вокруг осей, проходящих через центры противоположных граней, переходят Рис. 12011. Один из пяти кубов во всевозможные циклы длины 5, т. е. в 24 перестановки циклового типа (10.0000); $10 \cdot 2 = 20$ поворотов на углы



на додекаэдре.

 $\pm 2\pi/3$ вокруг осей, проходящих через противоположные вершины додекаэдра, переходят во всевозможные циклы длины 3, т. е. в 20 перестановок циклового типа тов на 180° вокруг осей, проходящих через середины противоположных рёбер додекаэдра, переходят во всевозможные пары независимых транспозиций, т. е. в 10 перестановок циклового типа 🕌. Оставшееся неучтённым тождественное преобразование додекаэдра задаёт тождественную перестановку кубов. Таким образом, гомоморфизм (12-15) является изоморфизмом собственной группы додекаэдра со знакопеременной подгруппой $A_5 \subset S_5$. В отличие от примера прим. 12.4 переход от собственной группы додекаэдра к полной не добавляет новых перестановок кубов, поскольку каждое несобственное движение является композицией собственного движения и центральной симметрии, которая переводит каждый из кубов в себя.

Упражнение 12.18. Покажите, что симметрическая группа S_{ϵ} не изоморфна полной группе додекаэдра.

¹проще всего это увидеть на модели додекаэдра, которую мы ещё раз настоятельно рекомендуем изготовить

190

12.4. Действие группы на множестве. Пусть G — группа, а X — множество. Обозначим через Aut(X) группу всех взаимно однозначных отображений из X в себя. Гомоморфизм $\varphi: G \to \operatorname{Aut}(X)$ называется действием группы G на множестве X или представлением группы G автоморфизмами множества X. Отображение $\varphi(g): X \to X$, отвечающее элементу $g \in G$ при действии φ часто бывает удобно обозначать через $\varphi_a: X \to X$. Тот факт, что сопоставление $g\mapsto arphi_{g}$ является гомоморфизмом групп, означает, что $arphi_{gh}=arphi_{g}\circ arphi_{h}$ для всех $g,h \in G$. Если понятно, о каком действии идёт речь, мы часто будем сокращать $\varphi_{a}(x)$ до gx. При наличии действия группы G на множестве X мы пишем G: X. Действие называется mpaнзитивным, если любую точку множества X можно перевести в любую другую точку каким-нибудь преобразованием из группы G, т.е. $\forall x,y \in X \exists g \in G$ $G \ : \ gx = y$. Более общим образом, действие называется m-mранзиmивным, если любые два упорядоченных набора из m различных точек множества X можно перевести друг в друга подходящими преобразованиями из G. Действие называется csofodhim, если каждый отличный от единицы элемент группы действует на X без неподвижных точек, т. е. $\forall g \in G \ \forall x \in X \ gx = x \Rightarrow g = e$. Действие $\varphi : G \to \operatorname{Aut} X$ называется *точным* (или *эффективным*), если каждый отличный от единицы элемент группы действует на X нетождественно, т. е. когда ker $\varphi = e$. Точное представление отождествляет G с группой преобразований $\varphi(G) \subset \operatorname{Aut}(X)$ множества X. Отметим, что любое свободное действие точно.

Пример 12.12 (регулярные действия)

Обозначим через X множество элементов группы G, а через $\operatorname{Aut}(X)$ — группу автоморфизмов этого $\operatorname{множесmsa}^1$. Отображение $\lambda:G\to\operatorname{Aut}X$, переводящее элемент $g\in G$ в преобразование $\lambda_g:x\mapsto gx$ левого умножения на g является гомоморфизмом групп, поскольку $\lambda_{gh}(x)=ghx=\lambda_g(hx)=\lambda_g\left(\lambda_h(x)\right)=\lambda_g\circ\lambda_h(x)$. Оно называется $\operatorname{левым}$ регулярным действием группы G на себе. Так как равенство gh=h в группе G влечёт равенство g=e, левое регулярное действие свободно g=e0, в частности, точно. Симметричным образом, g=e0 преобразование g=e1 правого умножения на обратный g=e3 премент.

Упражнение 12.19. Убедитесь, что ϱ_g является свободным действием.

Тем самым, любая абстрактная группа G может быть реализована как группа преобразований некоторого множества. Например, левые регулярные представления числовых групп реализуют аддитивную группу $\mathbb R$ группой сдвигов $\lambda_v: x\mapsto x+v$ числовой прямой , а мультипликативную группу $\mathbb R^*$ — группой гомотетий $\lambda_c: x\mapsto cx$ проколотой прямой $\mathbb R^*=\mathbb R\smallsetminus\{0\}$.

Пример 12.13 (присоединённое действие)

Отображение Ad : $G \to Aut(G)$, сопоставляющее элементу $g \in G$ автоморфизм сопряже-

 $^{^1}$ возможно, не перестановочных с имеющейся в G композицией, т. е. не обязательно являющихся автоморфизмами $\it группы G$

 $^{^2}$ обратите внимание, что это преобразование множества X не является гомоморфизмом группы G, поскольку равенство $g(h_1h_2)=(gh_1)(gh_2)$, вообще говоря, не выполняется

³появление g^{-1} не случайно: проверьте, что сопоставление элементу $g \in G$ отображения правого умножения на g является не гомоморфизмом, а антигомоморфизмом (т. е. оборачивает порядок сомножителей в произведениях)

ния этим элементом

$$\operatorname{Ad}_{g}: G \to G, \quad h \mapsto ghg^{-1},$$
 (12-16)

называется присоединённым действием группы G на себе.

Упражнение 12.20. Убедитесь, что $\forall g \in G$ сопряжение (12-16) является *гомоморфизмом* из G в G и что отображение $g \mapsto \mathrm{Ad}_g$ является гомоморфизмом из G в G Aut G.

Образ присоединённого действия $Ad(G) \subset Aut\ G$ обозначается Int(G) и называется группой внутренних автоморфизмов группы G. Не лежащие в Int(G) автоморфизмы группы G называются внешними.

В отличие от левого и правого регулярных действий присоединённое действие, вообще говоря, не свободно и не точно. Например, если группа G абелева, все внутренние автоморфизмы (12-16) тождественные, и ядро присоединённого действия в этом случае совпадает со всей группой. В общем случае $\ker(\mathrm{Ad})$ образовано такими $g \in G$, что $ghg^{-1} = h$ для всех $h \in G$. Последнее равенство равносильно равенству gh = hg и означает, что g коммутирует со всеми элементами группы. Подгруппа элементов, перестановочных со всеми элементами группы G называется gh и обозначается

$$Z(G) = \ker(\mathrm{Ad}) = \{g \in G \mid \ \forall \, h \in G \ gh = hg\} \ .$$

Стабилизатор заданного элемента $g \in G$ в присоединённом действии состоит из всех элементов группы, коммутирующих с g. Он называется централизатором элемента g и обозначается $C_g = \operatorname{Stab}_{\operatorname{Int}(G)}(g) = \{h \in G \mid hg = gh\}$.

12.4.1. Орбиты. Со всякой группой преобразований G множества X связано бинарное отношение $y \sim x$ на X, означающее, что y = gx для некоторого $g \in G$. Это отношение рефлексивно, ибо x = ex, симметрично, поскольку $y = gx \iff x = g^{-1}y$, и транзитивно, т. к. из равенств y = gx и z = hy вытекает равенство z = (hg)x. Таким образом, это отношение является эквивалентностью. Класс эквивалентности точки $x \in X$ состоит из всех точек, которые можно получить из x, применяя всевозможные преобразования из группы G. Он обозначается $Gx = \{gx \mid g \in G\}$ и называется орбитой x под действием x0. Согласно x1.4 на стр. 10 множество x3 распадается в дизъюнктное объединение орбит. Множество всех орбит называется x4 и обозначается x5.

С каждой орбитой Gx связано сюрьективное отображение множеств $ev_x: G \twoheadrightarrow Gx$, $g \mapsto gx$, слой которого над точкой $y \in Gx$ состоит из всех преобразований из группы G, переводящих x в y. Он называется $mpahcnopm\ddot{e}pom$ из x в y и обозначается

$$G_{vx} = \{g \in G \mid gx = y\}.$$

Слой над самой точкой x состоит из всех преобразований, оставляющих x на месте. Он называется cmaбuлuзamopom точки x в группе G и обозначается

$$Stab_G(x) = G_{xx} = \{ g \in G \mid gx = x \}$$
 (12-17)

или просто Stab(x), если понятно, о какой группе G идёт речь.

Упражнение 12.21. Убедитесь, что $Stab_G(x)$ является подгруппой в группе G.

¹при желании его можно воспринимать как «некоммутативное» отображения вычисления

Если y = gx и z = hx, то для любого $s \in \operatorname{Stab}(x)$ преобразование $hsg^{-1} \in G_{zy}$. Наоборот, если fy = z, то $h^{-1}fg \in \operatorname{Stab}(x)$. Таким образом, мы имеем обратные друг другу отображения множеств:

$$\operatorname{Stab}(x) \xrightarrow{s \mapsto hsg^{-1}} G_{zy}, \qquad (12-18)$$

и стало быть, для любых трёх точек x, y, z из одной G-орбиты имеется биекция между G_{zy} и $\mathrm{Stab}(x)$.

Предложение 12.2 (формула для длины орбиты)

Длина орбиты произвольной точки x при действии на неё конечной группы преобразований G равна |Gx| = |G|: $|\operatorname{Stab}_G(x)|$. В частности, длины всех орбит и порядки стабилизаторов всех точек являются делителями порядка группы.

Доказательство. Группа G является дизъюнктным объединением множеств G_{yx} по всем $y \in Gx$ и согласно предыдущему все эти множества состоят из $|\operatorname{Stab}(x)|$ элементов.

Предложение 12.3

Стабилизаторы всех точек, лежащих в одной орбите конечной группы, сопряжены:

$$y = gx \Rightarrow \operatorname{Stab}(y) = g \operatorname{Stab}(x) g^{-1} = \{ghg^{-1} \mid h \in \operatorname{Stab}(x)\}.$$

В частности, все они имеют одинаковый порядок.

Доказательство. Это сразу следует из диаграммы (12-18).

Пример 12.14 (действие перестановок букв на словах)

Зафиксируем какой-нибудь k-буквенный алфавит $A = \{a_1, a_2, \dots, a_k\}$ и рассмотрим множество X всех n-буквенных слов w, которые можно написать c его помощью. Иначе X можно воспринимать как множество всех отображений $w: \{1, 2, \dots, n\} \to A$. Сопоставим каждой перестановке $\sigma \in S_n$ преобразование $w \mapsto w\sigma^{-1}$, которое переставляет буквы в словах так, как предписывает σ . Таким образом, мы получили действие симметрической группы S_n на множестве слов.

Орбита слова $w \in X$ под действием этой группы состоит из всех слов, где каждая буква алфавита встречается столько же раз, сколько в слове w. Стабилизатор $\mathrm{Stab}(w)$ слова w, в котором буква a_i встречается m_i раз (для каждого $i=1,\ldots,k$), состоит из перестановок между собою одинаковых букв и имеет порядок $|\mathrm{Stab}(w)| = m_1! \cdot m_2! \cdot \cdots \cdot m_k!$. Тем самым, длина орбиты такого слова равна мультиномиальному коэффициенту

$$|S_n w| = \frac{|S_n|}{|\operatorname{Stab}(w)|} = \frac{n!}{m_1! \cdot m_2! \cdot \dots \cdot m_k!} = \binom{n}{m_1 \dots m_k}.$$

Этот пример показывает, что разные орбиты могут иметь разную длину, и порядки стабилизаторов точек из разных орбит могут быть разными.

 $^{^{1}}$ т. е. переводит слово $w=a_{\nu_{1}}a_{\nu_{2}}\dots a_{\nu_{n}}$ в слово $a_{\nu_{\sigma^{-1}(1)}}a_{\nu_{\sigma^{-1}(2)}}\dots a_{\nu_{\sigma^{-1}(n)}}$, на i-том месте которого стоит та буква, номер которой в исходном слове w переводится перестановкой σ в номер i

Упражнение 12.22. Для каждого из пяти платоновых тел рассмотрите действие группы этого тела на его гранях и по формуле для длины орбиты найдите порядок собственной и несобственной группы каждого из платоновых тел.

Пример 12.15 (классы сопряжённости в симметрической группе)

Перестановка $\mathrm{Ad}_g(\sigma)=g\sigma g^{-1}$, сопряжённая перестановке $\sigma=(\sigma_1,\sigma_2,\dots,\sigma_n)\in S_n$, для каждого $i=1,2,\dots,n$ переводит элемент g(i) в элемент $g(\sigma_i)$. Поэтому при сопряжении цикла $\tau=|i_1,i_2,\dots,i_k\rangle\in S_n$ перестановкой $g=(g_1,g_2,\dots,g_n)$ получится цикл

$$g\tau g^{-1} = \left| g_{i_1}, \, g_{i_2}, \, \dots, \, g_{i_k} \right\rangle.$$

Если перестановка $\sigma \in S_n$ имеет цикловой тип λ и является произведением независимых циклов, записанных по строкам диаграммы λ , то действие на такую перестановку внутреннего автоморфизма Ad_g заключается в применении отображения g к заполнению диаграммы λ , т. е. в замене каждого числа i числом g_i .

Таким образом, орбиты присоединённого действия симметрической группы S_n на себе взаимно однозначно соответствуют n-клеточным диаграммам Юнга, и орбита, отвечающая диаграмме λ , состоит из всех перестановок циклового типа λ . Если диаграмма λ имеет m_i строк длины i для каждого $i=1,\,2,\,\ldots\,,n$, то централизатор любой перестановки σ циклового типа λ состоит из таких перестановок элементов заполнения диаграммы λ независимыми циклами перестановки σ , которые не меняют σ , т. е. циклически переставляют элементы вдоль строк или произвольным образом переставляют строки одинаковой длины между собой как единое целое. Тем самым, порядок стабилизатора перестановки циклового типа λ зависит только от λ и равен

$$z_{\lambda} = 1^{m_1} \cdot m_1! \cdot 2^{m_2} \cdot m_2! \cdot \cdots \cdot n^{m_n} \cdot m_n! = \prod_{\alpha=1}^n m_{\alpha}! \alpha^{m_{\alpha}}.$$

Количество перестановок циклового типа λ , т. е. длина соответствующей орбиты присоединённго действия, равна $n!/z_{\lambda}$.

12.4.2. Перечисление орбит. Подсчёт числа элементов в факторе X / G конечного множества X по действию конечной группы G наталкивается на очевидную трудность: поскольку длины у орбит могут быть разные, число орбит «разного типа» придётся подсчитывать по отдельности, заодно уточняя по ходу дела, что именно имеется в виду под «типом орбиты». Разом преодолеть обе эти трудности позволяет

Теорема 12.2 (формула Полиа – Бернсайда)

Пусть конечная группа G действует на конечном множестве X. Для каждого $g \in G$ обозначим через $X^g = \{x \in X \mid gx = x\} = \{x \in X \mid g \in \operatorname{Stab}(x)\}$ множество неподвижных точек преобразования g. Тогда $|X/G| = |G|^{-1} \sum_{g \in G} |X^g|$.

Доказательство. Обозначим через $F\subset G\times X$ множество всех таких пар (g,x), что gx=x. Иначе F можно описать как $F=\bigsqcup_{x\in X}\operatorname{Stab}(x)=\bigsqcup_{g\in G}X^g$. Первое из этих описаний получается из рассмотрения проекции $F\to X$, второе — из рассмотрения проекции $F\to G$. Согласно второму описанию, $|F|=\sum_{g\in G}|X^g|$. С другой стороны, из первого описания мы заключаем,

что $|F| = |G| \cdot |X/G|$. В самом деле, стабилизаторы всех точек, принадлежащих одной орбите, имеют одинаковый порядок, и сумма этих порядков по всем точкам орбиты равна произведению порядка стабилизатора на длину орбиты, т. е. |G|. Складывая по всем |X/G| орбитам, получаем требуемое.

Пример 12.16 (ожерелья)

Пусть имеется неограниченный запас одинаковых по форме бусин n различных цветов. Сколько различных ожерелий можно сделать из 6 бусин? Ответом на этот вопрос является количество орбит группы диэдра D_6 на множестве всех раскрасок вершин правильного шестиугольника в n цветов. Группа D_6 состоит из 12 элементов: тождественного преобразования e, двух поворотов $\tau^{\pm 1}$ на $\pm 60^\circ$, двух поворотов $\tau^{\pm 2}$ на $\pm 120^\circ$, центральной симметрии τ^3 , трёх отражений σ_{14} , σ_{23} , σ_{36} относительно больших диагоналей и трёх отражений $\overline{\sigma}_{14}$, $\overline{\sigma}_{23}$, $\overline{\sigma}_{36}$ относительно срединных перпендикуляров к сторонам. Единица оставляет на месте все n^6 раскрасок. Раскраски, симметричные относительно остальных преобразований, показаны на рис. 12 \diamond 12. Беря на этих рисунках все допустимые сочетания цветов, получаем, соответственно, n, n^2 , n^3 , n^4 и n^3 раскрасок. По теор. 12.2 искомое число 6-бусинных ожерелий равно $\left(n^6+3\,n^4+4\,n^3+2\,n^2+2\,n\right)/12$.

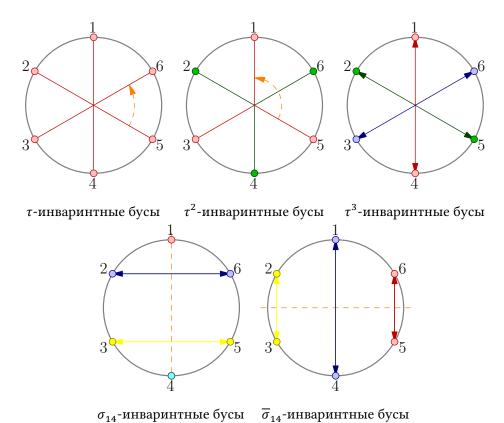


Рис. 12<12. Симметричные ожерелья из шести бусин.

Упражнение 12.23. Подсчитайте количество ожерелий из 7, 8, 9, и 10 бусин.

12.5. Смежные классы и факторизация. Каждая подгруппа $H\subset G$ задаёт на группе G два отношения эквивалентности, происходящие из левого и правого регулярного действия подгруппы H на группе G. Левое действие $\lambda_h:g\mapsto hg$ приводит к эквивалентности

$$g_1 \sim g_2 \iff g_1 = hg_2$$
 для некоторого $h \in H$, (12-19)

разбивающей группу G в дизъюнктное объединение орбит вида $Hg \stackrel{\text{def}}{=} \{hg \mid h \in H\}$, называемых *правыми смежными классами* (или *правыми сдвигами*) подгруппы H в группе G. Множество правых смежных классов обозначается $H \setminus G$.

Упражнение 12.24. Покажите, что равенство $Hg_1=Hg_2$ равносильно любому из эквивалентных друг другу включений $g_1^{-1}g_2\in H$, $g_2^{-1}g_1\in H$.

С правым действием $\varrho_h:g\mapsto gh^{-1}$ связано отношение эквивалентности

$$g_1 \underset{p}{\sim} g_2 \iff g_1 = g_2 h$$
 для некоторого $h \in H$, (12-20)

разбивающее группу G в дизъюнктное объединение орбит $gH \stackrel{\text{def}}{=} \{gh \mid h \in H\}$, которые называются левыми смежными классами (или левыми сдвигами) подгруппы H в группе G. Множество левых смежных классов обозначается G/H.

Поскольку и левое и правое действия подгруппы H на группе G свободны, все орбиты каждого из них состоят из |H| элементов. Тем самым, число орбит в обоих действиях одинаково и равно |G|/|H|. Это число называется undeкcom подгруппы H в группе G и обозначается $[G:H] \stackrel{\text{def}}{=} |G/H|$. Нами установлена

Теорема 12.3 (теорема Лагранжа об индексе подгруппы)

Порядок и индекс любой подгруппы H в произвольной конечной группе G нацело делят порядок G и [G:H]=|G|:|H|.

Следствие 12.3

Порядок любого элемента конечной группы нацело делит порядок группы.

Доказательство. Порядок элемента $g \in G$ равен порядку порождённой им циклической подгруппы $\langle g \rangle \subset G$.

12.5.1. Нормальные погруппы. Подгруппа $H \subset G$ называется нормальной (или инвариантной), если для любого $g \in G$ выполняется равенство $gHg^{-1} = H$ или, что то же самое, gH = Hg. Иначе можно сказать, что подгруппа $H \subset G$ нормальна тогда и только тогда, когда левая и правая эквивалентности (13-1) и (13-2) совпадают друг с другом и, в частности, $H \setminus G = G/H$. Если подгуппа $H \subset G$ нормальна, мы пишем $H \triangleleft G$.

Пример 12.17 (ядра гомоморфизмов)

Ядро любого гомоморфизма групп $\varphi: G_1 \to G_2$ является нормальной подгруппой в G_1 , поскольку при $\varphi(h) = e$ для любого $g \in G$ имеем равенство $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = e$, означающее, что g (ker φ) $g^{-1} \subset \ker \varphi$.

Упражнение 12.25. Покажите, что если для любого $g \in G$ есть включение $gHg^{-1} \subset H$, то все эти включения — равенства.

Отметим, что совпадение правых и левых смежных классов ядра g (ker φ) = (ker φ) g уже было установлено нами ранее в предл. 12.1.

Пример 12.18 ($V_4 \lhd S_4$)

Подгруппа Клейна $V_4 \subset S_4$ состоящая из перестановок циклового типа \square и тождественной перестановки нормальна.

Пример 12.19 (внутренние автоморфизмы)

Подгруппа внутренних автоморфизмов $\operatorname{Int}(G)=\operatorname{Ad}(G)$ нормальна в группе $\operatorname{Aut}(G)$ всех автоморфизмов группы G, поскольку сопрягая внутренний автоморфизм $\operatorname{Ad}_g:h\mapsto ghg^{-1}$ произвольным автоморфизмом $\varphi:G\hookrightarrow G$, мы получаем внутренний автоморфизм $\varphi\circ\operatorname{Ad}_g\circ\varphi^{-1}=\operatorname{Ad}_{\varphi(g)}$.

Упражнение 12.26. Убедитесь в этом.

Пример 12.20 (параллельные переносы)

Подгруппа параллельных переносов нормальна в группе $\mathrm{Aff}(\mathbb{A}^n)$ всех биективных аффинных преобразований аффинного пространства \mathbb{A}^n , т. к. сопрягая параллельный перенос τ_v на вектор v любым аффинным преобразованием $\varphi:\mathbb{A}^n\to\mathbb{A}^n$, получаем перенос $\tau_{D_m(v)}$ на вектор $D_{\varphi}(v)$.

Упражнение 12.27. Убедитесь в этом.

12.5.2. Фактор группы. Попытка определить умножение на множестве левых смежных классов G/H неабелевой группы G формулой

$$(g_1 H) \cdot (g_2 H) \stackrel{\text{def}}{=} (g_1 g_2) H, \qquad (12-21)$$

вообще говоря, некорректна: различные записи $g_1H=f_1H$ и $g_2H=f_2H$ одних и тех же классов могут приводить к различным классам $(g_1g_2)H \neq (f_1f_2)H$.

Упражнение 12.28. Убедитесь, что для группы $G=S_3$ и подгруппы второго порядка $H\subset G$, порождённой транспозицией σ_{12} , формула (13-3) некорректна.

Предложение 12.4

Для того, чтобы правило $g_1H\cdot g_2H=(g_1g_2)H$ корректно определяло на G/H структуру группы, необходимо и достаточно, чтобы подгруппа H была нормальна в G.

Доказательство. Если формула (13-3) корректна, то она задаёт на множестве смежных левых классов G/H групповую структуру: ассоциативность композиции наследуется из 2 G, единицей служит класс eH=H, обратным к классу gH — класс $g^{-1}H$. Факторизация $G \twoheadrightarrow G/H$, $g \mapsto gH$, является гомоморфизмом групп с ядром H. Поэтому подгруппа H нормальна в силу прим. 13.1. Наоборот, пусть H нормальна и пусть $f_1H=g_1H$ и $f_2H=g_2H$. Мы должны убедиться, что $(f_1f_2)H=(g_1g_2)H$. Так как левый смежный класс $f_2H=g_2H$ совпадает с правым классом Hg_2 , каждый элемент вида f_1f_2h можно переписать как $f_1h_1g_2$ с подходящими $h_1\in H$. Аналогично, $f_1h_1=h_2g_1$ для подходящего

 $^{^1}$ напомним, что преобразование $\varphi:\mathbb{A}(V)\to\mathbb{A}(V)$ аффинного пространства $\mathbb{A}(V)$, ассоциированного с векторным пространством V, называется $a\phi\phi$ инным, если отображение $D_{\varphi}:\overrightarrow{pq}\mapsto \overrightarrow{\phi(p)\phi(q)}$ является корректно определённым линейным преобразованием векторного пространства V (оно называется ∂ ифференциалом отображения $\varphi)$

 $^{{}^{2}(}g_{1}H \cdot g_{2}H) \cdot g_{3}H = (g_{1}g_{2})H \cdot g_{3}H = ((g_{1}g_{2})g_{3})H = (g_{1}(g_{2}g_{3}))H = g_{1}H \cdot (g_{2}g_{3})H = g_{1}H \cdot (g_{2}H \cdot g_{3}H)H = (g_{1}g_{2}H \cdot g_{3}H)H + (g_{2}H \cdot g_{3}H)H = (g_{1}g_{2}H \cdot g_{3}H)H + (g_{2}H \cdot g_{3}H)H = (g_{1}g_{2}H \cdot g_{3}H)H + (g_{2}H \cdot g_{3}H)H = (g_{1}H \cdot g_{2}H \cdot g_{3}H)H + (g_{2}H \cdot g$

 $h_2\in H$ в виду равенств $f_1H=g_1H=Hg_1$. Наконец из равенства $H(g_1g_2)=(g_1g_2)H$ мы заключаем, что $f_1f_2h=h_2g_1g_2=g_1g_2h_3$ для некоторого $h_3\in H$, откуда $(f_1f_2)H\subset (g_1g_2)H$. Противоположное включение доказывается аналогично.

Определение 12.2

Множество смежных классов G/H нормальной подгруппы $H \lhd G$ с групповой структурой $g_1H \cdot g_2H \stackrel{\text{def}}{=} (g_1g_2)H$ называется фактором (или фактор группой) группы G по нормальной подгруппе H. Гомоморфизм групп $G \twoheadrightarrow G/H$, $g \mapsto gH$, называется гомоморфизмом факторизации.

Следствие 12.4

Каждый гомоморфизм групп $\varphi:G_1\to G_2$ является композицией эпиморфизма факторизации $G_1\twoheadrightarrow G_1$ /ker φ и мономорфизма G_1 /ker $\varphi\hookrightarrow G_2$, переводящего смежный класс $g\ker\varphi\in G_1$ /ker φ в элемент $\varphi(g)\in G_2$. В частности, im $\varphi\simeq G$ /ker φ .

Доказательство. Следствие утверждает, что слой $\varphi^{-1}(\varphi(g))$ гомоморфизма φ над каждой точкой $\varphi(g) \in \text{im } \varphi \subset G_2$ является левым сдвигом ядра $\ker \varphi$ на элемент g, что мы уже видели в предл. 12.1 на стр. 186.

Предложение 12.5

Пусть $N, H \subset G$ — две подгруппы, причём $N \lhd G$ нормальна. Убедитесь, что множество $HN = \{hx \mid h \in H, x \in N\}$ является подгруппой в $G, H \cap N \lhd H, N \lhd HN$ и $HN/N \simeq H/(H \cap N)$.

Доказательство. $HN\subset G$ — подгруппа, поскольку при $h_1,h_2,h\in H$ и $x_1,x_2,x\in N$

$$h_1 x_1 h_2 x_2 = (h_1 h_2) (h_2^{-1} x_1 h_2 \cdot x_2) \in HN,$$

$$(hx)^{-1} x^{-1} h^{-1} = h^{-1} (hxh^{-1}) \in HN,$$
(12-22)

т. к. $h_2^{-1}x_1h_2\in N$ и $hxh^{-1}\in N$. Нормальность $H\cap N\lhd H$ следует из нормальности $N\lhd G$. Сюрьективное отображение $\varphi:HN\to H/(H\cap N)$, переводящее произведение hx в класс $h\cdot (H\cap N)$, корректно определено, поскольку $h_1x_1=h_2x_2\Rightarrow h_1^{-1}h_2=x_1x_2^{-1}\in H\cap N$, откуда $h_1\cdot (H\cap N)=h_1\cdot (h_1^{-1}h_2)\cdot (H\cap N)=h_2\cdot (H\cap N)$. Вычисление (13-4) показывает, что φ — гомоморфизм групп. Так как $\ker \varphi=eN=N$, по сл. 13.2 имеем $H/(H\cap N)=\lim \varphi\simeq HN/\ker \varphi=HN/N$.

Упражнение 12.29. Пусть $\varphi:G_1 \twoheadrightarrow G_2$ — сюрьективный гомоморфизм групп. Покажите, что полный прообраз $N_1=\varphi^{-1}(N_2)$ любой нормальной подгруппы $N_2 \lhd G_2$ является нормальной подгруппой в G_1 и $G_1/N_1 \simeq G_2/N_2$.

12.5.3. Геометрический смысл нормальности. Согласно предл. 13.1 и прим. 13.1 нормальность подгруппы $H \subset G$ равносильна наличию гомоморфизма $\varphi: G \to G'$ с ядром $H = \ker \varphi$. Если группа G' представлена как группа преобразований какого-либо множества X, то возникает такое действие $G \to \operatorname{Aut} X$ исходной группы G на G на G на G точку G Таким образом, нормальность подгруппы G означает наличие действия группы G на некоем множестве G с ядром G на некоем множестве G с ядром G на нарах противоположных граней.

¹как мы видели в прим. 12.12, такое представление всегда возможно

Ответы и указания к некоторым упражнениям

Упр. 12.1. Если fg = e и gh = e, то f = fe = f(gh) = (fg)h = eh = h.

Упр. 12.2. Для двух единичных элементов e' и e'' выполнены равенства e'=e'e''=e''.

Упр. 12.4. Ответ: либо r=1 и Tors(G)=0 (т. е. $G\simeq \mathbb{Z}$), либо r=0 (т. е. G конечна) и каждое простое число $p\in \mathbb{N}$ присутствует в каноническом разложении

$$G = \frac{\mathbb{Z}}{\left(p_1^{n_1}\right)} \oplus \cdots \oplus \frac{\mathbb{Z}}{\left(p_{\alpha}^{n_{\alpha}}\right)}$$

не более одного раза. Доказательство аналогично доказательству предл. 11.3 на стр. 166.

Упр. 12.5. Пусть k = dr, $m = \operatorname{ord}(\tau) = ds$, где $\operatorname{hog}(r,s) = 1$. Если d > 1, то τ^d является произведением d независимых циклов длины s, и $\tau^k = \left(\tau^d\right)^r$ будет произведением s-тых степеней этих циклов. Остаётся показать, что когда $\operatorname{ord}(\tau) = m$ взаимно прост с k, то τ^k тоже цикл длины m. Если для какого-то элемента a цикла τ выполняется равенство $\left(\tau^k\right)^r(a) = a$, то kr делится на m, что при $\operatorname{hog}(k,m) = 1$ возможно только когда r делится на r. Поэтому $r \geqslant m$, т. е. длина содержащего r цикла перестановки τ^k не меньше r.

Упр. 12.6. Ответ: $n(n-1)\cdots(n-k+1)/k$ (в числителе дроби k сомножителей).

Упр. 12.7. Непересекающиеся циклы очевидно коммутируют. Если коммутирующие циклы τ_1 и τ_2 пересекаются по элементу a, то $\tau_1(a)$ является элементом цикла τ_2 , поскольку в противном случае $\tau_2\tau_1(a)=\tau_1(a)$, а $\tau_1\tau_2(a)\neq\tau_1(a)$, так как $\tau_2(a)\neq a$. По той же причине $\tau_2(a)$ является элементом цикла τ_1 , и значит, оба цикла состоят из одних и тех же элементов. Пусть $\tau_1(a)=\tau_2^s(a)$. Любой элемент b, на который оба цикла реально действуют имеет вид $b=\tau_1^r(a)$, и цикл τ_1 действует на него как τ_2^s :

$$\tau_1(b) = \tau_1 \tau_2^r(a) = \tau_2^r \tau_1(a) = \tau_2^r \tau_2^s(a) = \tau_2^s \tau_2^r(a) = \tau_2^s(b).$$

Второе утверждение следует из упр. 12.5.

Упр. 12.8. Ответ: $n!/\prod_{i=1}^n i^{m_i} m_i!$ (ср. с формулой (1-12) на стр. 10). Решение: сопоставим каждому заполнению диаграммы циклов λ неповторяющимися числами от 1 до n произведение независимых циклов, циклически переставляющих элементы каждой строки слева направо; получаем сюрьективное отображение множества заполнений на множество всех перестановок циклового типа λ ; прообраз каждой перестановки состоит из $\prod_{i=1}^n i^{m_i} m_i!$ заполнений, получающихся друг из друга независимыми циклическими перестановками элементов в каждой строке и произвольными перестановками строк одинаковой длины между собою как единого целого.

Упр. 12.9.
$$|1, 6, 3, 4\rangle^{15} \cdot |2, 5, 8\rangle^{15} \cdot |7, 9\rangle^{15} = |1, 6, 3, 4\rangle^{-1} \cdot |7, 9\rangle = (4, 2, 6, 3, 5, 1, 9, 8, 7)$$

Упр. 12.14. Ответ: $|1,2,3,4\rangle = \sigma_{12}\sigma_{23}\sigma_{34}$, $|1,2,4,3\rangle = \sigma_{12}\sigma_{24}\sigma_{34}$, $|1,3,2,4\rangle = \sigma_{13}\sigma_{23}\sigma_{24}$, $|1,3,4,2\rangle = \sigma_{13}\sigma_{34}\sigma_{24}$, $|1,4,2,3\rangle = \sigma_{24}\sigma_{23}\sigma_{13}$, $|1,4,3,2\rangle = \sigma_{34}\sigma_{23}\sigma_{12}$.

Упр. 12.15. Подсчёт для группы куба дословно тот же, что и для группы додекаэдра. Группы октаэдра и икосаэдра изоморфны группам куба и додекадра с вершинами в центрах граней октаэдра и икосаэдра соответственно.

- Упр. 12.17. Зафиксируем в V какой-либо базис и сопоставим оператору $F \in \mathrm{GL}(V)$ базис, состоящий из векторов $f_i = F(e_i)$. Для выбора первого базисного вектора f_1 имеется $|V| 1 = q^n 1$ возможностей, для выбора второго $|V| |\mathbbm{k} \cdot f_1| = q^n q$ возможностей, для выбора третьего $|V| |\mathbbm{k} \cdot f_1| = q^n q^2$ возможностейи т. д.
- Упр. 12.18. Подсказка: центральная симметрия коммутирует со всеми элементами полной группы додекаэдра; покажите, что единственная перестановка в S_5 , коммутирующая со всеми перестановками из S_5 это тождественное преобразование.
- Упр. 12.22. Проиллюстрируем рассуждение на примере икосаэдра. И собственная и полная группы транзитивно действуют на 20 его треугольных гранях. Стабилизатор грани в собственной и полной группах представляет собой собственную и полную группу треугольника на плоскости, состоящую, соответственно из 3 и из 6 преобразований. По формуле для длины орбиты получаем $|SO_{uko}| = 20 \cdot 3 = 60$ и $|O_{uko}| = 20 \cdot 6 = 120$.
- Упр. 12.24. Равенство $h_1g_1=h_2g_2$ влечёт равенства $g_2g_1^{-1}=h_2^{-1}h_1\in H$ и $g_1g_2^{-1}=h_1^{-1}h_2\in H$. С другой стороны, если один из обратных друг другу элементов $g_1^{-1}g_2$ и $g_2^{-1}g_1$ лежит в H, то в H лежит и второй, и $Hg_1=H(g_2g_1^{-1})g_2=Hg_2$.
- Упр. 12.25. Включение $gHg^{-1}\subset H$ влечёт включение $H\subset g^{-1}Hg$. Если это так для всех $g\in G$, то заменяя g на g^{-1} мы получаем обратное к исходному включение $gHg^{-1}\supset H$.
- Упр. 12.26. $\varphi \circ Ad_g \circ \varphi^{-1} : h \mapsto \varphi(g \varphi^{-1}(h) g^{-1}) = \varphi(g) h \varphi(g)^{-1}$.
- Упр. 12.27. Для любой точки $x \in \mathbb{R}^n$ положим $p = \varphi^{-1}(x)$. Так как $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ аффинно, $\varphi(p+v) = x + D_{\varphi}(v)$. Поэтому $\varphi \circ \tau_v \circ \varphi^{-1} : x \mapsto \varphi(p+v) = x + D_{\varphi}(v)$.
- Упр. 12.29. Если $\varphi(x) \in N_2$, то $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} \in N_2$ в силу нормальности $N_2 \lhd G_2$. Поэтому $N_1 = \varphi^{-1}(N_2) \lhd G_1$. Композиция сюрьективных гомоморфизмов $G_1 \twoheadrightarrow G_2 \twoheadrightarrow G_2/N_2$ является сюрьективным гомоморфизмом с ядром N_1 .