§1. Справочник по множествам и отображениям

1.1. Множества. Мы не будем заниматься основаниями теории множеств, полагаясь на школьное интуитивное представление о множестве как «абстрактной совокупности элементов произвольной природы». Элементы множества мы часто будем называть *точками*. Все точки в любом множестве, по определению, различны.

Множество X задано, как только про любой объект можно сказать, является он точкой множества X или нет. Принадлежность точки x множеству X записывается как $x \in X$. Два множества paghib, если они состоят из одних и тех же элементов. Существует единственное множество, не содержащее ни одного элемента. Оно называется nycmib и обозначается \emptyset . Если множество X конечно, то мы обозначаем через |X| количество элементов в

Множество X называется *подмножеством* множества Y, если каждый элемент $x \in X$ лежит также и в Y. В этом случае пишут $X \subset Y$. Отметим, что пустое множество является подмножеством любого множества и всякое множество является подмножеством самого себя. Непустые подмножества, отличные от всего множества, называются *собственными подмножествами*.

Упражнение 1.1. Сколько всего подмножеств (включая несобственные) имеется у множества, состоящего из *п* элементов?

Для любых двух множеств X и Y множество $X \cup Y$, состоящее из всех элементов, принадлежащих хотя бы одному из них, называется их *объединением*; множество $X \cap Y$, состоящее из всех элементов, принадлежащих одновременно каждому из них, называется их *пересечением*; множество $X \setminus Y$, состоящее из всех элементов множества X, которые не содержатся в Y, называется их *разностью*.

Упражнение 1.2. Проверьте, что операция пересечения выражается через разность по формуле $X \cap Y = X \setminus (X \setminus Y)$. Можно ли выразить разность через пересечение и объединение?

Если множество X является объединением непересекающихся подмножеств Y и Z, то говорят, что X является дизъюнктным объединением Y и Z и пишут $X = Y \sqcup Z$.

Множество $X \times Y$, элементами которого являются, по определению, всевозможные пары (x, y) с $x \in X$, $y \in Y$, называется декартовым (или прямым) произведением множеств X и Y.

1.2. Отображения. Отображение $f: X \to Y$ из множества X в множество Y — это правило, которое сопоставляет каждой точке $x \in X$ некоторую однозначно определяемую по x точку $y = f(x) \in Y$, которая называется *образом* точки x при отображении f.

Множество всех точек $x \in X$, образ которых равен данной точке $y \in Y$, называется полным прообразом точки y (или слоем отображения f над y) и обозначается

$$f^{-1}(y) \stackrel{\text{def}}{=} \{ x \in X \mid f(x) = y \}.$$

Полные прообразы различных точек не пересекаются и могут быть как пустыми, так и состоять из многих точек. Множество всех $y \in Y$, имеющих непустой прообраз, называется образом отображения $f: X \to Y$ и обозначается

$$\operatorname{im}(f) \stackrel{\text{def}}{=} \{ y \in Y \mid f^{-1}(y) \neq \emptyset \} = \{ y \in Y \mid \exists x \in X : f(x) = y \}.$$

Два отображения $f: X \to Y$ и $g: X \to Y$ равны, если их значения в каждой точке одинаковы: $\forall x \in X \ f(x) = g(x)$. Множество всех отображений из множества X в множество Y обозначается Hom(X,Y).

Отображение $f: X \to Y$ называется наложением (а также сюрьекцией или эпиморфизмом), если $\operatorname{im}(f) = Y$, т. е. когда прообраз каждой точки $y \in Y$ не пуст. Мы будем изображать сюрьективные отображения стрелками $X \twoheadrightarrow Y$.

Отображение f называется вложением (а также инъекцией, или мономорфизмом), если $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$, т.е. когда прообраз каждой точки $y \in Y$ содержит не более одного элемента. Инъективные отображения мы обозначает стрелками $X \hookrightarrow Y$.

Упражнение 1.3. Перечислите все отображения $\{0, 1, 2\} \rightarrow \{0, 1\}$ и все отображения $\{0, 1\} \rightarrow \{0, 1, 2\}$. Сколько среди них вложений и сколько наложений?

Отображение $f: X \to Y$, которое является одновременно и вложением и наложением, называется взаимно однозначным (а также биекцией или изоморфизмом). Иными словами, биективность отображения f означает, что для каждого $y \in Y$ существует единственный $x \in X$, такой что f(x) = y. Мы будем обозначать биекции стрелками $X \cong Y$.

Упражнение 1.4. Какие из отображений: $\mathbb{N} \xrightarrow{x \mapsto x^2} \mathbb{N}$, $\mathbb{Z} \xrightarrow{x \mapsto x^2} \mathbb{Z}$, $\mathbb{Z} \xrightarrow{x \mapsto 7x} \mathbb{Z}$, $\mathbb{Q} \xrightarrow{x \mapsto 7x} \mathbb{Q}$ являются а) биекциями б) инъекциями в) сюрьекциями?

Отображения $X \to X$ из множества X в себя обычно называют эндоморфизмами множества X. Множество всех эндоморфизмов обозначается $\operatorname{End}(X) \stackrel{\text{def}}{=} \operatorname{Hom}(X,X)$.

Упражнение 1.5 (принцип Дирихле). Покажите, что следующие три условия на множество X попарно равносильны друг другу:

- а) Х бесконечно
- б) \exists вложение $X \hookrightarrow X$, не являющееся наложением
- в) \exists наложение $X \rightarrow X$, не являющееся вложением.

Взаимно однозначные эндоморфизмы $X \cong X$ называются автоморфизмами X и множество всех автоморфизмов обозначается через Aut (X). Автоморфизмы можно воспринимать как перестановки элементов множества X. У всякого множества X имеется тождественный эндоморфизм $\mathrm{Id}_X: X \to X$, который переводит каждый элемент в самого себя: $\forall \, x \in X \, \mathrm{Id}_X(x) = x$.

Упражнение 1.6. Счётно ли множество Aut (N)?

Пример 1.1 (запись отображений словами)

Рассмотрим множества $X = \{1, 2, ..., n\}$ и $Y = \{1, 2, ..., m\}$, сопоставим каждому отображению $f: X \to Y$ последовательность его значений:

$$w(f) \stackrel{\text{def}}{=} (f(x_1), f(x_2), \dots, f(x_n))$$
 (1-1)

и будем воспринимать её как n-буквенное слово, написанное при помощи m-буквенного алфавита Y. Так, отображениям $f:\{1,2\}\to\{1,2,3\}$ и $g:\{1,2,3\}\to\{1,2,3\}$, действующим по правилам f(1)=3, f(2)=2 и g(1)=1, g(2)=2, g(3)=2, сопоставятся слова w(f)=(3,2) и w(g)=(1,2,2), составленные из букв алфавита $\{1,2,3\}$.

Запись отображения словом задаёт биекцию

$$w: \operatorname{Hom}(X,Y) \cong \{$$
слова из $|X|$ букв в алфавите $Y\}$, $f \mapsto w(f)$. (1-2)

1.3. Разбиения 5

Инъективные отображения записываются при этом словами, в которых нет повторяющихся букв, а сюрьективные отображения — словами, в которых используются все без исключения буквы алфавита *Y*. Взаимно однозначным отображениям отвечают слова, в которых задействованы все буквы алфавита *Y*, причём каждая — ровно по одному разу.

1.3. Разбиения. Задать отображение $f: X \to Y$ это то же самое, что представить X в виде дизъюнктного объединения непустых подмножеств $f^{-1}(y)$, занумерованных точками $y \in \text{im}(f)$:

$$X = \bigsqcup_{y \in \operatorname{im}(f)} f^{-1}(y) . \tag{1-3}$$

Такой взгляд на отображения часто оказывается полезным при подсчёте числа элементов в том или ином множестве.

Скажем, когда все непустые слои отображения $f: X \to Y$ состоят из одного и того же числа точек $m = |f^{-1}(y)|$, число элементов в образе отображения f связано с числом элементов в множестве X формулой

$$|X| = m \cdot |\operatorname{im} f|, \tag{1-4}$$

которая при всей своей банальности имеет множество применений.

Предложение 1.1

Если |X| = n и |Y| = m, то $|\text{Hom}(X, Y)| = m^n$.

Доказательство. Зафиксируем какую-нибудь точку $x \in X$ и рассмотрим *отображение вычисления*¹, сопоставляющее отображению $f: X \to Y$ его значение в точке x:

$$\operatorname{ev}_{x} : \operatorname{Hom}(X, Y) \to Y, \quad f \mapsto f(x).$$
 (1-5)

Прообраз $\operatorname{ev}_x^{-1}(y)$ любой точки $y \in Y$ находится в очевидной биекции с множеством всех отображений из (n-1)-элементного множества $X \setminus \{x\}$ в Y:

$$\operatorname{ev}_{x}^{-1}(y) = \{ f : X \to Y \mid f(x) = y \} \simeq \operatorname{Hom}(X \setminus \{x\}, Y) .$$

Так как іт $\operatorname{ev}_X = Y$, по формуле (1-4) получаем $|\operatorname{Hom}(X,Y)| = |\operatorname{Hom}(X \setminus \{x\},Y)| \cdot |Y|$, т. е. при добавлению к множеству X одной точки, количество отображений из X в Y увеличивается в |Y| раз. Отсюда $\operatorname{Hom}(X,Y) = |Y|^{|X|}$.

Замечание 1.1. Множество отображений Hom(X,Y) часто обозначают через Y^X , и предыдущее рассуждение объясняет это обозначение.

Замечание 1.2. В предл. 1.1 мы молчаливо предполагали, что m,n>0, т. е. что оба множества X,Y непусты. Если $X=\varnothing$, то удобно считать, что $\operatorname{Hom}(\varnothing,Y)$ для любого множества Y состоит ровно из одного элемента, «вкладывающего» \varnothing в качестве подмножества в Y, ибо формально $\varnothing\subset Y$. И хотя отображения вычисления (1-5) в этом случае не определены, утверждение предл. 1.1 формально верно: $1=m^0$. Если $Y=\varnothing$, то $\operatorname{Hom}(X,\varnothing)=\varnothing$ для любого $X\neq\varnothing$, а $\operatorname{Hom}(\varnothing,\varnothing)$ — это одноэлементное множество $\{\operatorname{Id}_\varnothing\}$. Первое также формально согласуется с предл. 1.1: $0^n=0$. Последнее указывает на то, что 0^0 имеет смысл считать равным 1.

 $^{^{1}}$ обозначение «ev» является сокращением слова $\it evaluation$

Предложение 1.2 Если |X| = n, то |Aut(X)| = n!.

Доказательство. Положим Y = X в доказательстве предл. 1.1 и ограничим отображение вычисления (1-5) на подмножество биекций $\operatorname{Aut}(X) \subset \operatorname{Hom}(X,X)$. Получим отображение

$$\operatorname{ev}_{x}:\operatorname{Aut}(X)\to X,\quad f\mapsto f(x).$$

Его слой $\operatorname{ev}_x^{-1}(x')$ над произвольной точкой $x' \in X$ состоит из всех биекций $X \cong X$, переводящих x в x'. Беря композицию такой биекции с автоморфизмом $X \cong X$, который переставляет между собой x и x', оставляя все остальные точки на месте, мы получаем взаимно однозначное отображение из $\operatorname{ev}_x^{-1}(x')$ в множество автоморфизмов (n-1)-элементного множества $X \setminus \{x\}$. Поэтому все слои $\operatorname{ev}_x^{-1}(x')$ непусты и состоят из одного и того же числа элементов. По формуле (1-4) $|\operatorname{Aut}(X)| = |\operatorname{Aut}(X \setminus \{x\})| \cdot |X|$, т. е. при добавлении n-той точки к (n-1)-элементному множеству количество его автоморфизмов увеличивается в n раз. Поэтому $|\operatorname{Aut}(X)| = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1 = n!$.

Замечание 1.3. Так как $|\operatorname{Aut}(\emptyset)|=|\{Id_{\emptyset}\}|=1$, мы по определению полагаем $0!\stackrel{\mathrm{def}}{=}1$.

Пример 1.2 (мультиномиальные коэффициенты)

При раскрытии скобок в выражении $(a_1+a_2+\cdots+a_m)^n$ получится сумма одночленов вида $a_1^{k_1}a_2^{k_2}\cdots a_m^{k_m}$, где каждый показатель k_i заключен в пределах $0\leqslant k_i\leqslant n$, а общая степень $k_1+k_2+\cdots+k_m=n$. Коэффициент, возникающий при таком одночлене после приведения подобных слагаемых, называется мультиномиальным коэффициентом и обозначается $\binom{n}{k_1\dots k_m}$. Таким образом,

$$(a_1 + a_2 + \cdots + a_m)^n = \sum_{\substack{k_1 + k_2 + \cdots + k_m = n \\ \forall i \ 0 \leqslant k_i \leqslant n}} {n \choose k_1 \dots k_m} \cdot a_1^{k_1} a_2^{k_2} \cdots a_m^{k_m}, \qquad (1-6)$$

Чтобы явно выразить $\binom{n}{k_1 \dots k_m}$ через k_1, k_2, \dots, k_m , заметим, что раскрытие n скобок

$$(a_1 + a_2 + \cdots + a_m)(a_1 + a_2 + \cdots + a_m) \cdots (a_1 + a_2 + \cdots + a_m)$$

заключается в последовательном выборе внутри каждой из скобок какой-нибудь одной буквы и выписывании их слева направо друг за другом в одно n-буквенное слово. Это надо сделать всеми возможными способами и сложить все полученные слова. Подобные слагаемые, вносящие вклад в коэффициент при $a_1^{k_1}a_2^{k_2}\cdots a_m^{k_m}$ суть слова, состоящие ровно из k_1 букв $a_1,\ k_2$ букв $a_2,\ \ldots,\ k_m$ букв a_m . Количество таких слов легко подсчитать по формуле (1-4).

А именно, сделаем на время k_1 букв a_1 попарно разными, снабдив каждую из них дополнительным верхним индексом; аналогично поступим с k_2 буквами a_2 , k_3 буквами a_3 и т. д. В результате получится набор из $n=k_1+k_2+\cdots+k_m$ попарно различных букв:

$$\underbrace{a_1^{(1)},\,a_1^{(2)},\,\ldots\,,\,a_1^{(k_1)}}_{k_1 \text{ меченых букв } a_1},\,\underbrace{a_2^{(1)},\,a_2^{(2)},\,\ldots\,,\,a_2^{(k_2)}}_{k_2 \text{ меченых букв } a_2},\,\ldots\,\ldots\,,\,\underbrace{a_m^{(1)},\,a_m^{(2)},\,\ldots\,,\,a_m^{(k_m)}}_{k_m \text{ меченых букв } a_m}.$$

1.3. Разбиения 7

Обозначим через X множество всех n-буквенных слов, которые можно написать этими n различными буквами, используя каждую букву ровно по одному разу. Как мы уже знаем, |X|=n!. В качестве Y возьмём интересующее нас множество слов из k_1 одинаковых букв a_1, k_2 одинаковых букв a_2 , и т. д. и рассмотрим отображение $f: X \to Y$, стирающее верхние индексы у всех букв. Оно эпиморфно, и полный прообраз каждого слова $y \in Y$ состоит из $k_1! \cdot k_2! \cdot \cdots \cdot k_m!$ слов, которые получаются из y всевозможными расстановками k_1 верхних индексов у букв a_2 , и т. д. По формуле (1-4)

$$\binom{n}{k_1 \dots k_m} = \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_m!}.$$
 (1-7)

Тем самым, разложение (1-6) имеет вид

$$(a_1 + a_2 + \cdots + a_m)^n = \sum_{\substack{k_1 + \cdots + k_m = n \\ \forall i \ 0 \le k_i \le n}} \frac{n! \cdot a_1^{k_1} a_2^{k_2} \cdots a_m^{k_m}}{k_1! \cdot k_2! \cdot \cdots \cdot k_m!} . \tag{1-8}$$

Упражнение 1.7. Сколько всего слагаемых в правой части формулы (1-8)?

В частности, при m=2 мы получаем известную формулу для раскрытия бинома с натуральным показателем 1 :

$$(a+b)^n = \sum_{k=0}^n \frac{n! \cdot a^k b^{n-k}}{k! (n-k)!} . {(1-9)}$$

При m=2 мультиномиальный коэффициент

$$\binom{n}{k, n-k} = \frac{n \cdot (n-1) \cdot \cdots \cdot (n-k+1)}{k \cdot (k-1) \cdot \cdots \cdot 1}$$

(и в числителе и в знаменателе стоят по k последовательно убывающих сомножителей) обозначается через $\binom{n}{k}$ или C_n^k и называется k-тым биномиальным коэффициентом степени n или числом сочетаний из n по k.

Пример 1.3 (диаграммы Юнга)

Разбиение конечного множества $X = \{1, 2, ..., n\}$ в объединение непересекающихся подмножеств

$$X = X_1 \sqcup X_1 \sqcup X_2 \sqcup \ldots \sqcup X_k . \tag{1-10}$$

часто бывает удобно кодировать следующим образом. Занумеруем подмножества в порядке нестрогого убывания их размера и обозначим количество элементов в i-том подмножестве через $\lambda_i = |X_i|$. Получим невозрастающую последовательность чисел

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n), \quad \lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_k$$

которая называется ϕ ормой разбиения (1-10). Форму разбиения удобно представлять себе в виде ∂ иаграммы \mathcal{O} нга — картинки вида

 $^{^{1}}$ это частный случай ϕ ормулы Hьютона, которую в полной общности мы обсудим в n° 4.5, когда будем заниматься степенными рядами

составленной из выровненных по левому краю горизонтальных клетчатых полос, в i-той полосе λ_i клеток. Общее число клеток в диаграмме λ называется becom диаграммы и обозначается $|\lambda|$, а число строк называется becom диной и обозначается becom диаграммы и

Так, диаграмма Юнга (1-11) отвечает разбиению формы $\lambda=(6,5,5,3,1)$ и имеет вес $|\lambda|=20$ и длину $\ell(\lambda)=5$.

Упражнение 1.8. Подсчитайте количество всех диаграмм Юнга, умещающихся в прямоугольнике размером $k \times n$ клеток (включая пустую диаграмму и сам прямоугольник).

Будем называть *заполнением* диаграммы λ множеством X из $|X| = |\lambda|$ элементов произвольную расстановку этих элементов в клетки диаграммы по одному элементу в каждую клетку. Таким образом, всего имеется n! различных заполнений диаграммы λ множеством X.

Объединяя элементы, стоящие в i-той строке диаграммы в одно подмножество X_i , мы получаем разбиение множества X в дизъюнктное объединение k непересекающихся подмножеств X_1, X_2, \ldots, X_k . Ясно, что любое разбиение (1-10) можно получить таким образом, так что мы получаем сюрьективное отображение из множества заполнений диаграммы λ в множество разбиений множества X формы λ . Покажем, что все слои этого отображения состоят из одного и того же числа элементов.

Два заполнения приводят к одинаковым разбиениям тогда и только тогда, когда они получаются друг из друга перестановками элементов внутри строк и перестановками строк одинаковой длины между собою как единого целого. Если обозначить через m_i число строк длины i в диаграмме λ , то перестановок первого типа будет $\prod \lambda_i! = \prod_{i=1}^n (i!)^{m_i}$

штук, а второго типа — $\prod\limits_{i=1}^n m_i!$ штук. Так как все эти перестановки действуют независимо n

друг от друга, каждый слой нашего отображения состоит из $\prod_{i=1}^n (i!)^{m_i} m_i!$ элементов. Из формулы (1-4) вытекает

Предложение 1.3

Число разбиений n-элементного множества X в дизъюнктное объединение m_1 1-элементных, m_2 2-элементных, ..., m_n n-элементных подмножеств равно

$$\frac{n!}{\prod\limits_{i=1}^{n}m_{i}!\cdot(i!)^{m_{i}}}.$$
(1-12)

1.4. Классы эквивалентности. Альтернативный способ разбить заданное множество X в дизъюнктное объединение подмножеств состоит в том, чтобы объявить элементы, входящие в одно подмножество такого разбиения «эквивалентными». Формализуется это так. Назовём *бинарным отношением* на множестве X произвольное подмножество $R \subset X \times X = \{(x_1, x_2) \mid x_1, x_2 \in X\}$. Принадлежность пары (x_1, x_2) отношению R обычно записывают как $x_1 \underset{R}{\sim} x_2$.

 $^{^{1}}$ отметим, что многие $m_{i}=0$, поскольку $|\lambda|=n=m_{1}+2m_{2}+\cdots+nm_{n}$

Например, на множестве целых чисел $X=\mathbb{Z}$ имеются бинарные отношения

равенство
$$x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\iff} x_1 = x_2$$
 (1-13)

делимость
$$x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\iff} x_1 | x_2$$
 (1-15)

сравнимость по модулю
$$n$$
 $x_1 \underset{R}{\sim} x_2 \stackrel{\text{def}}{\Longleftrightarrow} x_1 \equiv x_2 \pmod{n}$ (1-16)

(последнее условие $x_1 \equiv x_2 \pmod n$) читается как « x_1 сравнимо с x_2 по модулю n» и по определению означает, что x_1 и x_2 имеют одинаковые остатки от деления на n).

Определение 1.1

Бинарное отношение $\sim R$ называется *эквивалентностью*, если оно обладает следующими тремя свойствами:

рефлексивность: $\forall x \in X x \sim x$

mpанзитивность : $\forall x_1, x_2, x_3 \in X$ из $x_1 \underset{R}{\sim} x_2$ и $x_2 \underset{R}{\sim} x_3$ вытекает $x_1 \underset{R}{\sim} x_3$

симметричность: $\forall x_1, x_2 \in X \ x_1 \underset{R}{\sim} x_2 \iff x_2 \underset{R}{\sim} x_1$.

Среди перечисленных выше бинарных отношений на множестве \mathbb{Z} отношения (1-13) и (1-16) являются эквивалентностями, а (1-14) и (1-15) не являются (они несимметричны).

Если множество X разбито в объединение непересекающихся подмножеств, то отношение $x_1 \sim x_2$, означающее, что x_1 и x_2 лежат в одном и том же подмножестве этого разбиения, очевидно, является эквивалентностью.

Наоборот, пусть на множестве X задано какое-нибудь отношение эквивалентности R. Рассмотрим для каждого $x \in X$ подмножество в X, состоящее из всех элементов, эквивалентных x. Оно называется κ какое эквивалентности элемента x и обозначается

$$[x]_R = \{ z \in X \mid x \underset{R}{\sim} z \} = \{ z \in X \mid z \underset{R}{\sim} x \}$$

(второе равенство выполняется благодаря симметричности отношения R). Два класса $[x]_R$ и $[y]_R$ либо вообще не пересекаются, либо полностью совпадают. В самом деле, если существует элемент z, эквивалентный и x и y, то в силу симметричности и транзитивности отношения $\underset{R}{\sim}$ элементы x и y будут эквивалентны между собой, а значит, любой элемент, эквивалентный x, будет эквивалентен также и y, и наоборот. Таким образом, множество X распадается в дизъюнктное объединение различных классов эквивалентности.

Множество классов эквивалентности по отношению $R \subset X \times X$ обозначается X / R и называется фактором множества X по отношению R. Сюрьективное отображение

$$f: X \twoheadrightarrow X/R, \quad x \mapsto [x],$$
 (1-17)

сопоставляющее каждому элементу $x \in X$ его класс эквивалентности $[x] \in X/R$, называется *отображением факторизации*. Слои этого отображения суть классы эквивалентных элементов. Наоборот, любое сюрьективное отображение $f: X \twoheadrightarrow Y$ является отображением факторизации по отношению эквивалентности $x_1 \sim x_2 \iff f(x_1) = f(x_2)$.

Пример 1.4 (классы вычетов)

Фиксируем ненулевое целое число $n \in \mathbb{Z}$. Фактор множества целых чисел \mathbb{Z} по отношению сравнимости по модулю n из (1-16) обозначается $\mathbb{Z}/(n)$. Мы будем записывать его элементы символами $[z]_n$, где $z \in \mathbb{Z}$, и опускать индекс n, когда понятно чему он равен. Класс эквивалентности

$$[z]_n \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid (z - x) : n\}$$
 (1-18)

называется классом вычетов по модулю п. Отображение факторизации

$$\mathbb{Z} \twoheadrightarrow \mathbb{Z}/(n), \quad z \mapsto [z]_n$$

называется приведением по модулю n. Множество $\mathbb{Z}/(n)$ состоит из n различных классов

$$[0]_n$$
, $[1]_n$, ..., $[n-1]_n$.

При желании их можно воспринимать как остатки от деления на n, но в практических вычислениях удобнее работать с ними именно как с nodмножествами в \mathbb{Z} , поскольку возможность по-разному записывать один и тот же класс часто упрощает вычисления. Например, остаток от деления 12^{100} на 13 можно искать как

$$[12^{100}]_{13} = [12]_{13}^{100} = [-1]_{13}^{100} = [(-1)^{100}]_{13} = [1]_{13}.$$
 (1-19)

Упражнение 1.9. Докажите правомочность этого вычисления: проверьте, что классы вычетов $[x+y]_n$ и $[xy]_n$ не зависят от выбора чисел $x \in [x]_n$ и $y \in [y]_n$, т. е. правила

$$[x]_n + [y]_n \stackrel{\text{def}}{=} [x+y]_n \tag{1-20}$$

$$[x]_n \cdot [y]_n \stackrel{\text{def}}{=} [xy]_n \tag{1-21}$$

корректно определяют на множестве $\mathbb{Z}/(n)$ операции сложения и умножения¹.

1.4.1. Неявное задание эквивалентности. Для любого семейства отношений эквивалентности $R_{\nu} \subset X \times X$ пересечение $\bigcap_{\nu} R_{\nu} \subset X \times X$ также является отношением эквивалентности. В самом деле, если каждое из множеств $R_{\nu} \subset X \times X$ содержит диагональ

$$\Delta = \{(x, x) \mid x \in X\} \subset X \times X,$$

переходит в себя при симметрии $(x,y) \leftrightarrows (y,x)$ и вместе с каждой парой точек вида (x,y), (y,z) содержит также и точку (x,z), то этими свойствами обладает и пересечение $\bigcap_{\mathcal{V}} R_{\mathcal{V}}$ всех этих множеств. Поэтому для любого подмножества $R \subset X \times X$ существует наименьшее по включению отношение эквивалентности \overline{R} , содержащее R — пересечение всех содержащих R отношений эквивалентности. Отношение \overline{R} называется эквивалентностью, порождённой отношением R. К сожалению, по данному множеству R не всегда легко судить о том, как устроена порождённая им эквивалентность \overline{R} . Даже выяснить, не окажутся ли в результате все точки эквивалентными друг другу 2 , часто бывает не просто.

1
именно такое умножение $[12]^{100} = \underbrace{[12] \cdot [12] \cdot \cdots \cdot [12]}_{120} = [12^{100}]$ и использовано в (1-19)

 $^{^2}$ т. е. существует ли хоть одна собственная (отличная от всего произведения $X \times X$) эквивалентность, содержащая R

Пример 1.5 (дроби)

Множество рациональных чисел $\mathbb Q$ обычно определяют как множество дробей a/b с $a,b\in\mathbb Z$ и $b\neq 0$. При этом под $\partial poбью$ понимается класс эквивалентности упорядоченных пар $(a,b)\in\mathbb Z\times(\mathbb Z\setminus 0)$ по минимальному отношению эквивалентности, содержащему все отождествления

$$(a,b) \sim (ac,bc) \quad \forall c \neq 0.$$
 (1-22)

Отношения (1-22) выражают собою равенства дробей a/b = ac/bc, но сами по себе не образуют эквивалентности. Например, при $a_1b_2 = a_2b_1$ в двухшаговой цепочке отождествлений (1-22)

$$(a_1, b_1) \sim (a_1 b_2, b_1 b_2) = (a_2 b_1, b_1 b_2) \sim (a_2, b_2)$$

самый левый и самый правый элементы может оказаться нельзя отождествить напрямую по правилу (1-22). Но эквивалентность, порождённая отождествлениями (1-22), обязана содержать все отождествления

$$(a_1, b_1) \sim (a_2, b_2)$$
 при $a_1b_2 = a_2b_1$. (1-23)

Оказывается, что к этим отождествлениям уже больше ничего добавлять не надо.

Упражнение 1.10. Проверьте, что набор отношений (1-23) рефлексивен, симметричен и транзитивен (и, тем самым, полностью описывает минимальное отношение эквивалентности, содержащее все отождествления (1-22)).

1.5. Композиции отображений. Отображение $X \to Z$, получающееся в результате последовательного выполнения двух отображений $X \xrightarrow{f} Y \xrightarrow{g} Z$ называется композицией отображений g и f и обозначается $g \circ f$ или просто gf. Таким образом,

$$\forall x \in X \ af(x) \stackrel{\text{def}}{=} \ a(f(x))$$
.

Композиция gf определена только тогда, когда образ f содержится в множестве, на котором определено отображение g.

Композицию трёх отображений $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T$ можно вычислять двумя способами: как (hg)f или как h(gf). В обоих случаях получится отображение, переводящее точку $x \in X$ в точку $h(g(f(x))) \in T$. Это означает, что композиция отображений ассоциативна 1 : (hg)f = h(gf) всякий раз, когда написанные композиции определены.

Предостережение 1.1. Хотя мы и обозначаем композицию отображений точно так же, как произведение, обращаться с формулами, включающими в себя композиции, надо с осторожностью: некоторые привычные по опыту работы с числами преобразования недопустимы при работе с композициями отображений. Так, умножение чисел коммутативно²: fg = gf, а композиция отображений, как правило, нет³.

¹т. е. подчиняется сочетательному закону — не зависит от расстановки скобок

 $^{^{2}}$ т. е. удовлетворяет *переместительному закону* — перестановка сомножителей в произведении не влияет на результат

³хотя бы потому, что одна из частей этого равенства может быть определена, а другая — нет

Упражнение 1.11. Рассмотрим на плоскости пару различных прямых ℓ_1 , ℓ_2 , пересекающихся в точке 0, и обозначим через σ_1 и σ_2 осевые симметрии относительно этих прямых. Явно опишите движения плоскости, задаваемые композициями $\sigma_1\sigma_2$ и $\sigma_2\sigma_1$. При каком условии на прямые выполняется равенство $\sigma_1\sigma_2=\sigma_2\sigma_1$?

Чтобы почувствовать отличие алгебраических свойств композиции от свойств умножения чисел, поучительно взглянуть на «таблицу умножения» отображений из двухэлементного множества $X = \{1, 2\}$ в себя.

Есть ровно четыре таких отображения, причём все композиции между ними определены. Если обозначать отображение $f \in \operatorname{End}(X)$ двухбуквенным словом (f(1), f(2)), как в прим. 1.1, то эти четыре эндоморфизма запишутся словами

$$(1,1), (1,2) = \mathrm{Id}_X, (2,1), (2,2).$$

Значения композиций gf представлены в таблице:

Обратите внимание на то, что $(2,2) \circ (1,1) \neq (1,1) \circ (2,2)$, а также на то, что в верхней и нижней строках все произведения одинаковы, но «сократить общий множитель» при этом нельзя, т. е. из равенства $fg_1=fg_2$, вообще говоря, не следует равенство $g_1=g_2$, как не следует оно и из равенства $g_1f=g_2f$.

Упражнение 1.12 (левые обратные отображения). Покажите, что следующие три условия на отображение $f: X \to Y$ эквивалентны:

- a) f инъективно
- б) $\exists \ g : Y \to X$ такое что $gf = \mathrm{Id}_X$ (такое g называется левым обратным к f)
- в) \forall отображений $g_1,g_2:Z\to X$ из $fg_1=fg_2$ вытекает $g_1=g_2$ и выясните, сколько левых обратных отображений имеется у заданного вложения n-элементного множества в m-элементное.

Упражнение 1.13 (правые обратные отображения). Покажите, что следующие три условия на отображение $f: X \to Y$ эквивалентны:

- a) f сюрьективно
- б) $\exists \ g: Y \to X$ такое что $fg = \mathrm{Id}_Y$ (такое g называется npaвым обратным к f)
- в) \forall отображений $g_1,g_2:Z\to X$ из $g_1f=g_2f$ вытекает $g_1=g_2$ и выясните, сколько правых обратных отображений имеется у заданного наложения m-элементного множества на n-элементное.
- **1.5.1.** Обратимые отображения. Если отображение $g: X \cong Y$ биективно, то прообраз $g^{-1}(y) \subset X$ каждой точки $y \in Y$ состоит ровно из одной точки. В этом случае правило $y \mapsto g^{-1}(y)$ определяет отображение $g^{-1}: Y \to X$, которое одновременно является и левым и правым обратным к g в смысле упр. 1.12 и упр. 1.13:

$$g \circ g^{-1} = \mathrm{Id}_{Y}$$
 $u \quad g^{-1} \circ g = \mathrm{Id}_{X}$

Отображение g^{-1} называется двусторонним обратным к g.

Предложение 1.4

Следующие условия на отображение $g: X \to Y$ попарно эквивалентны:

- (1) g взаимно однозначно
- (2) существует такое отображение $g': Y \to X$, что $g \circ g' = \mathrm{Id}_Y$ и $g' \circ g = \mathrm{Id}_X$
- (3) g обладает левым и правым обратными отображениями 1 .

При выполнении этих условий любое отображение g' из (2) и любые левые и правые обратные к g отображения из (3) совпадают друг с другом и с отображением g^{-1} описанным выше.

Доказательство. Импликация (1) \Rightarrow (2) уже была установлена. Импликация (2) \Rightarrow (3) очевидна. Докажем, что (3) \Rightarrow (2). Если у отображения $g: X \to Y$ есть левое обратное $f: Y \to X$ и правое обратное $h: Y \to X$, то $f = f \circ \operatorname{Id}_Y = f \circ (g \circ h) = (f \circ g) \circ h = \operatorname{Id}_X \circ h = h$ и условие (2) выполняется для g' = f = h.

Остаётся показать, что $(2)\Rightarrow (1)$ и доказать равенство $g'=g^{-1}$. Поскольку g(g'(y))=y для любого $y\in Y$, прообраз $g^{-1}(y)$ каждой точки $y\in Y$ содержит точку g'(y). С другой стороны, для любого $x\in g^{-1}(y)$ выполнено равенство $x=\mathrm{Id}_X(x)=g'(g(x))=g'(y)$. Поэтому $f^{-1}(y)$ состоит из единственной точки g'(y), т. е. g — биекция, и $g'=g^{-1}$.

1.6. Группы преобразований. Непустой набор G взаимно однозначных отображений множества X в себя называется *группой преобразований* множества X, если вместе с каждым отображением $g \in G$ в G лежит и обратное к нему отображение g^{-1} , а вместе с каждыми двумя отображениями $f,g \in G$ в G лежит и их композиция fg. Эти условия гарантируют, что тождественное преобразование Id_X тоже лежит в G, поскольку $\mathrm{Id}_X = g^{-1}g$ для любого $g \in G$.

Если группа преобразований G конечна, число элементов в ней обозначается |G| и называется nopядком группы G.

Если подмножество $H\subset G$ тоже является группой, то H называются nodepynnoй группы G .

Пример 1.6 (группы перестановок)

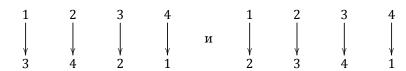
Множество Aut (X) всех взаимно однозначных отображений $X \to X$ является группой. Эта группа называется симметрической группой (или группой перестановок) множества X. Все прочие группы преобразований множества X являются подгруппами этой группы.

Группа перестановок n-элементного множества $\{1, 2, \dots, n\}$ обозначается S_n и называется n-той симметрической группой. Согласно предл. $1.2 |S_n| = n!$.

Перестановку $\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ мы будем записывать строчкой

$$(\sigma_1, \sigma_2, \dots, \sigma_n)$$

её значений $\sigma_i = \sigma(i)$, как в прим. 1.1. Например, перестановки $\sigma = (3,4,2,1)$ и $\tau = (2,3,4,1)$ это отображения



 $^{^{1}}$ обратите внимание, что совпадения левого обратного отображения с правым обратным отображением не требуется

а их композиции записываются как $\sigma \tau = (4, 2, 1, 3)$ и $\tau \sigma = (4, 1, 3, 2)$.

Упражнение 1.14. Составьте таблицу умножения шести элементов группы S_3 , аналогичную таблице (1-24) на стр. 12.

1.6.1. Абелевы группы. Группа G, в которой любые два элемента $f,g \in G$ перестановочны, т. е. удовлетворяют соотношению fg = gf, называется коммутативной или абелевой. Примерами абелевых групп являются группы параллельных переносов плоскости или пространства, а также группа SO_2 поворотов плоскости вокруг фиксированной точки. Для каждого натурального $n \geqslant 2$ повороты на углы, кратные $2\pi/n$, образуют в группе SO_2 конечную подгруппу. Она называется циклической группой порядка n.

Ответы и указания к некоторым упражнениям

- Упр. 1.1. Ответ: 2^n .
- Упр. 1.2. Ответ на второй вопрос: нет. Решение: пусть $X = \{1, 2\}, Y = \{2\}$; тогда все возможные значения пересечений и объединений между ними суть

$$X \cap Y = Y \cap Y = Y \cup Y = Y$$
$$X \cup Y = X \cup X = X \cap X = X$$

и любая формула, составленная из X, Y, \cap и \cup , даст на выходе либо $X = \{1, 2\}$, либо $Y = \{2\}$, тогда как $X \setminus Y = \{1\}$.

- Упр. 1.3. В первом случае имеется 6 наложений и ни одного вложения, во втором 6 вложений и ни одного наложения.
- Упр. 1.5. Если множество X конечно, всякое отображение $X \to X$, которое инъективно или сюрьективно, автоматически биективно. Если множество X бесконечно, то оно содержит подмножество, изоморфное \mathbb{N} , а у \mathbb{N} есть инъективные небиективные эндоморфизмы (например, $n \mapsto (n+1)$) и сюрьективные небиективные эндоморфизмы (например, $1 \mapsto 1$ и $n \mapsto (n-1)$ при $n \geqslant 2$), и их можно продолжить до эндоморфизмов $X \to X$ тождественным действием на $X \setminus \mathbb{N}$.
- Упр. 1.6. Ответ: нет. Воспользуйтесь рассуждением Кантора: предположите, что все биекции $\mathbb{N} \to \mathbb{N}$ можно занумеровать натуральными числами, и, пользуясь этим списком, постройте биекцию, которая при каждом $k=1,\,2,\,3,\,\dots$ отображает число $k\in\mathbb{N}$ не туда, куда его отображает k-тая биекция из списка.
- Упр. 1.7. Ответ: $\binom{n+m-1}{m-1} = \binom{n+m-1}{n} = \frac{(n+m-1)!}{n!(m-1)!}$. Указание: слагаемых столько же, сколько имеется упорядоченных наборов неотрицательных целых чисел (k_1,k_2,\ldots,k_m) с суммой $\sum k_i = n$. Такой набор можно закодировать словом, составленным из (m-1) букв 0 и n букв 1: сначала пишем k_1 единиц, потом нуль, потом k_2 единиц, потом нуль, и т. д. (слово кончится k_m единицами, стоящими следом за последним, (m-1)-м нулём).
- Упр. 1.8. Ответ: $\binom{n+k}{k}$). Каждая такая диаграмма представляет собою ломаную, ведущую из левого нижнего угла прямоугольника в правый верхний. В такой ломаной ровно n горизонтальных звеньев и ровно k вертикальных.
- Упр. 1.9. Пусть $[x']_n = [x]_n$ и $[y']_n = [y]_n$, т. е. x' = x + nk, $y' = y + n\ell$ с некоторыми $k, \ell \in \mathbb{Z}$. Тогда $x' + y' = x + y + n(k + \ell)$ и $x'y' = xy + n(\ell x + ky + k\ell n)$ сравнимы по модулю n с x + y и xy соответственно, т. е. $[x' + y']_n = [x + y]_n$ и $[x'y']_n = [xy]_n$.
- Упр. 1.10. Рефлексивность и симметричность очевидны. Транзитивность: если $(p,q) \sim (r,s)$ и $(r,s) \sim (u,w)$, т. е. ps-rq=0=us-rw, то psw-rqw=0=usq-rwq, откуда s(pw-uq)=0, и pw=uq, т. е. $(p,q) \sim (u,w)$.
- Упр. 1.11. Если прямые ℓ_1 и ℓ_2 пересекаются в точке 0 под углом $0 < \alpha \leqslant \pi/2$, то отражение относительно ℓ_1 , а потом отражение относительно ℓ_2 это поворот вокруг точки 0 на угол 2α в направлении от первой прямой ко второй. Таким образом, отражения относительно ℓ_1 и ℓ_2 коммутируют тогда и только тогда, когда прямые перпендикулярны.
- Упр. 1.12. а) \Rightarrow б). Левое обратное к вложению $f: X \hookrightarrow Y$ должно переводить $y = f(x) \in \operatorname{im} f$ в x, а на элементах $Y \setminus \operatorname{im} f$ может действовать как угодно. В частности, ответ на последний вопрос задачи $-(m-n)^n$.

- б) \Rightarrow в). Равенство $g_1=g_2$ получается из равенства $fg_1=fg_2$ умножением обеих частей слева на любое левое обратное к f отображение.
- в) \Rightarrow а). Если $f(x_1)=f(x_2)$ для каких-то $x_1\neq x_2$, положим $g_1=\mathrm{Id}_X$, а в качестве g_2 возьмём автоморфизм $X\to X$, который меняет между собой точки x_1 и x_2 , а все остальные точки оставляет на месте. Тогда $g_1\neq g_2$, но $fg_1=fg_2$.

Упр. 1.13. Аналогично предыдущему упр. 1.12.

Упр. 1.14. Таблица композиций gf в симметрической группе S_3 :

$g \setminus f$	(1, 2, 3)	(1, 3, 2)	(3, 2, 1)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)
(1, 2, 3)	(1, 2, 3)	(1, 3, 2)	(3, 2, 1)	(2, 1, 3)	(2, 3, 1)	(3, 1, 2)
(1, 3, 2)	(1, 3, 2)	(1, 2, 3)	(3, 1, 2)	(2, 3, 1)	(2, 1, 3)	(3, 2, 1)
(3, 2, 1)	(3, 2, 1)	(2, 3, 1)	(1, 2, 3)	(3, 1, 2)	(1, 3, 2)	(2, 1, 3)
(2, 1, 3)	(2, 1, 3)	(3, 1, 2)	(2, 3, 1)	(1, 2, 3)	(3, 2, 1)	(1, 3, 2)
(2, 3, 1)	(2, 3, 1)	(3, 2, 1)	(2, 1, 3)	(1, 3, 2)	(3, 1, 2)	(1, 2, 3)
(3, 1, 2)	(3, 1, 2)	(2, 1, 3)	(1, 3, 2)	(3, 2, 1)	(1, 2, 3)	(2, 3, 1)