Письменный экзамен за второй семестр

Задачи можно решать в любом порядке. Полное решение каждой задачи оценивается в 10 баллов. Один ответ без объяснений оценивается в нуль баллов вне зависимости от того, верный он или нет. Для получения 100%-ного результата достаточно набрать 60 баллов.

- Задача 1 (10 баллов). Всякие ли две вещественные $n \times n$ матрицы A и B, сопряжённые друг другу над полем \mathbb{C} , сопряжены также и над \mathbb{R} (т. е. посредством вещественной матрицы C)?
- **Задача 2 (10 баллов)**. Грани кубика красят в красный, в белый, или в синий цвет. Сколько разных крашеных кубиков можно получить таким образом?
- Задача 3 (10 баллов). Существуют ли простые группы порядка 12?
- **Задача 4 (10 баллов)**. Из скольких точек состоит поверхность $x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0$ в проективном пространстве \mathbb{P}_3 над полем² \mathbb{F}_4 ?
- Задача 5. На конечномерном пространстве V над алгебраически замкнутым полем \Bbbk характеристики нуль задана невырожденная билинейная форма $\beta: V \times V \to \Bbbk$ и изометрический оператор $f: V \to V$. Верно ли, что $f: V \to V$.
 - а) (10 баллов) f обязательно диагонализуем
 - б) (10 баллов) линейные оболочки двух жордановых цепочек разной длины оператора f двусторонне ортогональны друг другу
 - в) (10 баллов) всякий оператор $h \in GL(V)$ однозначно записывается в виде композиции h = gs, в которой g изометричен, а s самосопряжён 6 ?
- Задача 6 (10 баллов). Найдите все кватернионы с квадратом -1, коммутирующие с кватернионом x, удовлетворяющим линейному уравнению $x \cdot (1 j + 2k) = 35 7i + 3j + 5k$.

 $^{^{1}}$ т. е. существует такая матрица $C \in \mathrm{GL}_{n}(\mathbb{C})$, что $CAC^{-1} = B$

 $^{^{2}}$ напомню, что $\mathbb{F}_{4}=\{a+b\omega\mid a,b\in\mathbb{Z}/(2),\ \omega^{3}=1,\ \omega\neq1\}$

³не обязательно симметричная или кососимметричная

 $^{^4}$ т. е. такой, что $\forall \ u,w \in V \ \beta(fu,fw) = \beta(u,w)$

⁵если да, докажите, если нет, приведите контрпример

 $^{^6}$ т. е. таков, что $\forall~u,w\in V~\beta(su,w)=\beta(u,sw)$