Erwin Schrödinger Institute für Mathematical Physics GEOQUANT 2013, August 26 – 30, 2013

MUKAI LATTICES: KNOWN STRUCTURES AND OPEN QUESTIONS

BY ALEXEY GORODENTSEV

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Plan

Basic definitions

- 2 Algebraic Geometric Source
- 3 Working example: projective spaces
- In the second second
- 5 Picard Lefschetz aspects (after V. Golyshev)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Diophantine aspects

Mukai lattice is a free \mathbb{Z} -module of finite rank $M \cong \mathbb{Z}^n$ equipped with (maybe neither symmetric nor anti-symmetric) unimodular bilinear form

$$M \times M \to \mathbb{Z}, \quad v, w \mapsto \langle v, w \rangle.$$

Unimodularity means that the polar mapping $M \to M^* \stackrel{\text{def}}{=} \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$

$$v \mapsto (u \mapsto \langle u, v \rangle)$$

is an isomorphism of abelian groups.

A basis e_1, e_2, \dots, e_n of M over \mathbb{Z} is called exceptional (or semiorthogonal) if its Gram matrix $\chi_{ij} = \langle e_i, e_j \rangle$ is upper uni-triangular, i.e.

$$\langle e_i, e_j \rangle = 0$$
 for all $i < j$
 $\langle e_i, e_i \rangle = 1$ for all i

Of course, a Mukai lattice *M* not necessary admits an exceptional basis and not any $v \in M$ with $\langle v, v \rangle = I$ is included in an exceptional basis.

Euler's form on Grothendieck's group

The Grothendieck group $K_0(X)$ of an algebraic variety X is equipped with the Euler form $\chi(E,F) = \sum (-1)^{\nu} \dim \operatorname{Ext}^{\nu}(E,F)$.

For smooth *X* and locally free *E*, *F* it can be computed by Riemann – Roch:

$$\chi(E,F) = \chi(E^* \otimes F) = \int_X \operatorname{ch}(E^* \otimes F) \cdot \operatorname{td}(T_X).$$

If $K_0(X)$ is a lattice of finite rank, it is a Mukai lattice. If $\mathcal{D}^b(X)$ admits an exceptional basis (i.e. a collection of objects E_1, E_2, \dots, E_m such that

$$\operatorname{Hom}_{\mathscr{D}^{b}(X)}^{\cdot}\left(E_{i},E_{j}\right) = \begin{cases} \mathbb{C} & \text{for } i=j\\ 0 & \text{for } i>j \end{cases}$$

and any object of $\mathcal{D}^{b}(X)$ can be achieved by taking cones of morphisms starting from finite direct sums of E_i 's), then the classes $e_i = [E_i]$ in $K_0(X)$ form an exceptional basis of the Mukai lattice $K_0(X)$.

Example: $K_0(\mathbb{P}_n)$

Mukai lattice $M = K_0(\mathbb{P}_n)$ can be canonically identified with the module of integer valued polynomials of degree $\leq n$ with rational coefficients:

 $M \xrightarrow{\sim} \{h \in \mathbb{Q}[t] \mid h(\mathbb{Z}) \subset \mathbb{Z} \& \deg h \leqslant n\}.$

The isomorphism takes a class $[E] \in K_0(\mathbb{P}_n)$ to the Hilbert polynomial

$$h_E(k) = \left< \mathcal{O}(-k), E \right> = \chi(E(k))$$

and sends the basis formed by the structure sheaves of projective subspaces

$$\mathcal{O}_{\mathbb{P}_n}, \mathcal{O}_{\mathbb{P}_{n-1}}, \dots, \mathcal{O}_{\mathbb{P}_1}, \mathcal{O}_{\mathbb{P}_0}$$

to the basis formed by binomial coefficients $\gamma_0 = h_{\mathcal{O}_{\mathbb{P}_0}} \equiv 1$ and

$$\gamma_k(t) = h_{\mathcal{O}_{\mathbb{P}_k}}(t) = \frac{l}{k!}(t+1)(t+2)\cdots(t+k), \quad 1 \leq k \leq n.$$

If we put D = d/dt, then the twisting $T : E \mapsto E(1) = E \otimes \mathcal{O}(1)$ goes to shift:

$$T = e^D : h_E(t) \longmapsto h_E(t+1).$$

The restriction onto a hyperplane: $1 - T^{-1} : E \mapsto E|_{\mathbb{P}_{n-1}}$ goes to

$$\nabla = l - e^{-D} : h_E(t) \longmapsto h_E(t) - h_E(t-1)$$

To write Riemann - Roch, it is convenient to present Hilbert polynomials as

$$h_F = F(D)\gamma_n,$$

where $F(D) \in \mathbb{Q}[[D]]$ is a power series in D = d/dt. In this terms

$$\begin{split} h_{F^*} &= F(-D)\gamma_n \\ h_{E\otimes F} &= E(D)\cdot F(D)\gamma_n \\ \langle E, F \rangle &= E(-D)F(D)\gamma_n(0). \end{split}$$

By the Beilinson theorem, any (n + 1) consequent invertible sheaves $\mathcal{O}(i)$, say

 $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2), \dots, \mathcal{O}(n)$

form an exceptional basis of $\mathcal{D}^b(\mathbb{P}_n)$.

Their classes $\gamma_n(t+i)$ form an exceptional basis of Mukai lattice $M = K_0(\mathbb{P}_n)$ with upper uni-triangular Gram matrix whose *i*'s diagonal is filled by $\binom{n+i}{i}$. For n = 2, 3 this Matrix looks like

$$\begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} , \qquad \begin{pmatrix} 1 & 4 & 15 & 20 \\ 0 & 1 & 4 & 15 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(日) (同) (E) (E) (E)

Braid group action and mutations

The braid group B_n of *n* threads acts on the set of exceptional bases of rank *n* Mukai lattice *M*. Inverse generators g_i , g_i^{-1} , which braid *i*-th and (i + I)-th threads, replace a pair of consequent vectors e_i , e_{i+I} of each exceptional basis by pairs

$$e_{i+1} - \langle e_i, e_{i+1} \rangle \cdot e_i, e_i \text{ and } e_{i+1}, e_i - \langle e_i, e_{i+1} \rangle \cdot e_{i+1}$$

and preserve all the other basic vectors. The generating relations of B_n

$$g_ig_{i+1}g_i = g_{i+1}g_ig_{i+1}$$
 for all i and $g_ig_j = g_jg_i$ for $|i-j| > 1$

are verified by straightforward computation.

More generally, for any $f \in M$ and $e \in M$ such that $\langle e, e \rangle = 1$ we call

$$L_e f \stackrel{\mathrm{def}}{=} f - \langle \, e \, , f \, \rangle e \quad \text{ in } \quad R_e f \stackrel{\mathrm{def}}{=} f - \langle f \, , e \, \rangle e$$

respectively left mutation and right mutation of f by means of e.

The Serre Operator

The Serre Operator is a linear mapping $\varkappa : M \to M$ defined by prescription

$$\langle u, w \rangle = \langle w, \varkappa u \rangle \quad \forall u, w \in M.$$

In any basis of *M* the Gram matrix χ and the matrix of x are related as

$$\varkappa = \chi^{-1} \chi^t \, .$$

The action of x on the elements of an exceptional basis e_1, e_2, \ldots, e_n is the composition of n - 1 consequent left mutations along an infinite sequence of vectors $(e_k)_{k \in \mathbb{Z}}$ defined by recursive formulae

$$e_{i-n} = \varkappa(e_i) = L_{e_{i-n+1}} \circ \dots \circ L_{e_{i-2}} \circ L_{e_{i-1}} e_i$$

$$e_{i+n} = \varkappa^{-1}(e_i) = R_{e_{i+n-1}} \circ \dots \circ R_{e_{i+2}} \circ R_{e_{i+1}} e_i.$$

Such infinite sequence is called a helix.

(日) (同) (E) (E) (E)

Example

The simplest helix in $M = K_0(\mathbb{P}_n)$ consists of invertible sheaves $\mathcal{O}(i), i \in \mathbb{Z}$. The consequent right mutations of \mathcal{O} along $\mathcal{O}(1), \ldots, \mathcal{O}(n)$ are

$$R_{\mathcal{O}(k)} \circ \dots \circ R_{\mathcal{O}(2)} \circ R_{\mathcal{O}(1)} \mathcal{O} = \Lambda^k \mathcal{T}(k)$$

(*k*'th exterior power of the tangent sheaf \mathcal{T} to \mathbb{P}_n). Indeed, *k*'th exterior power of the (twisted) Euler exact triple $0 \to \mathcal{O} \to V \otimes \mathcal{O}(1) \to \mathcal{T}(1) \to 0$ looks like

$$0 \to \Lambda^{k-1} \mathcal{T}(k-1) \to \Lambda^k V \otimes \mathcal{O}(k) \to \Lambda^k \mathcal{T}(k) \to 0 \,.$$

Since $\Lambda^k V = \operatorname{Hom}(\mathcal{O}, \Lambda^k \mathcal{T}) = \operatorname{Hom}(\Lambda^{k-1} \mathcal{T}, \mathcal{O}(1))^*$, we get in $K_0(\mathbb{P}_n)$:

$$\dim \Lambda^{k} V = \langle [\mathcal{O}(k)], [\Lambda^{k} \mathcal{T}(k)] \rangle = \langle [\Lambda^{k-1} \mathcal{T}(k-1)], [\mathcal{O}(k)] \rangle$$
$$[\Lambda^{k} \mathcal{T}(k)] = \langle [\Lambda^{k-1} \mathcal{T}(k-1)], [\mathcal{O}(k)] \rangle \cdot [\mathcal{O}(k)] - [\Lambda^{k-1} \mathcal{T}(k-1)].$$

Remark

If the anticanonical divisor $-K_X \subset X$ is ample, then the adjunction exact triple

$$0 \to E \otimes \omega_X \to E \to E|_{-K_X} \to 0$$

shows that the operator

$$\mathsf{Id} - (\cdot \otimes \omega_X) : [E] \mapsto [E] - [E \otimes \omega_X]$$

coincides with the restriction onto the anticanonical divisor $-K_X$:

$$E\mapsto E|_{-K_X},$$

which is nilpontent. Thus, on a smooth Fano variety *X* the Serre operator on the Mukai lattice $M = K_0(X)$, which takes

$$[E] \mapsto (-1)^{\dim X} [E \otimes \omega_X],$$

is quasi-unipotent with eigenvalues ± 1 .

Degression: non-symmetric bilinear forms over $\mathbb C$

Let $W = \mathbb{C} \otimes M$. Then the prescription

$$\chi \mapsto \varkappa(\chi) \stackrel{\text{def}}{=} \chi^{-l} \chi^{l}$$

defines GL(W) equivariant mapping of the non-degenerated bilinear forms on W to the linear automorphisms of W.

Moreover, two bilinear forms are GL(W)-equivalent iff the corresponding Serre operators are conjugated.

The Jordan normal forms for the Serre operators of non-degenerated bilinear forms can be explicitly described. This leads to the following classification of non-degenerated bilinear forms on W.

We say that *W* is decomposable if $W = V_1 \oplus V_2$, where $V_1 \neq 0$, $V_2 \neq 0$ and

$$\langle V_1, V_2 \rangle = \langle V_2, V_1 \rangle = 0.$$

Then *W* is a bi-orthogonal direct sum of indecomposable spaces.

Indecomposable spaces with non-degenerated bilinear forms (over \mathbb{C}) are:

• 2*k*-dimensional space $W_k(\lambda)$ with the Gram matrix $\begin{pmatrix} 0 & I \\ I_\lambda & 0 \end{pmatrix}$ constructed from $k \times k$ blocks

$$I = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & & 0 \end{pmatrix} \quad \text{and} \quad I_{\lambda} = \begin{pmatrix} 0 & & \lambda \\ & \lambda & 1 \\ & \ddots & \ddots & \\ \lambda & 1 & & 0 \end{pmatrix},$$

operator \varkappa has two Jordan chains of length k with eigenvalues λ , λ^{-1}

• *n*-dimensional space U_n with the Gram matrix $\begin{pmatrix} 1 \\ 0 & -1 \\ 1 \\ \ddots & 1 \\ \ddots & \ddots \end{pmatrix}$, operator \varkappa has one Jordan chain of length *n* with eigenvalue $(-1)^{n-1}$.

Conjecture 1

Assume that M is a Mukai lattice of type U_n that admits an exceptional basis. Then the group spanned by mutations of exceptional bases and the isometric automorphisms of M acts transitively on set of exceptional bases of M.

This conjecture was verified for $K_0(\mathbb{P}_2)$ by Drezet and Le Potier in 1980's and for $K_0(\mathbb{P}_3)$ by Nogin in 1990's. Nogin's arguments also allow to verify more strong

Conjecture 2

For each k = 1, 2, ..., rkM the group from the conjecture 1 acts transitively on the set of all exceptional collections of length k extendible to exceptional bases of M

Local systems

Let $U = \mathbb{CP}_1 \setminus \{x_0, x_1, \dots, x_n\}$ and $\gamma_0, \gamma_1, \dots, \gamma_n \in \pi_1(U)$ be some fixed basic loops about the points x_v drawn from a fixed base point $p \in U$.

Rank *r* local system on *U* is a locally trivial complex rank *r* vector bundle \mathcal{L} on *U* equipped with a flat $\operatorname{GL}_r(\mathbb{C})$ -connection or, equivalently, an isomorphism class of a representation

$$\varphi: \pi_l(U) \to \mathsf{GL}_r(\mathbb{C})$$

provided by the holonomy of the connection. The latter is given by a collection of n + 1 linear operators $\varphi_i = \varphi(\gamma_v) \in GL_r(\mathbb{C})$ satisfying

$$\varphi_0 \circ \varphi_1 \circ \cdots \circ \varphi(\gamma_n) = l$$

and considered up to simultaneous conjugation by the same matrix.

・ロト・(型ト・ミト・ミト ヨー のへの

Rigid local systems

Representation $\varphi : \pi_I(U) \to \operatorname{GL}_r(\mathbb{C})$ is called rigid, if for any other representation $\varphi' : \pi_I(U) \to \operatorname{GL}_r(\mathbb{C})$ an existence of a collection $g_v \in \operatorname{GL}_r(\mathbb{C})$ such that

$$\forall v \quad \varphi'(\gamma_v) = g_v \varphi(\gamma_v) g_v^{-1}$$

implies an existence of some $g \in GL_r(\mathbb{C})$ such that

$$\forall \gamma \in \pi_{l}(U) \quad \varphi'(\gamma) = g\varphi(\gamma)g^{-l}.$$

Rigid representation φ is called Katz local system if all operators $\varphi(\gamma_{\nu})$ are quasi-unipotent, i.e. $\varphi = \zeta + \eta$, where η is nilpotent and ζ is semisimple with $\zeta^m = 1$ for some $m \in \mathbb{N}$.

Pull-back $\mathscr{L}' = p^*\mathscr{L}$ of a Katz local system \mathscr{L} along a non-ramified covering $p: U' \twoheadrightarrow U$ is called quasi Katz local system. N. Katz has shown that such the systems are characterized as those realised by means of the Gauss – Manin connection in the middle homologies of pencils of algebraic varieties.

Claim

For each pair of coprime complex monic polynomials of the form

$$p(t) = l + p_1 t + \dots + p_r t^r$$
$$q(t) = l + q_1 t + \dots + q_r t^r$$

there exists a unique irreducible rigid local system φ of rank $r = \deg p = \deg q$ over $U = \mathbb{P}_{I} \{0, 1, \infty\}$ whose local monodromies $T = \varphi(\gamma_{0}), S = \varphi(\gamma_{1})$ satisfy the conditions

- *S* is a quasi-reflection, i.e. rk(1-S) = 1
- eigenvector of S with eigenvalue -1 is cyclic for T, i.e.

$$im(1-S), T(im(1-S)), ..., T^{r-1}(im(1-S))$$

span \mathbb{C}^r

- det(l tT) = q(t)
- $\det(l tST) = p(t)$

Quasi Katz local systems from helices

The Serre operator of Mukai lattice *M* of type U_{n+1} has the form

 $\varkappa = (-1)^n \mathsf{Id} + \eta \,,$

where $\eta^{n+1} = 0$ but $\operatorname{im} \eta^n = w_0 \neq 0$. We put $\varepsilon = (-1)^{n+1}$

and consider on $W = M \otimes \mathbb{C}$ a (skew) symmetric form

$$(v,w)_{\varepsilon} = \langle v, w \rangle + \varepsilon \langle w, v \rangle = \varepsilon \langle v, \eta w \rangle.$$

It has 1-dimensional kernel $\mathbb{C} \cdot w_0$. We put

$$V = W / \mathbb{C} \cdot w_0$$

and write (*,*) for the non-degenerated form on V induced by $(*,*)_{\varepsilon}$. Given $e \in W$ with (e,e) = 1, we write $\sigma_e(v) \stackrel{\text{def}}{=} v - (e,v) \cdot e \pmod{w_0}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

It follows from the previous real that each exceptional basis $e_0, e_1, \ldots, e_n \in M$ produces a local system $\sigma : \pi_1(U) \to GL(V)$ with fibre V on $U = \mathbb{P}_1 \setminus \{x_0, x_1, \ldots, x_n, \infty\}$, where

$$x_k = \exp\frac{2\pi i k}{n+1}, \quad 0 \le k \le n,$$

by prescriptions

$$\begin{split} \sigma(\gamma_k) &= \sigma_{e_k} : v \mapsto v - (e_v, v) \cdot e_v \quad \text{for } 0 \leq k \leq n \\ \sigma(\gamma_\infty) &= (\sigma(\gamma_0) \circ \sigma(\gamma_1) \circ \cdots \circ \sigma(\gamma_n))^{-1} \,. \end{split}$$

In 2000's V. Golyshev has shown that the local system provided by this way from the basis

$$\mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n) \in K_0(\mathbb{P}_n)$$

is quasi Katz.

Rank 3 Mukai lattice of type U_3

J.N.F. of the Serre operator x on rank 3 Mukai lattice M is

either
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

that correspond to the types U_3 , $U_2 \oplus U_1$, and $U_1 \oplus W_2(\lambda)$ with $\lambda \neq \pm 1$ distinguished by $\operatorname{tr}(\kappa) = 3, -1, 1 + \lambda + \lambda^{-1}$.

If M admits an exceptional basis with Gram matrix

$$\chi = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right).$$

then $\operatorname{tr}(\kappa) = \operatorname{tr}(\chi^{-1}\chi^t) = 3 - a^2 - b^2 - c^2 + abc$. Thus, *M* has type U_3 iff $\{a, b, c\}$ satisfy tripled Markov equation $a^2 + b^2 + c^2 = abc$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Markov's forms

Let $q(x, y) \in \mathbb{Z}[x, y]$ be homogeneous quadratic form of positive discriminant $-\det q > 0$. Write

$$\mu(q) = \min_{(x,y) \in \mathbb{Z}^2 \setminus (0,0)} |q(x,y)| \cdot |\det(q)|^{-1/2}$$

for its homogeneous minimum over non-zero elements of $\mathbb{Z}^2 \subset \mathbb{R}^2$.

In 1890's A. Markov has shown that there is precisely one orbit $SL_2(\mathbb{Z}) \cdot q_1$ such that $\mu_1 = \mu(q_1) = \max_q \mu(q)$. Outside this orbit there is precisely one orbit $SL_2(\mathbb{Z}) \cdot q_2$ such that $\mu_2 = \mu(q_2) = \max_{q \neq q_1} \mu(q)$ (and $\mu_2 < \mu_1$) e.t.c.

The decreasing sequence of the maximal homogeneous minima $\mu_1, \mu_2, ...$ is called the Markov spectrum and the corresponding forms q_i (up to the action of SL₂(\mathbb{Z})) are called the Markov forms.

Markov's equation

Up to permutations and simultaneous change of signs of any two entries, all solutions $\{a,b,c\}$ of the tripled Markov equation $a^2 + b^2 + c^2 = abc$ are produced from $\{3,3,3\}$ by mutations that change one of a,b,c via Vieta:

$$a \mapsto bc - a$$
; $b \mapsto ac - b$; $c \mapsto ab - c$

when two other remain fixed. If we change an exceptional basis e_0, e_1, e_2 by

$$\langle e_0, e_1 \rangle \cdot e_0 - e_1, e_0, e_2; e_0, \langle e_1, e_2 \rangle \cdot e_1 - e_2, e_1; e_0, e_2, \langle e_1, e_2 \rangle \cdot e_2 - e_1$$

respectively, the Gram matrix $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ turns to

$$\begin{pmatrix} 1 & a & ab-c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & ac-b & a \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & b & bc-a \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

イロト イポト イヨト イヨト 三日

Thus, each exceptional basis of rank 3 Mukai lattice of type U_3 is achieved from a basis with the Gram matrix

$$\begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
 (\$\xi\$)

by mutations and changing signs of basic vectors.

Since (\bigstar) coincides with the Gram matrix of the exceptional basis $\mathcal{O}, \mathcal{T}(-1), \mathcal{O}(1)$ in $K_0(\mathbb{P}_2)$, we conclude that $M = K_0(\mathbb{P}_2)$ is a unique (up to isometry) rank 3 Mukai lattice of type U_3 that has an exceptional basis.

Vectors $e \in M$ that can be included in some exceptional basis stay in bijection with the Markov forms. Namely, quadratic form $q(v) = \langle v, v \rangle$ on $e^{\perp} \subset M$ written in global coordinates $x = \operatorname{rk}(v)$, $y = c_1(v)$ on $K_0(\mathbb{P}_2)$ is a Markov form and all the Markov forms are obtained in this way.

Under this identification the $SL_2(\mathbb{Z})$ action on the Markov forms turns to one spanned by the dualization $v \mapsto v^*$ and twisting $v \mapsto Tv$.

Davenport forms

The same situation is expected for totally real homogeneous cubic forms $q(x,y,z) \in \mathbb{Q}[x,y,z]$. If

$$q(x, y, z) = \prod_{i=1}^{3} (\alpha_i x + \beta_i y + \gamma_i z) \quad \text{in} \quad \mathbb{R}[x, y, z],$$

then Davenport has shown in 1940-th that the homogeneous minimum

$$\mu(q) = \min_{\mathbb{Z}^3 \setminus 0} q(x, y, z) \cdot \det^{-1} \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix}$$

achieves its maximum $\mu = 1/7$ along exactly one $SL_3(\mathbb{Z})$ -orbit and outside this orbit the next maximal $\mu = 1/9$ is achieved along exactly one $SL_3(\mathbb{Z})$ -orbit as well.

Nothing more is known after Davenport.

The first two forms of expected Davenports chain are the norms of cubic extensions of \mathbb{Q} spanned by trigonometric irrationalities whose minimal polynomials are

$$t^{3} + t^{2} - 2t - 1$$
 with $\mu = 1/7$
 $t^{3} - 3t - 1$ with $\mu = 1/9$

Open questions

Are these cubic polynomials connected with the Hilbert polynomials of the exceptional sheaves on \mathbb{P}_3 ?

Is the Davenport chain governed by the Mukai lattice $K_0(\mathbb{P}_3)$ like it was for Markov's chain?

THANKS FOR YOUR ATTENTION!

Alexey Gorodentsev (HSE, ITEP)