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Mukai lattice is a free Z-module of finite rank M = Z" equipped with (maybe
neither symmetric nor anti-symmetric) unimodular bilinear form

MXM—> 7, vwe (v, w).
Unimodularity means that the polar mapping M — M* £ Hom (M, Z)
vie (U (u,v))

is an isomorphism of abelian groups.
A basis e;,e,,...,e, of M over Z is called exceptional (or semiorthogonal) if
its Gram matrix y; = (e;, ¢;) is upper uni-triangular, i.e.

(e;,€;)=0 foralli<j

(e;,e;y=1 foralli
Of course, a Mukai lattice M not necessary admits an exceptional basis and
not any v € M with (v, v) = I is included in an exceptional basis.
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Euler's form on Grothendieck's group

The Grothendieck group K, (X) of an algebraic variety X is equipped with the
Euler form  y(E,F)=Y.(-1)"dimExt"(E,F).

v

For smooth X and locally free E, F it can be computed by Riemann — Roch:
XEF)=y(E"®F)= /Ch(E*®F)'td(TX)-
X

If Ky(X) is a lattice of finite rank, it is a Mukai lattice. If Qh(X) admits an
exceptional basis (i.e. a collection of objects E;,E,, ..., E,, such that

. C fori=j
FoMgia (EnEy) = {0 fori>j

and any object of 2°(X) can be achieved by taking cones of morphisms start-
ing from finite direct sums of E;'s), then the classes ¢; = [E;] in K)(X) form
an exceptional basis of the Mukai lattice K,(X).
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Example: Ky(P,)

Mukai lattice M = K,(P,) can be canonically identified with the module of
integer valued polynomials of degree < n with rational coefficients:

M= {heQ[t]| (Z)C Z & degh < n}.
The isomorphism takes a class [E] € K,(P,,) to the Hilbert polynomial
heg(k) =(0(=k), E) = y(E(k))
and sends the basis formed by the structure sheaves of projective subspaces
Op .0p _,:---0p,,0p,

to the basis formed by binomial coefficients yy = h,, =1 and
0

YD) = h@pk(t) = %(t+])(t+2)---(t+k), 1<k<n.
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If we put D =d/dt, then the twisting T : E — E(I) = E® O(]) goes to shift:
T=eP: hy(t) — hpt+1).
The restriction onto a hyperplane: I - T~ : E Elp , goes to
V=1-eP: hg(t)— hg(t)—hgt—1)
To write Riemann — Roch, it is convenient to present Hilbert polynomials as
hg = F(D)y,,
where F(D) € Q[[D]] is a power series in D =d /dt. In this terms

hyp. = F(~D)y,
hggr = E(D)-F(D)y,
(E,F)=E(-D)F(D)y,(0).
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By the Beilinson theorem, any (n+ ) consequent invertible sheaves 0(i), say
0,6(),06(2), ..., 06(n)

form an exceptional basis of SJZb(Pn).

Their classes y, (7 +i) form an exceptional basis of Mukai lattice M = K,(P,)
with upper uni-triangular Gram matrix whose i's diagonal is filled by ("+1).

i
For n = 2, 3 this Matrix looks like

1 4 15 20
136 01 4 15
0 1 3| .
0 0 1 00 1 4
00 0 1
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Braid group action and mutations

The braid group B,, of n threads acts on the set of exceptional bases of rank
n Mukai lattice M . Inverse generators g;, gi_l, which braid i-th and (i + 1)-th
threads, replace a pair of consequent vectors e;, e;, ; of each exceptional basis
by pairs

eiyr—(ei-eny)-e. e and e, e;— (e e;) ey
and preserve all the other basic vectors. The generating relations of B,
8i8i+18i = 8i+18:8i+1 for all i and g;g; = g;g; for [i—j| > 1

are verified by straightforward computation.

More generally, for any f € M and e € M such that (e, e) = I we call

Lf=f-(e.fle m RfEf—(f.e)e

respectively left mutation and right mutation of f by means of e.
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The Serre Operator
The Serre Operator is a linear mapping x : M — M defined by prescription
(u,w)=(w,xu) YuweM.

In any basis of M the Gram matrix y and the matrix of x are related as

The action of x on the elements of an exceptional basis e;,e,,...,e, is the

composition of n— I consequent left mutations along an infinite sequence of
vectors (e )., defined by recursive formulae

e_,=x(e)=L, o.. oL

oL
l i—n+1 €2 €1

-1 R R R
. = L) = o o o .
in =€) Cipneg ° " O Veiyy O ey G

e

i

e

Such infinite sequence is called a helix.
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Example

The simplest helix in M = K,(P,) consists of invertible sheaves 0(i), i € Z.
The consequent right mutations of O along 6(1), ..., O(n) are

k
R@(k)‘) °R@(2)°R@(1)@ - A 9(]()

(k'th exterior power of the tangent sheaf 7 to P,). Indeed, k'th exterior power
of the (twisted) Euler exact triple 0—- 0 - V®0O()—> T (I)— 0 looks like

0— AT (k=1) = AV OKk) - A*T (k) - 0.
Since A"V =Hom(0, A7) = Hom(A*17,6(1))*, we get in Ky(P,):

dim A*V = ([6(0)], [A*T (1) = ([A1 T (k- D], [6(K)])
[AKT ()] = ([AM 1T (k= D], [6(K)]) - [6()) = (AL T (k- D)].
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Remark

If the anticanonical divisor —Ky C X is ample, then the adjunction exact triple
0->EQuwy —~E—E| g —0
shows that the operator
ld — (- Qwy) : [E] = [E] — [E®wx]
coincides with the restriction onto the anticanonical divisor —Ky :
EwE| g,

which is nilpontent. Thus, on a smooth Fano variety X the Serre operator on
the Mukai lattice M = K;(X), which takes

[E] » (D™ X[E@wy].
is quasi-unipotent with eigenvalues +1/.
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Degression: non-symmetric bilinear forms over C
Let W=C® M . Then the prescription
xexE
defines GL(W) equivariant mapping of the non-degenerated bilinear forms

on W to the linear automorphisms of W.

Moreover, two bilinear forms are GL(W)-equivalent iff the corresponding
Serre operators are conjugated.

The Jordan normal forms for the Serre operators of non-degenerated bilinear
forms can be explicitly described. This leads to the following classification of
non-degenerated bilinear forms on W.

We say that W is decomposable if W=V, @&V, , where V; #0, V, # 0 and
(Vi, Vo) =(V,,V;) =0.

Then W is a bi-orthogonal direct sum of indecomposable spaces.
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Indecomposable spaces with non-degenerated bilinear forms (over C) are:

@ 2k-dimensional space W,(4) with the Gram matrix <]0 é)
A

constructed from k X k blocks

0o I o
I= and I, = o ,
! 0 Al 0

operator x has two Jordan chains of length k with eigenvalues A, A~/

1
0 -1 1
e n-dimensional space U, with the Gram matrix 1 -1 ,
1
0

operator x has one Jordan chain of length n with eigenvalue (—1)"~'.
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Conjecture 1

Assume that M is a Mukai lattice of type U, that admits an exceptional basis.
Then the group spanned by mutations of exceptional bases and the isometric
automorphisms of M acts transitively on set of exceptional bases of M.

This conjecture was verified for K,(IP,) by Drezet and Le Potier in 1980's and
for Ky(P;) by Nogin in 1990's. Nogin's arguments also allow to verify more
strong

Conjecture 2

Foreach k=1, 2, ..., rkM the group from the conjecture 1 acts transitively
on the set of all exceptional collections of length k extendible to exceptional
bases of M
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Local systems

Let U =CP;~{xpx;,....x,} and vypv;,....7, € 7;(U) be some fixed
basic loops about the points x,, drawn from a fixed base point p € U.

Rank r local system on U is a locally trivial complex rank r vector bundle £ on
U equipped with a flat GL,.(C)-connection or, equivalently, an isomorphism
class of a representation

@ m;(U)— GL.(C)

provided by the holonomy of the connection. The latter is given by a collec-
tion of n+ 1 linear operators @; = ¢(y,) € GL,(C) satisfying

@pe@ro oy, =1

and considered up to simultaneous conjugation by the same matrix.
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Rigid local systems

Representation ¢ : 7;(U) — GL,.(C) is called rigid, if for any other represen-
tation ¢’ : 7;(U) —» GL,(C) an existence of a collection g, € GL,(C) such that

Vv @) =8,00,)8;"

implies an existence of some g € GL,(C) such that

Vyer,(U) ¢ =gpre".

Rigid representation ¢ is called Katz local system if all operators ¢(y,) are
quasi-unipotent, i.e. ¢ = { +#, where 7 is nilpotent and ¢ is semisimple with
¢" =1 for some m € N.

Pull-back &’ = p*# of a Katz local system & along a non-ramified covering
p : U » Uis called quasi Katz local system. N. Katz has shown that such the
systems are characterized as those realised by means of the Gauss - Manin
connection in the middle homologies of pencils of algebraic varieties.
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Claim

For each pair of coprime complex monic polynomials of the form

PO =1+pyt+-+p,l
qO)=1+q 1+ +q,"

there exists a unique irreducible rigid local system @ of rank r = degp = deggq
over U=P;{0, ], »} whose local monodromies T = ¢(y,), S = ¢(y;) satisfy
the conditions

o S is a quasi-reflection, i.e. rk(I —=8) =1

e eigenvector of S with eigenvalue —1 is cyclic for 7, i.e.
im(1=S), T(im(I=S)), ..., T"1(im (1 - 5))

span C”
o det(I—tT)=q(r)
o det(! —tST) = p(t)

v
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Quasi Katz local systems from helices
The Serre operator of Mukai lattice M of type U, ; has the form

x=(1"ld+7,
where #"'=0 but imy =wy#0. We put
£ = (=1
and consider on W =M ® C a (skew) symmetric form
VW) =(v.,w)y+e(w,v)=¢e(v,nw).
It has 1-dimensional kernel C-w,. We put
V=W/C-w,

and write (%, %) for the non-degenerated form on V induced by (x, %),. Given
e € W with (e,e) = I, we write ¢,(v) Hyv—(e,v)-e (mod wy).
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It follows from the previous that each exceptional basis ¢,,e;, ...,e, €
M produces a local system ¢ : 7z;(U) - GL(V) with fibre V on U =P, «
{xp,X;,....%,, 0}, where

2rik

TR 0<k<n9
n+1

X = exp

by prescriptions
o) =0, :vv—(e,v)-e, forO<ks<n
6(re) = (@(rp)o0(r))e - o o(r,) .

In 2000's V. Golyshev has shown that the local system provided by this way
from the basis
0,06(),...,0(n) e Ky)(P,)

is quasi Katz.
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Rank 3 Mukai lattice of type U;

J.N.F. of the Serre operator x on rank 3 Mukai lattice M is

1 1 0 -1 1 0 A 0 O
either |0 1 1 or 0 -1 0| or 0 271 0
0 0 1 0 0 1 0 0 1

that correspond to the types U;, U, ® U, , and U; @ W,(4) with A # +1 dis-
tinguished by tr(x)=3,-1,1 +a+471,

If M admits an exceptional basis with Gram matrix

l a b
=10 1 c|.
0 0 1

then tr(x) = tr(y ! y") = 3—a® = b* = +abc. Thus, M has type U; iff {a.b,c}
satisfy tripled Markov equation a? +b*+c? = abc.
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Markov's forms

Let g(x,y) € Z[x,y] be homogeneous quadratic form of positive discriminant
—detg > 0. Write

: -12

u@)=  min |qCxy)|-|det(q)| ™"
(Y)EZ(0,0)

for its homogeneous minimum over non-zero elements of Z? c R?.

In 1890's A. Markov has shown that there is precisely one orbit SL,(Z) - g,

such that p; = u(g;) = maxu(g). Outside this orbit there is precisely one
q

orbit SL,(Z) - g, such that u, = u(g,) = maxu(g) (and u, < p;) e.t.c.
q~q

The decreasing sequence of the maximal homogeneous minima y;, p,, ... is
called the Markov spectrum and the corresponding forms g; (up to the action
of SL,(2Z)) are called the Markov forms.
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Markov's equation

Up to permutations and simultaneous change of signs of any two entries,
all solutions {a,b,c} of the tripled Markov equation a® + b° + ¢* = abc are
produced from {3,3,3} by mutations that change one of a,b, c via Vieta:

a—bc—a; beac-b; c—ab-c
when two other remain fixed. If we change an exceptional basis ej,e;,e, by

(ep.er)-ep—ej,ep, er5 ey, (e, ex)-ej—ey,e; e, ey, (e, e)-e;—¢

1 a b
respectively, the Gram matrix |0 [ c|turns to
0 0 1

l a ab-c l ac—-b a Il b bc—a
0 1 b , o 1 c

0 0 1 0o 0 1 0o 0 I
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Thus, each exceptional basis of rank 3 Mukai lattice of type U; is achieved
from a basis with the Gram matrix

1 3 3
0 1 3 (%)
0 0 1

by mutations and changing signs of basic vectors.

Since (%) coincides with the Gram matrix of the exceptional basis
0,7 (-1), 0(1) in Ky(P,), we conclude that M = K,(P,) is a unique (up to
isometry) rank 3 Mukai lattice of type U; that has an exceptional basis.
Vectors e € M that can be included in some exceptional basis stay in bijection
with the Markov forms. Namely, quadratic form g(v) = (v,v) on et ¢ M
written in global coordinates x = rk(v), y = ¢;(v) on K,(P,) is a Markov form
and all the Markov forms are obtained in this way.

Under this identification the SL,(Z) action on the Markov forms turns to one
spanned by the dualization v — v* and twisting v — Tv.
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Davenport forms

The same situation is expected for totally real homogeneous cubic forms
q(x.y.2) € Qlx.y.z]. If

3

g06y.2) = [Jax+By+r) in Rixy.zl,
i=1

then Davenport has shown in 1940-th that the homogeneous minimum

[ B 71

u(g) =min g(x.y,z)-det™ fay B, 7,
Z°\0

as Pz v3

achieves its maximum y = 1/7 along exactly one SL;(Z)-orbit and outside
this orbit the next maximal y = 1/9 is achieved along exactly one SL;(Z)-
orbit as well.

Nothing more is known after Davenport.
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The first two forms of expected Davenports chain are the norms of cubic ex-
tensions of Q spanned by trigonometric irrationalities whose minimal poly-
nomials are

P+ -2t-1 with u=1/7
£ -3t-1 with u=1/9

Open questions

Are these cubic polynomials connected with the Hilbert polynomials of the
exceptional sheaves on P;?

Is the Davenport chain governed by the Mukai lattice K,(P;) like it was for
Markov's chain?
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